生态学研究

氮素输入影响下淡水湿地碳过程变化

  • 张丽华 ,
  • 宋长春 ,
  • 张金波
展开
  • 1.中国科学院东北地理与农业生态研究所,吉林 长春 130012;2.中国科学院大气物理研究所,北京 100029
宋长春(1968-),男,河南西平人,研究员,主要从事湿地生物地球化学和湿地生态系统管理研究.E-mail: songcc@neigae.ac.cn

收稿日期: 2004-12-14

  修回日期: 2005-04-25

  网络出版日期: 2005-11-25

基金资助

国家自然科学基金项目“三江平原湿地垦殖和退耕还湿过程中土壤碳组分变化研究”(编号:40471124);中国科学院知识创新工程重大项目“典型湿地生态系统碳循环的主要生物地球化学过程研究”(编号:KZCX1-SW-01)和“三江平原典型沼泽湿地系统物质循环研究”(编号:KZCX3-SW-332)资助

THE VARIATION OF CARBON STOCK IN FRESHWATER MIRE AFTER NITROGEN INPUT

  • ZHANG Li-hua1 ,
  • SONG Chang-chun ,
  • ZHANG Jin-bo
Expand
  • 1.Northeast Institute of Geography and Agricultural Ecology, CAS, Changchun 130012 China;2.Institute of Atmospheric Physics, CAS , Beijing 100029, China

Received date: 2004-12-14

  Revised date: 2005-04-25

  Online published: 2005-11-25

摘要

通过野外控制试验和室内培养试验研究了氮素输入对淡水沼泽湿地碳循环过程的影响。结果表明,氮素的输入能够提高沼泽湿地碳的生物累积,但过多的氮素输入则引起植物生产力的降低,并对常年积水沼泽湿地有机物质的分解有抑制作用。在非淹水条件下,氮素输入后有机物质的分解速率明显大于淹水条件,说明水文条件和氮素输入对枯落物的分解过程都有重要的影响,只是在不同环境条件下的响应存在一定的差异。氮素输入后,植物—土壤系统CO2排放量增大;但是,过多氮素输入后植物—土壤系统呼吸速率降低,这说明一定量的氮素输入可促进植物的生长和根的发育,对微生物的活性也有一定的影响,但过多的氮素输入则会对这些过程产生一定的抑制作用。氮素输入对土壤溶解有机碳(DOC)有明显的影响。氮素输入后,根层土壤DOC含量明显降低(P<0.05),不同土壤深度DOC的变化有一定的差异。

本文引用格式

张丽华 , 宋长春 , 张金波 . 氮素输入影响下淡水湿地碳过程变化[J]. 地球科学进展, 2005 , 20(11) : 1249 -1255 . DOI: 10.11867/j.issn.1001-8166.2005.11.1249

Abstract

Field control experiment and laboratory culture experiment were conducted to study the influence of nitrogen input on the freshwater mire carbon stock. The results shown that nitrogen input can increase bioaccumulation of carbon in the swamp, however, too much nitrogen input will reduce plant growth rate and prevent organic matter decomposition of flooding mire. The decomposition rate of organic matter in submersed is obviously larger than that of organic matter unsubmersed after input of nitrogen, suggesting hydrological condition and nitrogen input were both affected organic matter decomposition. After nitrogen input, carbon dioxide emission was significantly increased. However, too much nitrogen input induced decrease in carbon dioxide emission. Nitrogen input can stimulate plant growth and activity of soil microbe. On the other hand, too much nitrogen input could prevent plant growth and activity of soil microbe. Nitrogen input also affected obviously the concentration of dissolved organic carbon (DOC), and DOC concentration significantly decreased after nitrogen input ( P<0.05).

参考文献

[1] Peng Shaolin, Li Yuelin, Ren Hai, et al. Progress in research on soil respiration under the global change[J].Advances in Earth Science, 2002,17(5):705-713[彭少麟,李跃林,任海,等. 全球变化条件下的土壤呼吸效应[J]. 地球科学进展,2002,17(5):705-713.]
[2] Wang Shaoqiang, Liu Jiyuan. Research status quo of impact factors of soil carbon storage [J]. Advances in Earth Science,2002, 17(4):528-534.[王绍强,刘纪远. 土壤碳蓄积量变化的影响因素研究现状[J]. 地球科学进展, 2002,17(4):528-534.]
[3] Chen Jie, Tan Manzhi, Chen Jingzhong, et al. Soil degradation: A global problem of endangering sustainable development [J].Advances in Earth Science,2002,17(5): 720-728.[陈杰,檀满枝,陈晶中,等. 严重威胁可持续发展的土壤退化问题[J]. 地球科学进展, 2002,17(5):720-728.]
[4] Sjoberg G B, Bergkvist D, Berggren S I. Long-term N addition effects on the C mineralization and DOC production in more humus under spruce[J].Soil Biology and Biochemistry,2003,35:1 305-1 315.
[5] Bauer G A, Bazzaz F A, Minocha R,et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine(Pinus resinosa Ait.) stand in the NE United States[J].Forest Ecology and Management,2004, 196: 173-186.
[6] Guggenberger G, Zech W. Dissloved organic carbon controls in acid forest soils of the Fichtelgebirge(Germany) as revealed by distribution patterns and structural composition analyses[J].Geoderma,1993,59:109-129. 
[7] Aber J D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems[J].Trends in Ecology and Evolution,1992,7:220-223.
[8] Currie W S, Aber J D, McDowell W H, et al. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests[J].Biogeochemistry, 1996,35:471-505.
[9] Romero J A ,Comin F A, Garcia C. Restored wetlands as filters to remove nitrogen[J].Chemosphere,1999,39:323-332.
[10] Sikira F J, Tong Z,Behrends L L. Ammonium removal in constructed wetlands with recirculating subsurface flow: Remove rates and mechanisms[J].Water science and Technology,1995,32:193-202.
[11] Martin J F, Reddy K R. Interaction and spatial distribution of wetland nitrogen processes[J].Ecological Modeling,1997,105:1-21.
[12] Groffman P M, McDowell W H, Myers J C, et al. Soil microbial biomass and activity in tropical riparian forests[J].Soil Biology & Biochemistry,2001,33:1 339-1 348.
[13] Song C C, Yan B X, Wang Y S, et al. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China[J]. Chinese Science Bulletin,2003,48: 2 749-2 753.
[14] Schesinger W H , Andrews J A . Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48:7-20.
[15] Guggenberger G. Acidification effects on dissolved organic matter mobility in spruce forest ecosystems[J].Environmental International,1994,20:31-41.[16] Hagedorn F, Peter Blaser P, Rolf Siegwolf R. Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues from δ13C signature[J].Soil Biology and Biochemistry,2002, 34:355-366.

文章导航

/