综述与评述

土坷垃与泥圪塔:认识和表征土壤团聚体系统的生态系统功能及服务

  • 赵正 ,
  • 刘成 ,
  • 冯潇 ,
  • 陈硕桐 ,
  • 龚静雯 ,
  • 刘志伟 ,
  • 王燕 ,
  • 夏少攀 ,
  • 刘晓雨 ,
  • 卞荣军 ,
  • 张旭辉 ,
  • 程琨 ,
  • 郑聚锋 ,
  • 李恋卿 ,
  • 潘根兴
展开
  • 1.南京农业大学 资源环境学院土壤学系,江苏 南京 210095
    2.南京农业大学 农业资源与生态环境研究所,江苏 南京 210095
    3.浙江科技大学 环境与资源学院,浙江 杭州 310008
    4.太原工业学院 环境与 安全工程系,山西 太原 030008
    5.扬州大学 环境科学与工程学院,江苏 扬州 225127
赵正,主要从事土壤学研究. E-mail:zhaozhengqs@163.com
潘根兴,主要从事土壤学研究. E-mail:pangenxing@aliyun.com

收稿日期: 2024-06-14

  修回日期: 2024-08-19

  网络出版日期: 2024-12-03

基金资助

国家自然科学基金项目(42077082)

Dust or Dirt: Understand and Characterize the Ecosystem Functions and Services Provided by Soil Aggregate System

  • Zheng ZHAO ,
  • Cheng LIU ,
  • Xiao FENG ,
  • Shuotong CHEN ,
  • Jingwen GONG ,
  • Zhiwei LIU ,
  • Yan WANG ,
  • Shaopan XIA ,
  • Xiaoyu LIU ,
  • Rongjun BIAN ,
  • Xuhui ZHANG ,
  • Kun CHENG ,
  • Jufeng ZHENG ,
  • Lianqing LI ,
  • Genxing PAN
Expand
  • 1.Department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    2.Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
    3.School of Environment and Resources, Zhejiang University of Science and Technology, Hangzhou 310008, China
    4.Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
    5.College of Environmental Science and Engineering, Yangzhou University, Yangzhou Jiangsu 225127, China
ZHAO Zheng, research area includes soil science research. E-mail: zhaozhengqs@163.com
PAN Genxing, research area includes soil science research. E-mail: pangenxing@aliyun.com

Received date: 2024-06-14

  Revised date: 2024-08-19

  Online published: 2024-12-03

Supported by

the National Natural Science Foundation of China(42077082)

摘要

土壤生态系统功能与服务是土壤支撑地球环境和全球社会可持续发展的基石。土壤团聚体系统是土壤形成的物质基础,也是土壤和这些生态系统功能与服务的物质支撑。通过总结土壤有机碳积累和稳定、生物多样性保持及土壤酶活性与微域生物地球化学过程调控等关键生态系统功能和服务,探讨了它们与土壤团聚体系统发育的关系,特别是对团聚体性质及功能的测试方法及数据处理方法进行了详细梳理,并对这些方法如何促进人们对土壤团聚体系统的科学认识进行了总结。着重分析讨论了土壤团聚体系统作为多样化微域空间对土壤固碳、生物多样性和酶活性的调节或控制机制,强调了团聚体颗粒—孔隙系统的多样性与这些功能和服务的多样化提供的关系,提出团聚体系统的多样性是理解和诠释土壤对于生态系统多样性发育及其可持续服务的重要视角。同时,通过案例研究的数据挖掘和分析提出了改进的试验分析数据表达方法,以便客观反映土壤团聚体系统在土壤功能和服务中的基础作用,以及人类管理活动对这些功能和服务的改善和提升作用,以此指导土壤的可持续管理。最后,讨论了土壤团聚体系统研究在土壤与环境可持续发展关系研究中的重要性,建议将土壤团聚体系统视作土壤最基础的功能单元,而不仅仅是野外(田间)活动的直接受体。总之,土壤团聚体系统在地球生物地球化学循环和土壤健康中扮演着关键角色,因而需要对其进行长期且深入的系统研究,并建立全球统一的土壤团聚体系统生态过程、功能的分析和表征方法框架。现代土壤学的发展以促进土壤健康和推动可持续发展为目标,其核心基础在于对土壤团聚体系统的深入研究和理解。

本文引用格式

赵正 , 刘成 , 冯潇 , 陈硕桐 , 龚静雯 , 刘志伟 , 王燕 , 夏少攀 , 刘晓雨 , 卞荣军 , 张旭辉 , 程琨 , 郑聚锋 , 李恋卿 , 潘根兴 . 土坷垃与泥圪塔:认识和表征土壤团聚体系统的生态系统功能及服务[J]. 地球科学进展, 2024 , 39(10) : 987 -1008 . DOI: 10.11867/j.issn.1001-8166.2024.066

Abstract

Ecosystem functions and services provided by soil in earth surface has been considered as the key foundation supporting global society and environment sustainability. All of these functions and services are closely linked to aggregate hierarchy system of the soil cover. In this review, key ecosystem functions and services provided by soil including accumulation and stabilization of organic carbon, biodiversity conservation, Extracellular Enzyme Activities (EEAs) mediating biogeochemical cycling are overviewed linking to development of aggregate hierarchy system. In particular, understanding these functions and services by aggregate system in line with methodology updating of aggregate separation, characterization and data analysis/synthesis are discussed in depth. The discussions are focused on potential mechanistic linkage of multi-functions of these soil carbon sequestration, microbial diversity protection and EEAs modulation to the diverse micro-scale spatial pattern of the different hierarchies of aggregate size fractions. Following, the dual structure of soil aggregates and the associated pore system is highlighted in the diverse provisioning of the above mentioned functions and services. In the way, we point to the diversity of the aggregate-pore structure of the hierarchy aggregate systems of or within a soil as the key to understand the formation and development of the above mentioned functions and services for a give soil system. Meanwhile, through re-visiting and exploring the original data in some cases of soil aggregate studies published, we propose some novel methods for better characterizing the key roles of soil aggregate system in provisioning the ecosystem services and the improvement with rational practices or reasonable interference so as to guide sustainable soil management. Finally, comments on the importance of soil aggregate study in the research of Earth system sustainability. We urge a holistic understanding of soil aggregates as fundamental soil functioning units, instead of a direct agent in field process. Considering a key player in biogeochemical cycling and soil health, we call for a well-designed but long pursuing study of soil hierarchy aggregate systems and a global unification of soil aggregate characterizing and parameterization. This should be considered as a core foundation of soil system science in the late 21th century.

参考文献

1 LAWLER J J, LEWIS D J, NELSON E, et al. Projected land-use change impacts on ecosystem services in the United States[J]. PNAS, 2014, 111(20): 7 492-7 497.
2 FAO. Soils, where food begins: how can soils continue to sustain the growing need for food production in the current fertilizer crisis?[R]. Rome, Italy: FAO, 2023.
3 OLIVER M A, GREGORY P J. Soil, food security and human health: a review[J]. European Journal of Soil Science, 2015, 66(2): 257-276.
4 LEHMANN J, BOSSIO D A, K?GEL-KNABNER I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth and Environment, 2020, 1(10): 544-553.
5 JANZEN H H, JANZEN D W, GREGORICH E G. The ‘soil health’ metaphor: Illuminating or illusory?[J]. Soil Biology and Biochemistry, 2021, 159. DOI: 10.1016/j.soilbio.2021.108167 .
6 ZHAO Z, LIU C, YAN M, et al. Understanding and enhancing soil conservation of water and life[J]. Soil Science and Environment, 2023, 2. DOI:10.48130/SSE-2023-0009 .
7 ZHAO Zheng, FENG Xiao, LIU Cheng, et al. Dust or dirt: how to understand and characterize the biophysical architecture of soil aggregate system[J]. Advances in Earth Science, 2024, 39(8): 772-787.
7 赵正, 冯潇, 刘成, 等. 土坷垃与泥疙瘩: 如何认识和表征土壤团聚体生物物理结构?[J]. 地球科学进展,2024, 39(8): 772-787.
8 LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5 677): 1 623-1 627.
9 OREN R, ELLSWORTH D S, JOHNSEN K H, et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere[J]. Nature, 2001, 411(6 836): 469-472.
10 CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3 200-3 209.
11 GUNINA A, KUZYAKOV Y. From energy to (soil organic) matter[J]. Global Change Biology, 2022, 28(7): 2 169-2 182.
12 FENG Xiaojuan, DAI Guohua, LIU Ting, et al. Understanding the mechanisms and potential pathways of soil carbon sequestration from the biogeochemistry perspective[J]. Science China Earth Sciences, 2024, 54(11): 3 421-3 432. DOI:10.1360/SSTe-2024-0003 .
12 冯晓娟, 戴国华, 刘婷, 等. 从生物地球化学视角理解土壤碳封存的机制和潜在途径[J]. 中国科学: 地球科学, 2024, 54(11): 3 421-3 432. DOI: 10.1360/SSTe-2024-0003 .
13 SCHULZE E D, FREIBAUER A. Carbon unlocked from soils[J]. Nature, 2005, 437(7 056): 205-206.
14 WANG Y Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, 8(1). DOI: 10.1038/ncomms15972 .
15 FREEMAN C, OSTLE N, KANG H. An enzymic ‘latch’ on a global carbon store[J]. Nature, 2001, 409(6 817). DOI: 10.1038/35051650 .
16 LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature microbiology, 2017, 2. DOI: 10.1038/nmicrobiol.2017.105 .
17 SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176.
18 SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9.
19 COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995.
20 HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191(1): 77-87.
21 JASTROW J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676.
22 CHEN S T, FENG X, LIN Q M, et al. Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a karst terrain[J]. Soil Biology and Biochemistry, 2022, 166. DOI: 10.1016/j.soilbio.2022.108553 .
23 CHEN Shuotong, XIA Xin, DING Yuanjun, et al. Changes in topsoil organic matter content and composition of a gleyic stagnic Anthrosol amended with maize residue in different forms from the Tai Lake Plain, China[J]. Scientia Agricultura Sinica, 2023, 56(13): 2 518-2 529.
23 陈硕桐, 夏鑫, 丁元君, 等. 不同形态秸秆还田下乌栅土耕层土壤有机质含量与组成变化[J]. 中国农业科学, 2023, 56(13): 2 518-2 529.
24 O'BRIEN S L, JASTROW J D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands[J]. Soil Biology and Biochemistry, 2013, 61: 1-13.
25 GICHANGI E M, NJARUI D M G, GHIMIRE S R, et al. Effects of cultivated Brachiaria grasses on soil aggregation and stability in the semi-arid tropics of Kenya[J]. Tropical and Subtropical Agroecosystems, 2016, 2(19): 205-217.
26 LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273.
27 SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2 099-2 103.
28 LIU Chun, ZHAO Zheng, LIU Xiaoyu, et al. Changes in aggregate distribution and molecular composition of organic matter of topsoil across soil landscapes within a small watershed in a rural area[J]. Journal of Plant Nutrition and Fertilizer, 2022, 28(5): 798-811.
28 刘纯, 赵正, 刘晓雨, 等. 乡村小流域不同土壤景观表土有机质团聚体分布与分子组成变化[J]. 植物营养与肥料学报, 2022, 28(5): 798-811.
29 OTTO A, SIMPSON M J. Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography-mass spectrometry[J]. Journal of Separation Science, 2007, 30(2): 272-282.
30 PAN Genxing, DING Yuanjun, CHEN Shuotong, et al. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 2019, 34(5): 451-470.
30 潘根兴, 丁元君, 陈硕桐, 等. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
31 LEINWEBER P, KRUSE J, BAUM C, et al. Advances in understanding organic nitrogen chemistry in soils using state-of-the-art analytical techniques[M]// Advances in agronomy. Amsterdam: Elsevier, 2013: 83-151.
32 LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11): 3 578-3 590.
33 ZOU Z C, MA L X, WANG X, et al. Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions[J]. Soil Biology and Biochemistry, 2023, 182. DOI: 10.1016/j.soilbio.2023.109042 .
34 LI T T, YUAN Y, MOU Z J, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration[J]. Global Change Biology, 2023, 29(2): 533-546.
35 CHEN S T, DING Y J, XIA X, et al. Amendment of straw biochar increased molecular diversity and enhanced preservation of plant derived organic matter in extracted fractions of a rice paddy[J]. Journal of Environmental Management, 2021, 285. DOI: 10.1016/j.jenvman.2021.112104 .
36 XIONG L, LIU X Y, VINCI G, et al. Aggregate fractions shaped molecular composition change of soil organic matter in a rice paddy under elevated CO2 and air warming[J]. Soil Biology and Biochemistry, 2021, 159. DOI: 10.1016/j.soilbio.2021.108289 .
37 AMéZKETA E. Soil aggregate stability: a review[J]. Journal of Sustainable Agriculture, 1999, 14(2/3): 83-151.
38 WU Xueping, XU Minggang, PAN Genxing. Soil management and sustainable use of soils—celebration for 2015 international year of soil and the 55th anniversary of Scientia Agricultura Sinica [J]. Scientia Agricultura Sinica, 2015, 48(23): 4 603-4 606.
38 武雪萍,徐明岗,潘根兴. 土壤管理与可持续利用——献给2015国际土壤年及《中国农业科学》创刊55周年[J]. 中国农业科学, 2015, 48(23): 4 603-4 606.
39 LEHMANN J, HANSEL C M, KAISER C, et al. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529-534.
40 ANGST G, MUELLER K E, CASTELLANO M J, et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key[J]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-38700-5 .
41 STRONG D T, de WEVER H, MERCKX R, et al. Spatial location of carbon decomposition in the soil pore system[J]. European Journal of Soil Science, 2004, 55(4): 739-750.
42 LUGATO E, MORARI F, NARDI S, et al. Relationship between aggregate pore size distribution and organic-humic carbon in contrasting soils[J]. Soil and Tillage Research, 2009, 103(1): 153-157.
43 GUO L K, QU C C, ZHOU Y, et al. Trade-off between pore-throat structure and mineral composition in modulating the stability of soil organic carbon[J]. Environmental Science and Technology, 2024, 58(23): 10 084-10 094.
44 YUDINA A, KUZYAKOV Y. Dual nature of soil structure: the unity of aggregates and pores[J]. Geoderma, 2023, 434. DOI: 10.1016/j.geoderma.2023.116478 .
45 CAMERON K C, BUCHAN G D. Porosity and pore size distribution[M]// LAL R. Encyclopedia of soil science. Boca Raton: CRC Press, 2006: 1 350-1 353.
46 LüTZOW M V, K?GEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review[J]. European Journal of Soil Science, 2006, 57(4): 426-445.
47 ANANYEVA K, WANG W, SMUCKER A J M, et al. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon?[J]. Soil Biology and Biochemistry, 2013, 57: 868-875.
48 MENON M, MAWODZA T, RABBANI A, et al. Pore system characteristics of soil aggregates and their relevance to aggregate stability[J]. Geoderma, 2020, 366. DOI: 10.1016/j.geoderma.2020.114259 .
49 VOGEL C, MUELLER C W, H?SCHEN C, et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils[J]. Nature Communications, 2014, 5. DOI: 10.1038/ncomms3947 .
50 KANG J, QU C C, CHEN W L, et al. Organo-organic interactions dominantly drive soil organic carbon accrual[J]. Global Change Biology, 2024, 30(1). DOI: 10.1111/gcb.17147 .
51 ZHAO Z, FENG X, LIU C, et al. Soil organic carbon storage, microbial abundance and pore structure characteristics of macroaggregates across a soil-landscape sequence in a subtropical hilly watershed[J]. CATENA, 2024, 242. DOI: 10.1016/j.catena.2024.108056 .
52 HAN Yue, ZHAO Zheng, TIAN Jing, et al. Characterization of organic carbon pool and the source of paddy soil from typical rice terraces across southern China[J]. Journal of Agricultural Resources and Environment, 2024. DOI:10.13254/j.jare.2023.0827 .
52 韩玥,赵正,田静,等. 中国南方典型稻作梯田土壤有机碳积累及其来源表征[J]. 农业资源与环境学报, 2024. DOI:10.13254/j.jare.2023.0827 .
53 FENG X, XIA X, CHEN S T, et al. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil[J]. Geoderma, 2022, 409. DOI: 10.1016/j.geoderma.2021.115643 .
54 PAN Genxing, ZHAO Qiguo. Study on evolution of organic carbon stock in agricultural soil of China: facing the challenge of global change and food security[J]. Advances in Earth Science, 2005, 20(4): 384-393.
54 潘根兴, 赵其国. 我国农田土壤碳库演变研究:全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384-393.
55 HATTORI T, HATTORI R. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microoganisms[J]. CRC Critical Reviews in Microbiology, 1976, 4(4): 423-461.
56 TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
57 ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633.
58 GUPTA V V S R, GERMIDA J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J]. Soil Biology and Biochemistry, 1988, 20(6): 777-786.
59 RANJARD L, RICHAUME A. Quantitative and qualitative microscale distribution of bacteria in soil[J]. Research in Microbiology, 2001, 152(8): 707-716.
60 FREY S D. Aggregation-microbial aspects[M]// HILLEL D J, HATFIELD J L. Encyclopedia of soils in the environment. Amsterdam: Elsevier, 2005: 22-28.
61 KONG A Y Y, SCOW K M, CóRDOVA-KREYLOS A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[J]. Soil Biology and Biochemistry, 2011, 43(1): 20-30.
62 DAVINIC M, FULTZ L M, ACOSTA-MARTINEZ V, et al. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition[J]. Soil Biology and Biochemistry, 2012, 46: 63-72.
63 SMITH A P, MARíN-SPIOTTA E, de GRAAFF M A, et al. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry, 2014, 77: 292-303.
64 FANIN N, KARDOL P, FARRELL M, et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J]. Soil Biology and Biochemistry, 2019, 128: 111-114.
65 SERNA-CHAVEZ H M, FIERER N, van BODEGOM P M. Global drivers and patterns of microbial abundance in soil[J]. Global Ecology and Biogeography, 2013, 22(10): 1 162-1 172.
66 MILLER M, DICK R P. Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems[J]. Applied Soil Ecology, 1995, 2(4): 253-261.
67 SCHUTTER M E, DICK R P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil[J]. Soil Science Society of America Journal, 2002, 66(1): 142-153.
68 TIAN S Y, ZHU B J, YIN R, et al. Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology and Biochemistry, 2022, 165. DOI: 10.1016/j.soilbio.2021.108533 .
69 RUI Z P, LU X D, LI Z C, et al. Macroaggregates serve as micro-hotspots enriched with functional and networked microbial communities and enhanced under organic/inorganic fertilization in a paddy topsoil from southeastern China[J]. Frontiers in Microbiology, 2022, 13. DOI: 10.3389/fmicb.2022.831746
70 KIM J S, DUNGAN R S, CROWLEY D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil[J]. Biology and Fertility of Soils, 2008, 44(8): 1 003-1 011.
71 WANG R Z, DORODNIKOV M, YANG S, et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland[J]. Soil Biology and Biochemistry, 2015, 81: 159-167.
72 ELLIOTT E T, COLEMAN D C. Let the soil work for us[J]. Ecological Bulletins, 1988 (39): 23-32.
73 JIANG Y J, QIAN H Y, WANG X Y, et al. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates[J]. Soil Biology and Biochemistry, 2018, 119: 22-31.
74 HARTMANN M, SIX J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth and Environment, 2023, 4(1): 4-18.
75 GUPTA V V S R, YEATES G W. Soil microfauna as bioindicators of soil health[M]// PANKHURST C E, DOUBE B M, GUPTA V V S R. Biological indicators of soil health. Wallingford: CAB International, 1997: 201-233.
76 COLEMAN D C, CROSSLEY D A, HENDRIX P F. Secondary production: activities of heterotrophic organisms-microbes.[M]// COLEMAN D C, CROSSLEY D A, HENDRIX P F. Fundamentals of soil ecology (second edition). Amsterdam: Elsevier, 2004: 47-77.
77 SMUCKER A J M, PARK E J, DORNER J, et al. Soil micropore development and contributions to soluble carbon transport within macroaggregates[J]. Vadose Zone Journal, 2007, 6(2): 282-290.
78 JONES D L, NGUYEN C, FINLAY R D, et al. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1): 5-33.
79 GUPTA V V S R, GERMIDA J J. Soil aggregation: influence on microbial biomass and implications for biological processes[J]. Soil Biology and Biochemistry, 2015, 80: A3-A9.
80 LI Z, KRAVCHENKO A N, CUPPLES A, et al. Composition and metabolism of microbial communities in soil pores[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-024-47755-x .
81 VOS M, WOLF A B, JENNINGS S J, et al. Micro-scale determinants of bacterial diversity in soil[J]. FEMS Microbiology Reviews, 2013, 37(6): 936-954.
82 RILLIG M C, MULLER L A H, LEHMANN A. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 2017, 11(9): 1 943-1 948.
83 MUMMEY D, HOLBEN W, SIX J, et al. Spatial stratification of soil bacterial populations in aggregates of diverse soils[J]. Microbial Ecology, 2006, 51(3): 404-411.
84 ZHU Mengtao, LIU Xiuxia, WANG Jiameng, et al. Effects of biochar application on soil microbial diversity in soil aggregates from paddy soil[J]. Acta Ecologica Sinica, 2020, 40(5): 1 505-1 516.
84 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1 505-1 516.
85 O’BRIEN S L, GIBBONS S M, OWENS S M, et al. Spatial scale drives patterns in soil bacterial diversity[J]. Environmental Microbiology, 2016, 18(6): 2 039-2 051.
86 PROBER S M, LEFF J W, BATES S T, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecology Letters, 2015, 18(1): 85-95.
87 WALTERS K E, MARTINY J B H. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats[J]. PLoS ONE, 2020, 15(9). DOI: 10.1371/journal.pone.0233872 .
88 WOLF A B, VOS M, de BOER W, et al. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria[J]. PLoS ONE, 2013, 8(12). DOI: 10.1371/journal.pone.0083661 .
89 BRIAR S S, FONTE S J, PARK I, et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems[J]. Soil Biology and Biochemistry, 2011, 43(5): 905-914.
90 ZHU G F, LUAN L, ZHOU S G, et al. Body size mediates the functional potential of soil organisms by diversity and community assembly across soil aggregates[J]. Microbiological Research, 2024, 282. DOI: 10.1016/j.micres.2024.127669 .
91 YAO Z Y, HU H L, LI Y L, et al. Soil micro-food webs at aggregate scale are associated with soil nitrogen supply and crop yield[J]. Geoderma, 2024, 442. DOI: 10.1016/j.geoderma.2024.116801 .
92 BANDICK A K, DICK R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 1999, 31(11): 1 471-1 479.
93 NANNIPIERI P, KANDELER E, RUGGIERO P. Enzyme activities and microbiological and biochemical processes in soil[M]// BURNS R G, DICK R P. Enzymes in the environment. New York: Marcel Dekker, 2002: 1-34.
94 ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336-340.
95 LI Yuzhen, ZHAO Li, SUN Baihu, et al. Biochemistry[M]. Beijing: Chemical Industry Press, 2017.
95 李玉珍, 赵丽, 孙百虎, 等. 生物化学[M]. 北京: 化学工业出版社, 2017.
96 ALLISON S D, JASTROW J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3 245-3 256.
97 TISCHER A, BLAGODATSKAYA E, HAMER U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions[J]. Soil Biology and Biochemistry, 2015, 89: 226-237.
98 BERNHARDT L T, SMITH R G, GRANDY A S, et al. Soil microbial communities vary in composition and functional strategy across soil aggregate size class regardless of tillage[J]. Elementa, 2022, 10(1). DOI: 10.1525/elementa.2022.00023 .
99 LAGOMARSINO A, BENEDETTI A, MARINARI S, et al. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem[J]. Biology and Fertility of Soils, 2011, 47(3): 283-291.
100 ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biology and Biochemistry, 2007, 39(7): 1 770-1 781.
101 MAHARJAN M, SANAULLAH M, RAZAVI B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology, 2017, 113: 22-28.
102 SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008, 11(11): 1 252-1 264.
103 NAHIDAN S, NOURBAKHSH F. Large macroaggregates determine distribution of soil amidohydrolase activities at different landscape positions[J]. CATENA, 2018, 170: 316-323.
104 GUAN Songyin. Soil enzymes and research methods[M]. Beijing: China Agriculture Press, 1986.
104 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
105 KANDELER E, TSCHERKO D, SPIEGEL H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management[J]. Biology and Fertility of Soils, 1999, 28(4): 343-351.
106 KANDELER E, STEMMER M, KLIMANEK E M. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management[J]. Soil Biology and Biochemistry, 1999, 31(2): 261-273.
107 SESSITSCH A, WEILHARTER A, GERZABEK M H, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 215-4 224.
108 ZHANG Q, LIANG G Q, ZHOU W, et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization[J]. Soil Science Society of America Journal, 2016, 80(1): 97-111.
109 de GRYZE S, SIX J, BRITS C, et al. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture[J]. Soil Biology and Biochemistry, 2005, 37(1): 55-66.
110 MORI T, AOYAGI R, KITAYAMA K, et al. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?[J]. Soil Biology and Biochemistry, 2021, 160. DOI: 10.1016/j.soilbio.2021.108363 .
111 GERMAN D P, WEINTRAUB M N, GRANDY A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology and Biochemistry, 2011, 43(7): 1 387-1 397.
112 MORI T, ROSINGER C, MARGENOT A J. Enzymatic C∶N∶P stoichiometry: questionable assumptions and inconsistencies to infer soil microbial nutrient limitation[J]. Geoderma, 2023, 429. DOI: 10.1016/j.geoderma.2022.116242 .
113 GERMAN D P, CHACON S S, ALLISON S D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition[J]. Ecology, 2011, 92(7): 1 471-1 480.
114 XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018, 123: 21-32.
115 LI Z C, RUI Z P, ZHANG D X, et al. Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, Eastern China[J]. Applied Soil Ecology, 2019, 138: 262-273.
116 HUANG X L, JIA Z X, JIAO X Y, et al. Long-term manure applications to increase carbon sequestration and macroaggregate-stabilized carbon[J]. Soil Biology and Biochemistry, 2022, 174. DOI: 10.1016/j.soilbio.2022.108827 .
117 LI Weitao, LI Zhongpei, LIU Ming, et al. Enzyme activities and soil nutrient status associated with different aggregate fractions of paddy soils fertilized with returning straw for 24 years[J]. Scientia Agricultura Sinica, 2016, 49(20): 3 886-3 895.
117 李委涛, 李忠佩, 刘明, 等. 秸秆还田对瘠薄红壤水稻土团聚体内酶活性及养分分布的影响[J]. 中国农业科学, 2016, 49(20): 3 886-3 895.
118 WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111: 65-72.
119 MIAO Y C, LIN Y X, CHEN Z M, et al. Fungal key players of cellulose utilization: microbial networks in aggregates of long-term fertilized soils disentangled using 13C-DNA-stable isotope probing[J]. Science of the Total Environment, 2022, 832. DOI: 10.1016/j.scitotenv.2022.155051 .
120 BHATTACHARYYA R, RABBI S M F, ZHANG Y Q, et al. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses[J]. Science of the Total Environment, 2021, 778. DOI: 10.1016/j.scitotenv.2021.146286 .
121 SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter: I. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689.
122 SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer Aaccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1 309-1 315.
123 CHEN J, LUO Y Q, GARCíA-PALACIOS P, et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration[J]. Global Change Biology, 2018, 24(10): 4 816-4 826.
124 WU J J, CHENG X L, LUO Y Q, et al. Identifying carbon-degrading enzyme activities in association with soil organic carbon accumulation under land-use changes[J]. Ecosystems, 2022, 25(6): 1 219-1 233.
125 CENINI V L, FORNARA D A, MCMULLAN G, et al. Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link[J]. Biogeochemistry, 2015, 126(3): 301-313.
126 CENINI V L, FORNARA D A, McMULLAN G, et al. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils[J]. Soil Biology and Biochemistry, 2016, 96: 198-206.
127 MARX M C, WOOD M, JARVIS S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1 633-1 640.
128 DEFOREST J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1 180-1 186.
129 BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities[J]. Journal of Visualized Experiments, 2013, 81. DOI: 10.3791/50961 .
130 SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7 274): 795-798.
131 SINSABAUGH R L, FOLLSTAD S J J. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse[J]. Biogeochemistry, 2011, 102(1): 31-43.
132 KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1 363-1 371.
133 CHEN J, ELSGAARD L, van GROENIGEN K J, et al. Soil carbon loss with warming: new evidence from carbon-degrading enzymes[J]. Global Change Biology, 2020, 26(4): 1 944-1 952.
134 LIU X J A, POLD G, DOMEIGNOZ-HORTA L A, et al. Soil aggregate-mediated microbial responses to long-term warming[J]. Soil Biology and Biochemistry, 2021, 152. DOI: 10.1016/j.soilbio.2020.108055 .
135 SUN Y, WANG C T, YANG J Y, et al. Elevated CO2 shifts soil microbial communities from K- to r-strategists[J]. Global Ecology and Biogeography, 2021, 30(5): 961-972.
136 YANG L Y, CANARINI A, ZHANG W S, et al. Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand[J]. Global Change Biology, 2024, 30(5). DOI: 10.1111/gcb.17311 .
137 MALIK A A, MARTINY J B H, BRODIE E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9.
138 BACH E M, HOFMOCKEL K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology and Biochemistry, 2014, 69: 54-62.
139 ABIVEN S, MENASSERI S, ANGERS D A, et al. A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions[J]. Soil Science Society of America Journal, 2008, 72(1): 119-125.
140 HAN C L, ZHOU W D, GU Y J, et al. Effects of tillage regime on soil aggregate-associated carbon, enzyme activity, and microbial community structure in a semiarid agroecosystem[J]. Plant and Soil, 2024, 498(1): 543-559.
141 WALDROP M P, BALSER T C, FIRESTONE M K. Linking microbial community composition to function in a tropical soil[J]. Soil Biology and Biochemistry, 2000, 32(13): 1 837-1 846.
142 ACOSTA-MARTíNEZ V, ZOBECK T M, GILL T E, et al. Enzyme activities and microbial community structure in semiarid agricultural soils[J]. Biology and Fertility of Soils, 2003, 38(4): 216-227.
143 TRASAR-CEPEDA C, LEIRóS M C, GIL-SOTRES F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality[J]. Soil Biology and Biochemistry, 2008, 40(9): 2 146-2 155.
144 DORODNIKOV M, BLAGODATSKAYA E, BLAGODATSKY S, et al. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size[J]. Global Change Biology, 2009, 15(6): 1 603-1 614.
145 FENG J, XU X, WU J J, et al. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China[J]. Science of the Total Environment, 2018, 640/641: 653-661.
146 DICK R P. Soil enzyme activities as indicators of soil quality[M]// DORAN W, COLEMAN D C, BEZDICEK D F, et al. Defining soil quality for a sustainable environment. Madison: SSSA, 1994: 107-124.
147 SCHINNER F, ?HLINGER R, KANDELER E, et al. Enzymes involved in carbon metabolism[M]// SCHINNER F, ?HLINGER R, KANDELER E, et al. Methods in soil biology. Berlin, Heidelberg: Springer, 1996: 185-207.
148 CALDWELL B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644.
149 WANG B, BREWER P E, SHUGART H H, et al. Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases-a concept[J]. Global Change Biology, 2019, 25(2): 373-385.
150 KRAVCHENKO A, OTTEN W, GARNIER P, et al. Soil aggregates as biogeochemical reactors: not a way forward in the research on soil-atmosphere exchange of greenhouse gases[J]. Global Change Biology, 2019, 25(7): 2 205-2 208.
151 RABOT E, WIESMEIER M, SCHLüTER S, et al. Soil structure as an indicator of soil functions: a review[J]. Geoderma, 2018, 314: 122-137.
152 VOGEL H J, BALSEIRO-ROMERO M, KRAVCHENKO A, et al. A holistic perspective on soil architecture is needed as a key to soil functions[J]. European Journal of Soil Science, 2022, 73(1). DOI: 10.1111/ejss.13152 .
153 YUDINA A, KUZYAKOV Y. Saving the face of soil aggregates[J]. Global Change Biology, 2019, 25(11): 3 574-3 577.
154 TOTSCHE K U, RAY N, K?GEL-KNABNER I. Structure-function co-evolution during pedogenesis-microaggregate development and turnover in soils[J]. Journal of Plant Nutrition and Soil Science, 2024, 187(1): 5-16.
155 SCHLüTER S, SAMMARTINO S, KOESTEL J. Exploring the relationship between soil structure and soil functions via pore-scale imaging[J]. Geoderma, 2020, 370. DOI: 10.1016/j.geoderma.2020.114370 .
156 REINHART K O, NICHOLS K A, PETERSEN M, et al. Soil aggregate stability was an uncertain predictor of ecosystem functioning in a temperate and semiarid grassland[J]. Ecosphere, 2015, 6(11). DOI: 10.1890/ES15-00056.1 .
157 AMELUNG W, TANG N, SIEBERS N, et al. Architecture of soil microaggregates: advanced methodologies to explore properties and functions [J]. Journal of Plant Nutrition and Soil Science, 2024, 187(1): 17-50.
158 JANZEN H H. Long-term ecological sites: musings on the future, as seen (dimly) from the past[J]. Global Change Biology, 2009, 15(11): 2 770-2 778.
159 JASSOGNE L, HETTIARACHCHI G, CHITTLEBOROUGH D, et al. Distribution and speciation of nutrient elements around micropores[J]. Soil Science Society of America Journal, 2009, 73(4): 1 319-1 326.
160 KATUWAL S, NORGAARD T, MOLDRUP P, et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography[J]. Geoderma, 2015, 237/238: 9-20.
文章导航

/