“土地利用/覆盖变化与综合减灾”专辑

金矿资源定量预测的粗糙集方法

  • 朱雅琼 ,
  • 周尤 ,
  • 詹云军 ,
  • 彭晶倩 ,
  • 袁艳斌
展开
  • 武汉理工大学资源与环境工程学院,湖北 武汉 430070
朱雅琼(1983-), 女, 湖北武汉人, 硕士生,主要从事信息科学在资源环境中的应用研究.E-mail:zhuyq06@126.com

收稿日期: 2007-06-14

  修回日期: 2007-12-18

  网络出版日期: 2008-02-10

基金资助

国家自然科学基金项目“粗糙集支持下特征矿化信息挖掘的粒子群演化方法”(编号:40572166)和“基于混沌进化算法的数字流域信息挖掘与复合”(编号:50309013);湖北省自然科学基金项目“数字流域空间信息融合机理研究”(编号:2005ABA228)资助.

Quantitative Analysis of Gold Mineral Resource Based on Rough Set

Expand
  • School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China

Received date: 2007-06-14

  Revised date: 2007-12-18

  Online published: 2008-02-10

摘要

矿产信息是各种成矿相关信息的综合体现,为了有效地提取成矿预测综合信息,有必要客观地筛选原始观测信息,突出成矿密切相关的致矿因子。粗糙集不需要数据的附加信息或先验知识,在知识库分类能力不变的前提条件下,删除无关或不重要的属性,能对决策系统进行有效约简。提出基于粗糙集理论进行集成化预测模型研究的新方法,基于粗糙集思想提取与成矿密切相关的特征矿化信息,获取最佳变量组合及区间值,并将其作为参量建立预测模型,结合经典矿床统计预测聚类方法确定代判临界值,及特征分析方法对矿产资源进行定量预测,确立了8个成矿有利单元,与研究区勘查工程资料基本吻合,表明该方法能够有效降噪,简化模型,为靶区预测提供准确的依据。

本文引用格式

朱雅琼 , 周尤 , 詹云军 , 彭晶倩 , 袁艳斌 . 金矿资源定量预测的粗糙集方法[J]. 地球科学进展, 2008 , 23(2) : 214 -218 . DOI: 10.11867/j.issn.1001-8166.2008.02.0214

Abstract

Mineral information includes all kinds of relative metallogenic information. In order to extract comprehensive metallogenic prediction information, it's necessary to filter initial observation information to emphasize the factors which are most advantageous to metallogenic. Rough set can delete irrespective or unimportant attributes under the premises of no classification ability changing, without supplement information or prior knowledge. A new integrated predicion model based on Rough set theory is put forward in this research. The mineral information most advantageous to metallogenic from a great number of variables to achieve the optimization of variable structure and numerical interval is chosen. Based on the optimization combination, characteristic function is established for prediction. Combined with some conventional methods for deposit statistics, prediction, clustering means is applied to get the critical point for decision and quantitative charcterisic analysis is applied to predict the mineral resource by calculating the relation degree of are every geological cell. And eight geological cells are established as the cells advantageous to metallogenic. Results are basically in accord with practice, which shows availability of this method.

参考文献

[1] Pawlack Z. Rough Sets [J]. Communications of the ACM19953811:89-95.

[2] Wang XiaTang Deshan. The evaluation method for regional water resources system based on roughness and fuzz set theory [J]. Water Resources Planning and Design2006,(1:31-33.[王霞,唐德善.基于粗糙模糊集的区域水资源系统的评价方法[J]. 水利规划与设计,2006,(1:31-33.]

[3] Guo Jiayuan. Rough set-Based approach to rule generation and rule induction [J]. International Journal of General Systems2002316: 601-617.

[4] Chu YangjieWang XianjiaFang Debinet al.  An attribute reduction algorithm based on the relation matrix of rough set [J]. Journal of Wuhan University of Technology2006282:81-83.[楚扬杰,王先甲,方德斌,等. 基于粗糙集相关矩阵的属性约简算法[J]. 武汉理工大学学报,2006282: 81-83.]

[5] Pawalai KraipeerapunChun Che FungWarick Brownet al. Uncertainty in mineral prospectivity prediction [J]. Neural Information Processing20064 233: 841-849.

[6] Li ShuangchengZheng Du. Applications of Artificial neural networks to geosciences: Review and prospect [J]. Advances in Earth Science2003181: 68-76. [李双成,郑度. 人工神经网络模型在地学研究中的应用进展[J]. 地球科学进展,2003181: 68-76.]

[7] Xie GuimingFan Jizhang. The synthetic information model of prospecting gold deposits and prediction of prospecting gold targets in East HunChun District of Jilin Province [J]. Gold Science and Technology200085: 20-27.[谢贵明,范继璋. 吉林省珲春东部地区金矿综合信息找矿模型及找矿靶区区预测[J]. 黄金科学技术,200085: 20-27.] 

[8] Huang XiaonaiChang WenshengYang Jianminget al. Mineralogenetic prediction of a certain uranium deposit [J]. Mining Research and Development2003236:37-39.[黄晓乃,畅文生,杨建明,等. 某铀矿床成矿预测[J]. 矿业研究与发展,2003236:37-39.]

文章导航

/