生态学研究

基于反射率的太湖典型湖区溶解性有机碳的反演

  • 张运林 ,
  • 陈伟民 ,
  • ,
  • 马荣华 ,
  • 黄群芳
展开
  • 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;
    2.中国科学院研究生院,北京 100039;
    3.南京大学城市与资源学系,江苏 南京 210093
张运林(1976-), 男, 湖南邵阳人, 博士研究生, 主要从事湖泊光学和湖泊生态学研究. E-mail:ylzhang@niglas.ac.cn 

收稿日期: 2004-11-18

  修回日期: 2005-03-28

  网络出版日期: 2005-07-25

基金资助

中国科学院知识创新工程重大项目“长江中下游地区湖泊富营养化的发生机制与控制对策研究”(编号:KZCX1-SW-12);江苏省自然科学基金项目“东太湖湖底水生植被对水体叶绿素遥感的影响研究”(编号:BK2004422)资助.

RETRIEVING OF DISSOLVED ORGANIC CARBON BASED ON IRRADIANCE REFLECTANCE IN TYPICAI LAKE ZONES OF LAKE TAIHU

  • ZHANG Yun-lin ,
  • HUANG Qun-fang ,
  • CHEN Wei-min1 ,
  • MA Rong-hua1
Expand
  • 1. Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; 
    3. Department of City and Resources, Nanjing University, Nanjing 210093, China

Received date: 2004-11-18

  Revised date: 2005-03-28

  Online published: 2005-07-25

摘要

2004年4月基于野外水下辐照度的测定及实验室溶解性有机碳(DOC)的分析,通过研究典型湖区水体中DOC浓度与反射率之间的关系,选择DOC浓度反演的最佳波段,建立了DOC浓度的遥感定量反演模型。结果表明,DOC浓度在6.60~17.17 mg/L(均值为9.99 mg/L,方差为2.48 mg/L)之间;反射率的峰值出现在560~590 nm;红光波段与绿光波段反射率的对数值能较好的估计DOC浓度,其中又以lg(R670/R530)与lg(DOC)相关程度最高,决定系数为0.82;DOC浓度反演的经验模型为:lg(DOC)=0.654(±0.012)lg\[R(670)/R(530)\]+1.007(±0.086)。对模型进行检验,最小误差为6.7%、最大误差为20.3%,平均误差为12.3%。

本文引用格式

张运林 , 陈伟民 , , 马荣华 , 黄群芳 . 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005 , 20(7) : 772 -777 . DOI: 10.11867/j.issn.1001-8166.2005.07.0772

Abstract

Underwater irradiance and irradiance reflectance in typical lake zones of Lake Taihu were measured using a Macam SR9910 scanning spectroradiometer in April 2004. Extensive water quality parameters such as Total Suspended Solids (TSS), Dissolved Organic Carbon (DOC) and chlorophyll a (Chl-a) were measured simultaneously with the spectral data. The features of the spectral irradiance reflectance of the lake waters are discussed. An optimum band combination is found and a local algorithm model for DOC concentration estimation is developed. The results show that DOC concentration ranges from 6.60 to 17.17 mg/L with an average of 9.99 mg/L. Most peaks of subsurface irradiance reflectance are recorded between 560 and 590 nm. The ratio of irradiance reflectance of red waveband to green waveband can be used to estimate DOC concentration satisfactorily. Determination coefficients between lg(R670/R530) and lg(DOC) is 0.82. The retrieving model of DOC concentration is: lg(DOC)=0.654( 0.012)lg\[R(670)/R(530)\]+1.007( 0.086). The maximal, minimal and average relative errors of model are 20.3%, 6.7% and 12.3%, respectively. This paper has demonstrated the potential of the method for deriving CDOM and DOC from measurements of irradiance reflectance in lake Taihu. The accuracy of the method needs to be improved if it is to be of practical use, and this will involve more and careful measurements.

参考文献

[1] Zhang Yunlin, Qin Boqiang, Chen Weimin. Effects of increased UV-B radiation on aquatic ecosystem in lakes[J]. Advances in Earth Science, 2005, 20(1): 106-112. [张运林, 秦伯强, 陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.]
[2] Qin Boqiang, Wu Qinglong, Gao Junfeng, et al. Water environmental issues in Taihu Lake of China: Problems causes and management[J]. Journal of Natural Resources, 2002, 17(2): 221-228. [秦伯强, 吴庆龙, 高俊峰, 等. 太湖地区的水资源与水环境:问题、原因与管理[J]. 自然资源学报, 2002, 17(2): 221-228.]
[3] Chen Chuqun, Shi Ping. Application of ocean color satellite remote sensing data for estimation of DOC concentration[J]. Acta Scientiae Ircumstantiae. 2001, 21(6): 715-719. [陈楚群, 施平. 应用水色卫星遥感技术估算珠江口海域溶解有机碳浓度[J]. 环境科学学报, 2001, 21(6): 715-719.]
[4] Chen Chuqun, Pan Zhilin, Shi Ping. Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data[J]. Journal of Tropical Oceanography, 2003, 22(5): 33-39. [陈楚群, 潘志林, 施平. 海水光谱模拟及其在黄色物质遥感反演中的应用[J]. 热带海洋学报, 2003, 22(5): 33-39.]
[5] Vertucci F A, Likens G E. Spectral reflectance and water quality of Adirondack mountain region lakes[J]. Limnology and Oceanography, 1989, 34(6): 1 656-1 672.
[6] Arenz R F, Lewis W M, Saunders J F. Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs[J]. International Journal of Remote Sensing, 1996, 17(8): 1 547-1 566.
[7] Kallio K, Kutser T, Hannonen T, et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons[J]. The Science of the Total Environment, 2001, 268: 59-77.
[8] Pierson D C, Str mbeck N. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Malaren, Sweden, based on direct and inverse solutions of a simple model[J]. The Science of the Total Environment, 2001, 268: 171-188.
[9] Bowers D G, Evans D, Thomas D N, et al. Interpreting the color of an estuary[J]. Estuarine, Coastal and Shelf Science, 2004, 59(1): 13-20.
[10] Kutser T, Pierson D C, Kallio KY, et al. Mapping lake CDOM by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 94(4): 535-540.[11] Zhang Yunlin, Qin Boqiang, Chen Weimin, et al. Analysis on distribution and variation of beam attenuation coefficient of Taihu Lake's water[J]. Advance in Water Science, 2003, 14(4): 447-453. [张运林,秦伯强,陈伟民,等. 太湖水体光学衰减系数的分布及变化特征[J]. 水科学进展, 2003, 14(4): 447-453.]
[12] Schubert H, Sagert S, Forster R M. Evaluation of the different levels of variability in the underwater light field of a shallow estuary[J]. Helgoland Marine Research, 2001, 55(1): 12-22.
[13] Kirk J T O. Light and Photosynthesis in Aquatic Ecosystem[M]. Cambridge: Cambridge University Press, 1994.
[14] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain[J]. Limnology and Oceanography, 1981, 26(1): 43-53.
[15] Keith D J, Yoder J A, Freeman S A. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett bay, Rhode Island: Implications for phytoplankton in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2002, 55(5): 705-717.
[16] Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(24): 2 369-2 378.
[17] Gons H J, Ebert J, Kromkamp J. Optical teledetection of the vertical attenuation coefficient for downward quantum irradiance of photosynthetically available radiation in turbid inland waters[J]. Aquatic Ecology, 1998, 31(3): 299-311.
[18] Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology, 1999, 33(7): 1 127-1 133.
[19] Zhang Yunlin, Qin Boqiang, Chen Weimin, et al. Experimental study of underwater light field and affect mechanism[J]. Progress in Natural Science, 2004, 14(7): 792-798. [张运林, 秦伯强, 陈伟民,等. 水下光场及其影响机制的水槽模拟实验研究[J]. 自然科学进展, 2004, 14(7): 792-798.]
[20] Bowers D G, Harker G E L, Smith P S D, et al. Optical properties of a region of freshwater influence (the Clyde Sea)[J]. Estuarine, Coastal and Shelf Science, 2000, 50(5): 717-726.
[21] Hirtle H, Rencz A. The relation between spectral reflectance and dissolved organic carbon in lake water: Kejimkujik National Park, Nova Scotia, Canada[J]. International Journal of Remote Sensing, 2003, 24(5): 953-967.

文章导航

/