研究简报

基于新基质水流控制方程的形状因子推导

  • 杜静雯 ,
  • 童晨晨 ,
  • 黄璟胜
展开
  • 1.河海大学 水文水资源学院,江苏 南京 210098
    2.成功大学 资源工程学系,中国 台湾 台南 701
杜静雯,主要从事地下水机理研究与数值模拟. E-mail:dujingwen@hhu.edu.cn
童晨晨,主要从事地下水机理研究与数值模拟. E-mail:chenchentong0610@hhu.edu.cn

收稿日期: 2024-09-30

  修回日期: 2024-11-29

  网络出版日期: 2025-02-28

基金资助

国家自然科学基金项目(52379062)

Derivation of Shape Factor Based on A New Flow Governing Equation for Matrix

  • Jingwen DU ,
  • Chenchen TONG ,
  • Ching-Sheng HUANG
Expand
  • 1.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
    2.Department of Resources Engineering, Cheng Kung University, Tainan Taiwan 701, China
DU Jingwen, research areas include groundwater mechanism and numerical simulation. E-mail: dujingwen@hhu.edu.cn
TONG Chenchen, research areas include groundwater mechanism and numerical simulation. E-mail: chenchentong0610@hhu.edu.cn

Received date: 2024-09-30

  Revised date: 2024-11-29

  Online published: 2025-02-28

Supported by

the National Natural Science Foundation Program of China(52379062)

摘要

目前裂隙—基质双重介质地下水流解析模型的形状因子推导偏经验化。以标准抽水试验为例,通过建构单一裂隙—带状基质介质的水流解析模型并求解其解析解,提出了新的基质水流控制方程及新的形状因子,避免经验化的水流方程和形状因子推导。对于裂隙网络—基质介质水流的有限元数值解,新的水流方程和形状因子能够实现基质内无网格离散。结果表明:带状基质的形状因子是基质宽度平方的倒数;圆形基质的形状因子是基质半径平方的倒数;其他形状基质的形状因子是经验参数。基于新形状因子的解析解,预测的降深相对误差小于5%;然而采用既有形状因子时,降深相对误差约为99%。当裂隙网络的面积与总面积的比值(裂隙密度)超过62%时,裂隙网络可简化为双重连续介质。数值解成功用于野外标准抽水试验。

本文引用格式

杜静雯 , 童晨晨 , 黄璟胜 . 基于新基质水流控制方程的形状因子推导[J]. 地球科学进展, 2024 , 39(12) : 1311 -1323 . DOI: 10.11867/j.issn.1001-8166.2024.091

Abstract

The derivation of the shape factor in analytical models for flow in double-porosity media is often partially empirical. This study proposes a new flow equation and shape factor for matrix domains, eliminating empirical derivations in the context of a standard pumping test in double-porosity confined aquifers. For a single-fracture strip matrix medium, a new analytical model incorporating the proposed flow equation and shape factor was developed, and its analytical solution was derived. For a fracture-network matrix medium, a finite element solution was constructed based on the new flow equation and shape factor, without discretizing individual matrix spaces. The results indicate that the shape factor for the strip matrix is the reciprocal of the square of the matrix width, whereas for a circular matrix, it is the reciprocal of the square of the radius. However, for other matrix shapes, it remains an empirical parameter. The relative error in fracture drawdown predicted by the analytical solution incorporating the new shape factor is less than 5%, whereas existing shape factors yield a relative error of approximately 99%. When the ratio of fracture area to total medium area (defined as fracture density) exceeds 62%, the fracture-network matrix medium can be considered a double-porosity continuous medium. The finite element solution was applied to a field standard pumping test, demonstrating its effectiveness.

图1 植物与土壤微生物互作影响植物入侵相关假说之间的关联。蓝色箭头表示负面影响, 红色箭头表示正面影响。

Fig. 1 Hypotheses on plant invasion and plant-soil microbe interactions. Blue arrows indicate negative effect, while red arrows indicate positive effects.

参考文献

1 BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[strata][J]. Journal of Applied Mathematics and Mechanics196024(5): 1 286-1 303.
2 WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal19633(3): 245-255.
3 ODEH A S. Unsteady-state behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal19655(1): 60-66.
4 KAZEMI H, SETH M S, THOMAS G W. The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal19699(4): 463-472.
5 de SWAAN O A. Analytic solutions for determining naturally fractured reservoir properties by well testing[J]. Society of Petroleum Engineers Journal197616(3): 117-122.
6 SNOW D T. Fracture deformation and changes of permeability and storage upon changes of fluid pressure[J]. Quarterly Colorado School of Mines196863(1): 201-244.
7 SNOW D T. Anisotropie permeability of fractured media[J]. Water Resources Research19695(6): 1 273-1 289.
8 LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research198218(3): 645-658.
9 WANG Yuan, SU Baoyu, XU Zhiying. Comment on the models of seepage flow in fractured rock masses[J]. Advances in Water Science1996(3): 93-99.
  王媛, 速宝玉, 徐志英. 裂隙岩体渗流模型综述[J]. 水科学进展1996(3): 93-99.
10 XU Xuan, YANG Zhengming, ZU Likai, et al. Equivalent continuous medium model and numerical simulation of multimedia reservoir[J]. Fault-Block Oil Gas Field201017(6): 733-737.
  徐轩, 杨正明, 祖立凯, 等. 多重介质储层渗流的等效连续介质模型及数值模拟[J]. 断块油气田201017(6): 733-737.
11 HUANG Yong, ZHOU Zhifang. Domain decomposition algorithm for calculating seepage in rock mass with fractured zones and its application in dam foundation[J]. Journal of Engineering Geology200715(1): 103-107.
  黄勇, 周志芳. 基于区域分解算法的地下水耦合模型及其应用[J]. 工程地质学报200715(1): 103-107.
12 CACAS M C, LEDOUX E, MARSILY G D, et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. the flow model[J]. Water Resources Research199026(3): 479-489.
13 WANG Jinguo. Review on solute transport model in fractured rocks[J]. Hydrogeology Engineering Geology200431(6): 102-106.
  王锦国. 裂隙岩体溶质运移模型综述[J]. 水文地质工程地质200431(6): 102-106.
14 ALVAREZ L L, do NASCIMENTO G L J, GOMES I F, et al. Impact of fracture topology on the fluid flow behavior of naturally fractured reservoirs[J]. Energies202114(17). DOI:10.3390/en14175488 .
15 WILSON C R, WITHERSPOON P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research197410(2): 328-335.
16 WEI Yaqiang, DONG Yanhui, ZHOU Pengpeng, et al. Numerical simulation of radionuclide particle tracking based on discrete fracture network[J]. Hydrogeology & Engineering Geology201744(1): 123-130, 136
  魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质201744(1): 123-130, 136.
17 de SMEDT F. Analytical solution for fractional well flow in a double-porosity aquifer with fractional transient exchange between matrix and fractures[J]. Water202214(3). DOI:10.3390/w14030456 .
18 ROBINEAU T, TOGNELLI A, GOBLET P, et al. A double medium approach to simulate groundwater level variations in a fissured Karst aquifer[J]. Journal of Hydrology2018565: 861-875.
19 MA Ruijie, LI Xin. The finite element volume method and application of mathematic model of Karst groundwater flow[J]. Journal of Jilin University (Earth Science Edition)200535(6): 762-765, 785.
  马瑞杰, 李欣. 岩溶裂隙地下水流数学模型求解的有限体积法及应用[J]. 吉林大学学报(地球科学版)200535(6): 762-765, 785.
20 ASHJARI J, SOLTANI F, REZAI M. Prediction of groundwater seepage caused by unclogging of fractures and grout curtain dimensions changes via numerical double-porosity model in the Karun IV River Basin (Iran)[J]. Environmental Earth Sciences201978(3). DOI:10.1007/s12665-019-8054-1 .
21 ZHANG Youkuan. A dual medium seepage model of fissure-karst aquifer and its Ritz finite element solution[J]. Geotechnical Investigation Surveying1983(4): 57-62,68.
  张幼宽. 裂隙—岩溶含水层双重介质渗流模型及其里兹有限元解[J]. 工程勘察1983(4): 57-62,68.
22 WU Shiyan, ZHOU Qiyou, YANG Guoyong, et al. Application of double medium flow model to modeling of Karst groundwater flow system[J]. Hydrogeology & Engineering Geology200835(6): 16-21.
  吴世艳, 周启友, 杨国勇, 等. 双重介质模型在岩溶地下水流动系统模拟中的应用[J]. 水文地质工程地质200835(6): 16-21.
23 ZHENG Jian, CHEN Xi, ZHANG Zhicai. Determination of hydrogeological parameters of the double medium in south Karst areas by using pumping tests[J]. Geotechnical Investigation Surveying201442(1): 42-46, 58.
  郑健, 陈喜, 张志才. 抽水试验法推求南方岩溶地区双重介质水文地质参数[J]. 工程勘察201442(1): 42-46, 58.
24 KAZEMI H, MERRILL L S, PORTERFIELD K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal197616(6): 317-326.
25 COATS K H. Implicit compositional simulation of single-porosity and dual-porosity reservoirs[C]// Proceedings of SPE symposium on reservoir simulation. Society of Petroleum Engineers, 1989: 239-274.
26 UEDA Y, MURATA S, WATANABE Y, et al. Investigation of the shape factor used in the dual-porosity reservoir simulator[C]// Proceedings of SPE Asia-Pacific conference. Society of Petroleum Engineers, 1989: 35-44.
27 LIM K T, AZIZ K. Matrix-fracture transfer shape factors for dual-porosity simulators[J]. Journal of Petroleum Science and Engineering199513(3/4): 169-178.
28 ABBASI M, MADANI M, SHARIFI M, et al. Fluid flow in fractured reservoirs: exact analytical solution for transient dual porosity model with variable rock matrix block size[J]. Journal of Petroleum Science and Engineering2018164: 571-583.
29 HASSANZADEH H, POOLADI-DARVISH M. Effects of fracture boundary conditions on matrix-fracture transfer shape factor[J]. Transport in Porous Media200664(1): 51-71.
30 WANG Lu, YAO Yuedong, HUANG Shan, et al. Transient cross flow law for fractured tight oil reservoirs[J]. Fault-Block Oil & Gas Field201623(3): 329-333.
  王璐, 姚约东, 黄山, 等. 裂缝性致密油藏非稳态窜流规律[J]. 断块油气田201623(3): 329-333.
31 HE Yongming. The shape factor study and application for fractured reservoir[D]. Chengdu: Chengdu University of Technology, 2007.
  何勇明. 裂缝性油藏形状因子研究及应用[D]. 成都: 成都理工大学, 2007.
32 WANG Dawei, GAO Zhennan, LI Junfei, et al. Experimental study on crossflow law of fractured low permeability reservoir[J]. Unconventional Oil & Gas20218(4): 43-47.
  王大为, 高振南, 李俊飞, 等. 裂缝性低渗透油藏窜流规律实验研究[J]. 非常规油气20218(4): 43-47.
33 KAZEMI H, GILMAN J R, ELSHARKAWY A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions[J]. SPE Reservoir Engineering19927(2): 219-227.
34 BABAK P, AZAIEZ J. Unified fractional differential approach for transient interporosity flow in naturally fractured media[J]. Advances in Water Resources201474: 302-317.
35 ZHENG Huan, LIU Zhifeng, WANG Min, et al. A new method for approximate evaluation of two-dimensional oil-water imbibition based on block characteristic length[J]. Chinese Quarterly of Mechanics202041(3): 452-464.
  郑欢, 刘志峰, 王敏, 等. 一种利用岩块特征长度估算二维渗吸量的新方法[J]. 力学季刊202041(3): 452-464.
36 SUN Yeheng, SHI Fugeng, WANG Chengfeng, et al. Modeling of dual-porosity and dual-permeability for low-permeability sandstone reservoir[J]. Petroleum Exploration and Development200431(4): 79-82.
  孙业恒, 时付更, 王成峰, 等. 低渗透砂岩油藏储集层双孔双渗模型的建立方法[J]. 石油勘探与开发200431(4): 79-82.
37 WOLFRAM R. Mathematica, Version 11.2[Z]. Champaign, Illinois: Wolfram Research, Inc., 2018.
38 STEHFEST H. Algorithm 368: numerical inversion of Laplace transforms[D5][J]. Communications of the ACM197013(1): 47-49.
39 HUANG C S, YEH H D, CHANG C H. A general analytical solution for groundwater fluctuations due to dual tide in long but narrow islands[J]. Water Resources Research201248(5). DOI:10.1029/2011WR011211 .
40 WANG C, HUANG C S, TONG C C, et al. A low-cost model for slug tests in a confined aquifer with skin-zone effect[J].Journal of Hydrology2022, 612. DOI:10.1016/j.jhydrol.2022.128273 .
41 HUANG C S, WANG Z C, LIN Y C, et al. New analytical models for flow induced by pumping in a stream-aquifer system:a new robin boundary condition reflecting joint effect of streambed width and storage[J]. Water Resources Research202056(4). DOI:10.1029/2019WR026352 .
42 de SMEDT F. Analytical solution for constant-rate pumping test in fissured porous media with double-porosity behaviour[J]. Transport in Porous Media201188(3): 479-489.
43 GREENE E, SHAPIRO A, CARTER J. Hydrogeologic characterization of the minnelusa and Madison aquifers near spearfish, south Dakota[R]. Water-Resources Investigations Report, 1999.
文章导航

/