综述与评述

行星边界框架下水资源治理理念与转型方向

  • 杨建锋 ,
  • 左力艳 ,
  • 余韵 ,
  • 张翠光 ,
  • 徐犇研
展开
  • 中国地质调查局发展研究中心,北京 100037
杨建锋,主要从事水文地质环境地质调查战略规划研究. E-mail:yjianfeng@mail.cgs.gov.cn

收稿日期: 2024-09-24

  修回日期: 2024-10-24

  网络出版日期: 2025-01-17

基金资助

中国地质调查局地质调查项目(DD20240099);自然资源科技战略研究项目(2023-ZL-14)

Water Resources Governance Thinking and Transformation Based on the Planetary Boundaries Framework

  • Jianfeng YANG ,
  • Liyan ZUO ,
  • Yun YU ,
  • Cuiguang ZHANG ,
  • Benyan XU
Expand
  • Development Research Center of China Geological Survey, Beijing 100037, China
YANG Jianfeng, research areas include strategic planning in hydrogeology and environmental geology. E-mail: yjianfeng@mail.cgs.gov.cn

Received date: 2024-09-24

  Revised date: 2024-10-24

  Online published: 2025-01-17

Supported by

the Geological Survey Program of China Geological Survey(DD20240099);The Sci-tech Strategic Research Program of Natural Resources(2023-ZL-14)

摘要

人类所面临的水资源问题已从起初的局部水资源供给的局域性问题,扩展到目前保护生态系统、应对全球变化、维持地球系统稳定等区域性和全球性问题。水资源开发和土地利用等经济活动与气候变化通过水流再分配、远程耦合和虚拟水流动等机制作用于水循环过程,人类活动对水循环的作用已经超出了流域尺度,成为区域尺度、大陆尺度和全球尺度水循环变化的主要驱动力。行星边界方法评估结果表明,全球蓝水和绿水开发已经接近或超过水行星边界,其引发的地球系统风险正在上升。但是,现行的水资源治理仍停留在以流域为单元、以水为中心的管理方式,越来越难以适应当前水问题的复杂性,水资源治理理念与方式亟需根本性转变。水资源治理既要考虑满足经济社会发展不断增长的用水需要,又要考虑水循环在维持生物圈和地球系统稳定运行中的作用和功能,还要顾及不同国家或地区能够公平地分享由水循环所提供或维持的公共服务。水循环系统韧性以及共有水资源经济学等理念突破了对水循环的传统认识,揭示了水循环在地球系统中的功能性和人类活动影响的跨尺度性的内在特征,正在成为引导水资源治理转型的思维方法。未来水资源治理可能会向着3个方向转型:从蓝水管理转向蓝水绿水管理,从水资源综合管理转向水土资源与生态系统综合管理,从流域综合管理转向多空间尺度综合管理。不同领域学者合作加强水循环基础理论、管控政策和管理机制研究,对于促进水资源治理转型至关重要。

本文引用格式

杨建锋 , 左力艳 , 余韵 , 张翠光 , 徐犇研 . 行星边界框架下水资源治理理念与转型方向[J]. 地球科学进展, 2024 , 39(11) : 1123 -1135 . DOI: 10.11867/j.issn.1001-8166.2024.089

Abstract

Humanity’s current water problems range from local-scale issues such as water supply to regional- and global-scale issues including protecting ecosystems, responding to global changes, sustaining the earth system, etc. Water resources exploitation, land utilization and climate changes have intensified pressure on water cycle through water distribution, interconnection, and virtual flows. The impact of anthropogenic pressure on water cycle has extended beyond the catchment-scale, with human activities becoming the primary driving force behind changes in regional, continental and global water cycle. Estimations by planetary boundaries framework indicated that development of global blue water and green water is approaching or beyond water planetary boundaries posing increased rising risks to earth system stabilization. Current water governance, which is focused on catchment scale and water-centric approaches, struggles to address the complexity of these issues. Governance must shift to manage not only increasing water use for economic and societal development, but also the roles and functions of water cycle in sustaining biosphere and Earth systems. Moreover, it should consider the equitable distribution of ecological services provided by water cycle. Concepts of water resilience and the economics of water as a common good enhance the conventional understanding of the water cycle, highlighting its essential role in sustain Earth systems and the cross-scale effects of human activities. Future, water resources governance is likely to evolve in three directions: from blue water management to blue-green water management, from integrated water-centric management to integrated land-water-ecosystem management, and from integrated river basin management to multi-scale management. It is critical for promoting transformation of water governance to strengthen cooperation among scientists of different fields in research of basic theory of water cycle, management policies and governance institutions.

参考文献

1 STEFFEN W, BROADGATE W, DEUTSCH L, et al. The trajectory of the anthropocene: the great acceleration[J]. The Anthropocene Review, 2015, 2(1): 81-98.
2 RICHARDSON K, STEFFEN W, LUCHT W, et al. Earth beyond six of nine planetary boundaries[J]. Science Advances, 2023, 9. DOI: 10.1126/sciadv.adh2458 .
3 CRUTZEN P J. Geology of mankind[J]. Nature, 2002, 415(6 867): 23.
4 ROCKSTR?M J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461: 472-475.
5 STEFFEN W, RICHARDSON K, ROCKSTR?M J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015,347. DOI:10.1126/science.1259855 .
6 CHEN Xianpeng, FANG Kai, PENG Jian, et al. New insights into assessing the carrying capacity of resources and the environment: the origin, development and prospects of the planetary boundaries framework[J]. Journal of Natural Resources, 2020, 35(3): 513-531.
6 陈先鹏, 方恺, 彭建, 等. 资源环境承载力评估新视角:行星边界框架的源起、发展与展望[J]. 自然资源学报, 2020, 35(3): 513-531.
7 YANG Jianfeng, ZUO Liyan, YAO Xiaofeng, et al. Research progress of the anthropogenic influences on global freshwater cycle and the water planetary boundary assessment[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 1-9.
7 杨建锋, 左力艳, 姚晓峰, 等. 人类活动对全球淡水循环影响与水行星边界评估研究进展[J]. 水文地质工程地质, 2022, 49(4):1-9.
8 PAHL-WOSTL C, V?R?SMARTY C, BHADURI A, et al. Towards a sustainable water future: shaping the next decade of global water research[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 708-714.
9 SIVAPALAN M. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science[J]. Hydrology and Earth System Sciences, 2018, 22(3): 1 665-1 693.
10 SCANLON B R, FAKHREDDINE S, RATEB A, et al. Global water resources and the role of groundwater in a resilient water future[J]. Nature Reviews Earth & Environment, 2023, 4: 87-101.
11 FALKENMARK M, ROCKSTR?M J.The new blue and green water paradigm: breaking new ground for water resources planning and management[J]. Journal of Water Resources Planning and Management, 2006, 132(3): 129-132.
12 GRAFTON R Q, KRISHNASWMY J, REVI A. The water cycle andthe economy (technical report)[R]. Paris: Global Commission on the Economics of Water, 2023.
13 FALKENMARK M, WANG-ERLANDSSON L. A water-function-based framework for understanding and governing water resilience in the Anthropocene[J]. One Earth, 2021, 4(2): 213-225.
14 United Nations. The United Nations world water development report 2022: groundwater making the invisible visible[R].Paris: UNESCO, 2022.
15 SUN Cece, LIU Jun, ZHANG Aijun, et al. Nutrient transport in rivers around the Bohai Sea and its environmental implications[J]. China Environmental Science, 2024, 44(1): 178-192.
15 孙策策,刘军,张爱军,等.环渤海河流营养盐的向海输送及环境效应[J]. 中国环境科学, 2024, 44(1): 178-192.
16 SHAN Sen, QI Yuanzhi, LUO Chunle, et al. Carbon isotopic constrains on the sources and controls of the terrestrial carbontransported in the four large rivers in China[J].Advances in Earth Science, 2020, 35(9): 948-961.
16 单森, 齐远志, 罗春乐, 等. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
17 FERGUSON G, MCINTOSH J C, WARR O, et al. Crustal groundwater volumes greater than previously thought[J]. Geophysical Research Letters, 2021, 48. DOI: 10.1029/2021GL093549 .
18 EAMUS D, ZOLFAGHAR S, VILLALOBOS-VEGA R, et al. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies[J]. Hydrology and Earth System Sciences, 2015, 19(10): 4 229-4 256.
19 WOOD W W, HYNDMAN D W. Groundwater depletion: a significant unreported source of atmospheric carbon dioxide[J]. Earth’s Future, 2017, 5(11): 1 133-1 135.
20 ZHANG Xinping, LIANG Fengchao, SHI Qingdong, et al. Impact of afforestation on increment of transpiration of the carbon sink forest in western Junggar Basin,Xingjiang[J]. Arid Zone Research, 2015, 32(2): 410-416.
20 张新平,梁凤超,师庆东, 等. 新疆准噶尔西部碳汇林造林后蒸腾耗水增量研究[J]. 干旱区研究, 2015, 32(2): 410-416.
21 DUAN Zhifang, KONG Yunqi, ZHANG Yihan, et al. Response of Tibetan Plateau surface temperature to greenhouse gas increase and its uncertainty: a study based on CMIP6[J]. Transactions of Atmospheric Sciences, 2024, 47(2): 330-345.
21 段志方, 孔蕴淇, 张义晗, 等. 青藏高原表面温度对温室气体增加的响应及其不确定性: 基于CMIP6的研究[J].大气科学学报, 2024, 47(2): 330-345.
22 WANG Yijia, LIU Yanxu, SONG Shuang, et al. Research progress of the water-food-energy-ecosystem nexus[J]. Advances in Earth Science, 2021, 36(7): 684-693.
22 王奕佳, 刘焱序, 宋爽, 等. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
23 van der ENT R J, SAVENIJE H H G, SSHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9). DOI:10.1029/2010WR009127 .
24 IPCC. Climate change 2014: synthesis report[M]// Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC, 2014.
25 ABBOTT B W, BISHOP K, ZARNETSKE J P,et al. A water cycle for the anthropocene[J]. HydrologicalProcesses, 2019, 33: 3 046-3 052.
26 ROCKSTR?M J, FALKENMARK M, FOLKE C, et al. Water resilience for human prosperity[M]. Cambridge, UK: Cambridge University Press, 2014.
27 United Nations. The United Nations world water development report 2024: water for prosperity and peace[R]. Paris: UNESCO, 2024.
28 ROCKSTR?M J, FALKENMARK M, LANNERSTAD M, et al. The planetary water drama: dual task of feeding humanity and curbing climate change[J]. Geophysical Research Letters, 2012, 39. DOI: 10.1029/2012GL051688
29 HE Jun, LI Jianqiang, LI Yunling, et al. Scientific advancements in the planning and construction of water transfer projects in China under the new situation[J]. China Water Resources, 2023(22): 49-53.
29 何君,郦建强,李云玲, 等. 新形势下科学推进我国调水工程规划建设的若干思考[J]. 中国水利, 2023(22): 49-53.
30 WATSON J E M, VENTER O, LEE J, et al. Protect the last of the wild[J]. Nature, 2018, 563: 27-30.
31 Convention on Wetlands. Global wetland outlook: special edition 2021[R]. Gland, Switzerland: Secretariat of the Convention on Wetlands, 2021.
32 ZHU Hui, WU Haitao, XING Xiaoxu, et al. Achievement of wetland protection and restoration and development strategies in China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 365-375.
32 祝惠, 武海涛, 邢晓旭, 等. 中国湿地保护修复成效及发展策略[J]. 中国科学院院刊, 2023, 38(3): 365-375.
33 ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, et al. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017[J]. Acta Geographica Sinica, 2021, 76(3): 584-594.
33 张永强, 孔冬冬, 张选泽, 等. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594.
34 SUN Liru, BI Huaxing, MA Zhijin, et al. Runoff variation characteristics and attribution analysis of the upper and middle reaches of the Yellow River from 1951 to 2020[J]. Journal of Beijing Forestry University, 2024, 46(1): 82-92.
34 孙莉茹,毕华兴, 马志瑾, 等. 1951—2020年黄河上中游径流变化特征及归因分析[J]. 北京林业大学学报, 2024, 46(1): 82-92.
35 IPCC. Climate change 2021: the physical science basis[M]//Contribution of working group I to the sixth assessment report of the intergovernmental panel onclimate change. Cambridge,UK: Cambridge University Press, 2021.
36 LI Z, FENG Q, WANG X F, et al. Accelerated multiphase water transformation in global mountain regions since 1990[J]. The Innovation Geoscience, 2023, 1(3). DOI: 10.59717/j.xinn-geo.2023.100033 .
37 CHAO Qingchen, LI Rouke, CUI Tong, et al. Scientific progress and future prospects in climate change: an interpretation of Part 1 of China’s fourth national assessment report on climate change[J]. China Population,Resources and Environment, 2023, 33(1): 74-79.
37 巢清尘, 李柔珂, 崔童, 等. 中国气候变化科学认识进展及未来展望[J]. 中国人口·资源与环境, 2023, 33(1): 74-79.
38 XIA Jun, CHEN Jin, SHE Dunxian, et al. Opportunities and challenges of national water network construction under changing environment[J]. Acta Geographica Sinica, 2023, 78(7): 1 608-1 617.
38 夏军, 陈进,佘敦先, 等. 变化环境下中国现代水网建设的机遇与挑战[J]. 地理学报, 2023, 78(7): 1 608-1 617.
39 GORDON L, DUNLOP M, FORAN B. Land cover change and water vapour flows: learning from Australia[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2003, 358(1 440): 1 973-1 984.
40 SHI Jiansheng, LI Guomin, LIANG Xing, et al. Evolution mechanism and control of groundwater in the North China Plain[J]. Acta Geoscientica Sinica, 2014, 35(5): 527-534.
40 石建省, 李国敏, 梁杏,等. 华北平原地下水演变机制与调控[J]. 地球学报, 2014, 35(5): 527-534.
41 KEYS P W, WANG-ERLANDSSON L, GORDON L J, et al. Approaching moisture recycling governance[J]. Global Environmental Change, 2017, 45: 15-23.
42 FLORES B M, MONTOYA E, SAKSCHEWSKI B, et al. Critical transitions in the Amazon forest system[J]. Nature, 2024, 626(7 999): 555-564.
43 ZEMP D C, SCHLEUSSNER C F, BARBOSA H M J, et al. On the importance of cascading moisture recycling in South America[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13 337-13 359.
44 ROCKSTR?M J, MAZZUCATO M, ANDERSEN L S, et al. Why we need a new economics of water as a common good[J]. Nature, 2023, 615(7 954): 794-797.
45 WANG-ERLANDSSON L, FETZER I, KEYS P W, et al. Remote land use impacts on river flows through atmospheric teleconnections[J]. Hydrology and Earth System Sciences, 2018, 22(8): 4 311-4 328.
46 WANG Guangqian, ZHANG Yu, XIE Di, et al. Green water in China: geological structure and its significance[J]. Acta GeographicaSinica, 2023, 78(7): 1 641-1 658.
46 王光谦, 张宇,谢笛,等. 中国绿水格局及其战略意义[J]. 地理学报, 2023, 78(7): 1 641-1 658.
47 WU Zhaodan, DING Xiaoqi, CHEN Qiyong, et al. Influence of grain virtual water flow on the spatial equilibrium of water resources in the Yellow River Basin[J]. Journal of Economics of Water Resources, 2023, 41(1): 62-71.
47 吴兆丹, 丁小琦, 陈其勇, 等. 黄河流域粮食虚拟水流动对水资源空间均衡性的影响[J]. 水利经济, 2023, 41(1): 62-71.
48 SUN Caizhi, ZHANG Jialiang. Effects of water resources stress on agricultural trade between China and countries along Belt and Road[J]. Advances in Science and Technology of Water Resources, 2023, 43(4): 1-8.
48 孙才志, 张佳亮. 中国与“一带一路”沿线国家农产品贸易的水资源压力效应[J]. 水利水电科技进展, 2023, 43(4): 1-8.
49 YAO Y, SUN J, TIAN Y, et al. Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China[J]. Science of the Total Environment, 2020, 741. DOI: 10.1016/j.scitotenv.2020.140387 .
50 GERTEN D, HOFF H, ROCKSTR?M J, et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 551-558.
51 MOTOSHITA M, PFISTER S, FINKBEINER M. Regional carrying capacities of freshwater consumption-current pressure and its sources[J]. Environmental Science & Technology, 2020, 54(14): 9 083-9 094.
52 PAN S F, PAN N Q, TIAN H Q, et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1 485-1 509.
53 WANG-ERLANDSSON L, TOBIAN A, van der ENT R J, et al. A planetary boundary for green water[J]. Nature Reviews Earth & Environment, 2022, 3: 380-392.
54 FALKENMARK M. Water and human livelihood resilience: a regional-to-global outlook[J]. International Journal of Water Resources Development, 2017, 33(2): 181-197.
55 PAHL-WOSTL C. An evolutionary perspective on water governance: from understanding to transformation[J]. Water Resources Management, 2017, 31(10): 2 917-2 932.
56 FALKENMARK M, WANG-ERLANDSSONL, ROCKSTR?M J. Understanding of water resilience in the Anthropocene[J]. Journal of Hydrology X, 2019, 2. DOI: 10.1016/j.hydroa.2018.100009 .
57 BIGGS R, SCHLüTER M, SCHOON M L. Principles for building resilience: sustaining ecosystem services in social-ecological systems[M]. London, UK: Cambridge University Press, 2015.
58 FALKENMARK M, ROCKSTR?M J. Building water resilience in the face of global change: from a blue-only to a green-blue water approach to land-water management[J]. Journal of Water Resources Planning and Management, 2010, 136(6): 606-610.
59 HAN S, LENG G, YU L. Review of quantitative application of the concept of the water planetary boundary at different spatial scales[J]. Water Resources Research, 2023, 59. DOI: 10.1029/2022WR033646 .
60 GLEESON T, WANG-ERLANDSSON L, PORKKA M, et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene[J]. Water Resources Research, 2020, 56. DOI:10.1029/2019WR024957 .
61 BIGGS R, SCHLüTER M, BIGGS D, et al. Toward principles for enhancing the resilience of ecosystem services[J]. Annual Review of Environment and Resources, 2012, 37: 421-448.
62 WAN Fang, WANG Yi, WANG Weihao, et al. Resilience evolution of water resources system and analysis of water network construction effect in thebasin[J/OL]. Water Resources Protection, 2024. .
62 万芳, 王煜, 王威浩, 等. 流域水资源系统韧性演变及水网构建效果分析[J/OL]. 水资源保护, 2024. .
63 ROCKSTR?M J, GUPTA J, QIN D H, et al. Safe and just earth system boundaries[J]. Nature, 2023, 619(7 968): 102-111.
64 NAKICENOVIC N, ROCKSTR?M J, GAFFNEY O, et al. Global commons in the Anthropocene: world development on a stable and resilient planet[R]. Laxenburg, Austria:IIASA Working Pape (WP-16-019), 2016.
65 ROCKSTR?M J, GUPTA J, LENTON T M, et al. Identifying a safe and just corridor for people and the planet[J]. Earth’s Future, 2021, 9. DOI: 10.1029/2020EF001866 .
66 STEWART-KOSTER B, BUNN S E, GREEN P, et al. Living within the safe and just Earth system boundaries for blue water[J]. Nature Sustainability, 2024, 7: 53-63.
67 Global Commission on the Economics of Water. The what, why and how of the world water crisis[R]. Paris: Global Commission on the Economics of Water, 2023.
68 Global Commission on the Economics of Water. Turning the tide: a call to collective action[R]. Paris: Global Commission on the Economics of Water, 2023.
69 WANG Hao, XU Xinfa, CHENG Jingqing, et al. “Basing four aspects on water resources” in water resources protection and utilization: basic cognition and key technology system[J]. Water Resources Protection, 2023, 39(1): 1-7.
69 王浩, 许新发, 成静清, 等. 水资源保护利用“四水四定”: 基本认知与关键技术体系[J]. 水资源保护, 2023, 39(1): 1-7.
70 GAO Hongkai, LIU Junguo, GAO Guangyao, et al. Ecological and hydrological perspectivesof the water retention concept[J]. Acta Geographica Sinica, 2023, 78(1): 139-148.
70 高红凯, 刘俊国, 高光耀, 等.水源涵养功能概念的生态和水文视角辨析[J]. 地理学报, 2023, 78(1): 139-148.
71 LIU Changming, LIU Xuan, YANG Yafeng, et al. A discussion on some issues of hydro-geographical research[J]. Acta Geographica Sinica, 2022, 77(1): 3-15.
71 刘昌明, 刘璇, 杨亚锋, 等. 水文地理研究发展若干问题商榷[J]. 地理学报, 2022, 77(1): 3-15.
72 TAN N R, WANG X, WANG H, et al. Downscaling of planetary boundaries and sustainability: a nexus analysis of water, land and major functions at the national-provincial level[J]. Sustainable Horizons, 2022, 3. DOI: 10.1016/j.horiz.2022.100028 .
73 LI Yuanyuan, CAO Jianting, HUANG Huojian, et al. International progresses in integrated water resources management[J]. Advances in Water Science, 2018, 29(1): 127-137.
73 李原园, 曹建廷, 黄火键, 等. 国际上水资源综合管理进展[J]. 水科学进展, 2018, 29(1): 127-137.
74 PAHL-WOSTL C. Transitions towards adaptive management of water facing climate and global change[J]. Water Resources Management, 2007, 21(1): 49-62.
75 CAO Jianting. The history and trends of water resources management abroad[J]. China Water Resources, 2020 (5): 44-46.
75 曹建廷. 国际上水资源管理的变化历程及趋势[J]. 中国水利, 2020 (5): 44-46.
76 WANG Ruoyu, ZHAO Zhixuan, HUANG Changshuo, et al. Research progress on water resources management theory of“basing four aspects on water resources”[J]. Water Resources Protection, 2023, 39(4): 111-117.
76 王若禹, 赵志轩, 黄昌硕, 等. “四水四定”水资源管控理论研究进展[J]. 水资源保护, 2023, 39(4): 111-117.
77 BISWAS A K. Integrated water resources management: a reassessment[J]. Water International,2004, 29(2): 248-256.
78 SCHOLTEN T, HARTMANN T, SPIT T. The spatial component of integrative water resources management: di?erentiating integration of land and water governance[J]. International Journal of Water Resources Development, 2020, 36(5): 800-817.
79 MOORE M L, WANG-ERLANDSSON L, BODIN ?, et al. Moving from fit to fitness for governing water in the Anthropocene[J]. Nature Water, 2024, 2: 511-520.
80 de LO? R C, PATTERSONJ J. Rethinking water governance: moving beyond water-centric perspectives in a connected and changing world[J]. Natural Resources Journal, 2017, 57(1): 75-99.
文章导航

/