河流水体悬浮泥沙遥感研究进展与展望
收稿日期: 2023-02-27
修回日期: 2023-04-13
网络出版日期: 2023-07-19
基金资助
国家自然科学基金面上项目“露天矿雷达形变监测环境影响机理及低相干环境形变反演方法研究”(51774204)
Research Progress and Prospects of Remote Sensing on Suspended Sediment in River Water
Received date: 2023-02-27
Revised date: 2023-04-13
Online published: 2023-07-19
Supported by
the National Natural Science Foundation of China “Study on environmental impact mechanism of surface deformation monitoring in open pit mine and inversion methods under low coherence environment based on GB-SAR”(51774204)
河流悬浮泥沙动态监测对河道变迁、水利工程安全运行、生态和环境保护等都具有重要的应用价值,利用遥感技术可对大区域河流水体悬浮泥沙进行实时监测。与海洋和湖泊等大面积水体相比,当前对河流悬浮泥沙遥感关注较少,且已有研究主要关注入海河流河口区域。为充分发挥不同时间、空间和光谱分辨率多源卫星遥感资料优势,实现更广泛区域、不同级别河流的悬浮泥沙输运遥感监测,对国内外已发表的关于河流悬浮泥沙卫星遥感的数据源和模型进行了系统归纳,总结出河流悬浮泥沙卫星遥感研究中面临河流遥感反射率高精度提取、悬浮泥沙浓度高精度遥感和基于二维表层悬浮泥沙浓度遥感的三维通量遥感等挑战和难点;在此基础上,从去除邻近效应大气校正、考虑悬浮泥沙粒径分布的浓度遥感和悬浮泥沙输运通量三维遥感3个方面对河流悬浮泥沙遥感监测的未来发展进行了展望。
段梦伟 , 李如仁 , 刘东 , 蒋昕桐 , 仇志强 , 李柯妤 . 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023 , 38(7) : 675 -687 . DOI: 10.11867/j.issn.1001-8166.2023.030
Dynamic monitoring of suspended sediment in rivers has important application values for channel changes, safe operation of water conservancy projects, ecology, and environmental protection. Real-time remote sensing technology can monitor suspended sediment in sizeable regional river water bodies. Compared to large bodies of water such as oceans and lakes, remote sensing of suspended sediment in rivers has received less attention. Existing research has primarily focused on estuarine areas where rivers enter the sea. This study systematically summarizes published data sources and models of satellite remote sensing of suspended sediment in rivers worldwide to fully utilize the advantages of multi-source satellite remote sensing data with different temporal, spatial, and spectral resolutions and to realize remote sensing monitoring of suspended sediment transport in a broader area and at different river levels. The difficulties and challenges of satellite remote sensing of suspended sediments in rivers are discussed. On this basis, the future development of remote sensing monitoring of suspended sediment in rivers has been viewed from three perspectives: removing atmospheric correction of the proximity effect, concentration on remote sensing considering suspended sediment particle size distribution, and three-dimensional remote sensing of suspended sediment transport flux.
1 | XING Xiaoda, SHEN Qian, LI Junsheng, et al. Inversion of suspended matter concentration of the river of Manwan Dam Regions based on HJ-CCD data[J]. Remote Sensing Technology and Application, 2016,31(4): 682-690. |
1 | 邢晓达, 申茜, 李俊生, 等. 基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J]. 遥感技术与应用, 2016,31(4): 682-690. |
2 | WANG Xisen, WANG Di, LEI Qiuliang, et al. Advances in the inland surface water quality monitoring by remotely sensed imagery[J]. China Agricultural Information, 2022, 34(2): 1-15. |
2 | 王玺森, 王迪, 雷秋良, 等. 内陆地表水体水质遥感监测研究进展[J]. 中国农业信息, 2022, 34(2): 1-15. |
3 | LU Shijun. Research progress on the retrieval of suspended sediment from II water[J]. Modern Computer, 2016(32): 34-39. |
3 | 卢世军. Ⅱ类水体悬浮物遥感研究进展[J]. 现代计算机, 2016(32): 34-39. |
4 | LIU Dazhao, FU Dongyang, SHEN Chunyan, et al. Study advances on remote sensing of suspended sediment in estuaries and coastal case Ⅱ water[J]. Marine Environmental Science, 2010,29(4): 611-616. |
4 | 刘大召, 付东洋, 沈春燕, 等. 河口及近岸二类水体悬浮泥沙遥感研究进展[J]. 海洋环境科学, 2010,29(4): 611-616. |
5 | XIA Xinghui, WANG Junfeng, ZHANG Ling, et al. Effects and environmental implications of suspended sediment on the transportation and transformation of nitrogen in the Yellow River[J]. Journal of Hydraulic Engineering, 2020,51(9): 1 138-1 148. |
5 | 夏星辉, 王君峰, 张翎, 等. 黄河泥沙对氮迁移转化的影响及环境效应[J]. 水利学报, 2020,51(9): 1 138-1 148. |
6 | WANG Jun, YAO Shiming, ZHOU Yinjun. Review on river sediment resources utilization in China[J]. Journal of Sediment Research, 2019,44(1): 73-80. |
6 | 王军, 姚仕明, 周银军. 我国河流泥沙资源利用的发展与展望[J]. 泥沙研究, 2019,44(1): 73-80. |
7 | MONTANHER O C, NOVO E M L M, BARBOSA C C F, et al. Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 29: 67-77. |
8 | ONDERKA M, PEKáROVá P. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data[J]. Science of the Total Environment, 2008, 397(1/2/3): 238-243. |
9 | ZHANG Jia, WANG Houjie, ZHANG Yong, et al. Variation of sediment load at the major tributaries in the middle reaches of Yellow River and its impacts on the sediment flux to the sea[J]. Marine Geology & Quaternary Geology, 2012,32(3): 21-30. |
9 | 张佳, 王厚杰, 张勇, 等. 黄河中游主要支流输沙量变化对黄河入海泥沙通量的影响[J]. 海洋地质与第四纪地质, 2012,32(3): 21-30. |
10 | PAN Leijian, GUO Biyun. Remote sensing research of suspended sediment concentration in Zhoushan archipelago sea area based on Landsat 8 data[J]. Ocean Development and Management, 2020, 37(9): 82-90. |
10 | 潘磊剑, 郭碧云. 基于Landsat 8数据的舟山群岛海域悬浮泥沙浓度遥感研究[J]. 海洋开发与管理, 2020, 37(9): 82-90. |
11 | DETHIER E N, RENSHAW C E, MAGILLIGAN F J. Toward improved accuracy of remote sensing approaches for quantifying suspended sediment: implications for suspended-sediment monitoring[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(7). DOI:10.1029/2019JF005033 . |
12 | KLEMAS V, BARTLETT D, PHILPOT W, et al. Coastal and estuarine studies with ERTS-1 and Skylab[J]. Remote Sensing of Environment, 1974,3(3): 153-174. |
13 | LI Yangdong, HU Jiajie, WU Zhenyu. Variation of suspended sediment concentration in the Bohai Sea during the fortnightly tide period based on GOCI images[J]. Marine Science Bulletin, 2021,40(3): 348-360. |
13 | 李阳东, 胡佳杰, 吴珍瑜. 基于GOCI影像的半月潮周期内渤海悬浮泥沙浓度变化研究[J]. 海洋通报, 2021,40(3): 348-360. |
14 | CHEN Yan, KONG Jinling, SUN Xiaoming, et al. Retrieval of sea surface suspended sediment concentration in Bohai Gulf offshore area based on Semi-Analysis Model[J]. Geography and Geo-Information Science, 2014,30(3): 33-36. |
14 | 陈燕, 孔金玲, 孙晓明, 等. 基于半分析模型的渤海湾近岸海域悬浮泥沙浓度遥感反演[J]. 地理与地理信息科学, 2014,30(3): 33-36. |
15 | FENG L, HU C M, CHEN X L, et al. Human induced turbidity changes in Poyang Lake between 2000 and 2010: observations from MODIS[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7). DOI:10.1029/2011JC007864 . |
16 | WU Guofeng, CUI Lijuan, JI Weitao. Time-series MODIS images-based retrieval and change analysis of suspended sediment concentration during flood period in Lake Poyang[J]. Journal of Lake Sciences, 2009,21(2): 288-297. |
16 | 邬国锋, 崔丽娟, 纪伟涛. 基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化[J]. 湖泊科学, 2009,21(2): 288-297. |
17 | LIU Dong. Estimation of riverine organic carbon flux based on remote sensing and in-situ data[D]. Hangzhou: Zhejiang University,2017. |
17 | 刘东. 基于遥感与实测资料的河流有机碳通量估算研究[D]. 杭州: 浙江大学,2017. |
18 | ZHANG M W, DONG Q, CUI T W, et al. Suspended sediment monitoring and assessment for Yellow River Estuary from Landsat TM and ETM+ imagery[J]. Remote Sensing of Environment, 2014, 146: 136-147. |
19 | FENG L, HU C M, CHEN X L, et al. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: observations from MODIS[J]. Remote Sensing of Environment, 2014, 140: 779-788. |
20 | LUAN Hong, FU Dongyang, LI Mingjie, et al. Based on Landsat 8 suspended sediment concentration of the Pearl River on each season inversion and analysis[J]. Marine Environmental Science, 2017,36(6): 892-897. |
20 | 栾虹, 付东洋, 李明杰, 等. 基于Landsat 8珠江口悬浮泥沙四季遥感反演与分析[J]. 海洋环境科学, 2017,36(6): 892-897. |
21 | LI Jianhong, HUANG Changchun, ZHA Yong, et al. Spatial variation characteristics and remote sensing retrieval of total suspended matter in surface water of the Yangtze River[J]. Environmental Science, 2021,42(11): 5 239-5 249. |
21 | 李建鸿, 黄昌春, 査勇, 等. 长江干流表层水体悬浮物的空间变化特征及遥感反演[J]. 环境科学, 2021,42(11): 5 239-5 249. |
22 | LI Lan. Research on discrimination method of urban river water quality level based on uav hyperspectral remote sensing [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics),2021. |
22 | 李澜. 基于无人机高光谱遥感的城市中小河流水质等级判别研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所),2021. |
23 | LEGLEITER C J, ROBERTS D A, MARCUS W A, et al. Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility[J]. Remote Sensing of Environment, 2004,93(4): 493-510. |
24 | SHEN Fang, ZHOU Yunxuan, LI Jiufa, et al. Theoretical analysis and experimental observation for the effect of suspended sediment particle size on remote-sensing reflectance[J]. Journal of Infrared and Millimeter Waves, 2009, 28(3)168-172. |
24 | 沈芳, 周云轩, 李九发, 等. 河口悬沙粒径对遥感反射率影响的理论分析与实验观测[J]. 红外与毫米波学报, 2009, 28(3): 168-172. |
25 | HUANG Jue, YANG Fanlin, CHEN Liqiong, et al. Effects of nonuniform vertical profile of suspended particulate matter on water optical properties[J]. Guangxi Sciences, 2016, 23(6): 507-512. |
25 | 黄珏, 阳凡林, 陈莉琼, 等. 悬浮颗粒物垂直分布对水体光学特性的影响[J]. 广西科学, 2016, 23(6): 507-512. |
26 | QU L, LEI T, NING D, et al. A spectral mixing algorithm for quantifying suspended sediment concentration in the Yellow River: a simulation based on a controlled laboratory experiment[J]. International journal of remote sensing, 2016,37(11): 2 560-2 584. |
27 | GOULD R W, ARNONE R A. Remote sensing estimates of inherent optical properties in a coastal environment[J]. Remote Sensing of Environment, 1997, 61(2): 290-301. |
28 | Heng Lü, JIANG Nan, LI Xinguo. The study on water quality of inland lake monitoring by remote sensing[J]. Advances in Earth Science, 2005,20(2): 185-192. |
28 | 吕恒, 江南, 李新国. 内陆湖泊的水质遥感监测研究[J]. 地球科学进展, 2005,20(2): 185-192. |
29 | XU Jingping, ZHANG Bai, SONG Kaishan, et al. Bio-optical model of total suspended matter based on reflectance in the near infrared wave band for case-Ⅱ waters[J]. Spectroscopy and Spectral Analysis, 2008, 28(10): 2 273-2 277. |
29 | 徐京萍, 张柏, 宋开山, 等. 近红外波段二类水体悬浮物生物光学反演模型研究[J]. 光谱学与光谱分析, 2008, 28(10): 2 273-2 277. |
30 | HE X Q, BAI Y, PAN D L, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013, 133: 225-239. |
31 | CAO Bowen. Retrieving and changes analysis of suspended sediment concentration in Pearl River Estuary [D]. Guangzhou: Guangzhou University,2022. |
31 | 曹博文. 珠江口悬浮泥沙浓度反演及变化分析[D]. 广州: 广州大学,2022. |
32 | ISLAM M R, YAMAGUCHI Y, OGAWA K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: observation from TM and AVHRR data[J]. Hydrological Processes, 2001, 15(3): 493-509. |
33 | WANG J J, LU X X, ZHOU Y. Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+[J]. Chinese Science Bulletin, 2007, 52(2): 273-280. |
34 | MA Ronghua, TANG Junwu, DUAN Hongtao, et al. Progress in lake water color remote sensing[J]. Journal of Lake Sciences, 2009,21(2): 143-158. |
34 | 马荣华, 唐军武, 段洪涛, 等. 湖泊水色遥感研究进展[J]. 湖泊科学, 2009,21(2): 143-158. |
35 | LIU Cande, HE Baoyin, LI Maotian, et al. Preliminary study on remote sensing of suspended sediment concentration in the middle Yangtze River using MODIS[J]. Geological Science and Technology Information, 2006,25(2): 99-102. |
35 | 刘灿德, 何报寅, 李茂田, 等. 利用MODIS反演长江中游悬浮泥沙含量的初步研究[J]. 地质科技情报, 2006,25(2): 99-102. |
36 | QIAO Xiaojing, HE Baoyin, ZHANG Wen, et al. Modis-based retrieval and change analysis of suspended sediment concentration in middle Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2013, 22(8): 1 090-1 095. |
36 | 乔晓景, 何报寅, 张文, 等. 基于MODIS的长江中游河段悬浮泥沙浓度反演[J]. 长江流域资源与环境, 2013, 22(8): 1 090-1 095. |
37 | YEPEZ S, LARAQUE A, MARTINEZ J M, et al. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela)[J]. Comptes Rendus Geoscience, 2018, 350(1/2): 20-30. |
38 | SHEN Ming. Study on the remote sensing models for monitoring riverine water environment [D]. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2018. |
38 | 申明. 流域水环境遥感监测模型研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018. |
39 | XIE Xu. Estimation and analysis of total suspended matter by remote sensing in the lower reaches of Minjiang [D]. Fuzhou: Fuzhou University,2018. |
39 | 谢旭. 闽江下游悬浮物浓度遥感反演与分析[D]. 福州: 福州大学,2018. |
40 | NAI Zhaojun, DUAN Hongtao, ZHU Li, et al. A novel algorithm to monitor cyanobacterial blooms in Lake Taihu from HJ-CCD imagery[J]. Journal of Lake Sciences, 2016,28(3): 624-634. |
40 | 佴兆骏, 段洪涛, 朱利, 等. 基于环境卫星CCD数据的太湖蓝藻水华监测算法研究[J]. 湖泊科学, 2016,28(3): 624-634. |
41 | QIAO Xiaojing, HE Baoyin, ZHANG Wen, et al. Inversion of suspended matter concentration in Wuhan segment of the middle reaches of the Yangtze River based on HJ-1A/B CCD data[J]. Journal of Huazhong Normal University (Natural Sciences), 2013, 47(5): 716-719. |
41 | 乔晓景, 何报寅, 张文, 等. 基于HJ-1卫星CCD数据的长江中游武汉河段悬浮物浓度反演[J]. 华中师范大学学报(自然科学版), 2013, 47(5): 716-719. |
42 | WANG Hanghang, WANG Jie, CUI Yuhuan. Remote sensing monitoring on spatial differentiation of suspended sediment concentration in a River-Lake System based on Sentinel-2 MSI Imaging: a case for Shengjin Lake and connected Yangtze River section in Anhui Province[J]. Environmental Science, 2020,41(3): 1 207-1 216. |
42 | 王行行, 王杰, 崔玉环. 基于Sentinel-2 MSI影像的河湖系统水体悬浮物空间分异遥感监测:以安徽省升金湖与连接长江段为例[J]. 环境科学, 2020,41(3): 1 207-1 216. |
43 | ZHOU Guanhua, TANG Junwu, TIAN Guoliang, et al. Uncertainty analysis of inland water quality remote sensing:a review[J]. Advances in Earth Science, 2009,24(2): 150-158. |
43 | 周冠华, 唐军武, 田国良, 等. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009,24(2): 150-158. |
44 | HAN Xu, DU Chong, LIU Fuquan, et al. Analysis of suspended sediment concentration in Songhua River based on remote sensing technology[J]. Journal of Engineering of Heilongjiang University, 2022,13(1): 18-24. |
44 | 韩旭, 杜崇, 刘福全, 等. 基于遥感技术对松花江悬浮泥沙浓度的分析[J]. 黑龙江大学工程学报, 2022,13(1): 18-24. |
45 | DUAN Hongtao, CAO Zhigang, SHEN Ming, et al. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 2022, 26(1): 3-18. |
45 | 段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 2022, 26(1): 3-18. |
46 | WEN Xiaole, XU Hanqiu. Quantitative estimation of suspended solid concentration in the lower Min River based on multi-source synchronal data[J]. Chinese Journal of Environmental Science, 2008, 29(9): 2 441-2 447. |
46 | 温小乐, 徐涵秋. 基于多源同步数据的闽江下游悬浮物定量遥感[J]. 环境科学, 2008, 29(9): 2 441-2 447. |
47 | HOLYER R J. Toward universal multispectral suspended sediment algorithms[J]. Remote Sensing of Environment, 1978,7(4): 323-338. |
48 | MENG Ling, QU Fanzhu, BI Xiaoli. A review of retrieval algorithms for suspended sediment concentration by remote sensing[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2011,30(5): 443-449. |
48 | 孟灵, 屈凡柱, 毕晓丽. 二类水体悬浮泥沙遥感反演算法综述[J]. 浙江海洋学院学报(自然科学版), 2011,30(5): 443-449. |
49 | BERNARDO N, do CARMO A, PARK E, et al. Retrieval of suspended particulate matter in inland waters with widely differing optical properties using a semi-analytical scheme[J]. Remote Sensing, 2019, 11(19). DOI:10.3390/rs11192283 . |
50 | LEE Z P, CARDER K L, ARNONE R A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27). DOI:10.1364/ao.41.005755 . |
51 | LI Wanhui, XU Hanqiu. Estimation of the optically active substances in case Ⅱ water of the lower Jinjiang River based on the bio-optical model[J]. Environmental Science, 2009,30(4): 1 008-1 015. |
51 | 李婉晖, 徐涵秋. 基于生物光学模型的二类水体光学活性物质估算:以晋江下游河段为例[J]. 环境科学, 2009,30(4): 1 008-1 015. |
52 | LI Yunmei, ZHAO Huan, BI Shun, et al. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022,26(1): 19-31. |
52 | 李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022,26(1): 19-31. |
53 | WANG J J, LU X X, LIEW S C, et al. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China[J]. Earth Surface Processes and Landforms, 2009, 34(8): 1 082-1 092. |
54 | VILLAR R E, MARTINEZ J M, le TEXIER M, et al. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images[J]. Journal of South American Earth Sciences, 2013, 44: 45-54. |
55 | PHAM Q V, HA N, PAHLEVAN N, et al. Using landsat-8 images for quantifying suspended sediment concentration in red river (northern Vietnam)[J]. Remote Sensing, 2018, 10(11).DOI:10.3390/rs10111841 . |
56 | CHEN Zhongkai. Research and application of remote sensing water quality inversion algorithm for inland waters [D]. Hangzhou: Zhejiang University, 2021. |
56 | 陈仲锴. 内陆水体遥感水质反演算法研究及应用[D]. 杭州: 浙江大学, 2021. |
57 | FANG Xinrui, WEN Zhaofei, CHEN Jilong, et al. Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model[J]. National Remote Sensing Bulletin, 2019,23(4): 756-772. |
57 | 方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019,23(4): 756-772. |
58 | CHEN Diandian, CHEN Yunzhi, FENG Xianfeng, et al. Retrieving suspended matter concentration in rivers based on hyperparameter optimized CatBoost algorithm[J]. Journal of Geo-information Science, 2022,24(4): 780-791. |
58 | 陈点点, 陈芸芝, 冯险峰, 等. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022,24(4): 780-791. |
59 | WANG Fan, LING Zaiying, ZHOU Bin, et al. MODIS images monitoring short-period variation of estuary surface water suspended sediment concentration[J]. Journal of Zhejiang University (Engineering Science), 2009,43(4): 755-759. |
59 | 王繁, 凌在盈, 周斌, 等. MODIS监测河口水体悬浮泥沙质量浓度的短期变异[J]. 浙江大学学报(工学版), 2009,43(4): 755-759. |
60 | WANG Simeng, QIN Boqiang. Research progress on remote sensing monitoring of lake water quality parameters[J]. Environmental Science, 2023, 44(3): 1 228-1 243. |
60 | 王思梦, 秦伯强. 湖泊水质参数遥感监测研究进展[J]. 环境科学, 2023, 44(3): 1 228-1 243. |
61 | YANG Qianqian, JIN Caiyi, LI Tongwen, et al. Research progress and challenges of data-driven quantitative remote sensing[J]. National Remote Sensing Bulletin, 2022,26(2): 268-285. |
61 | 杨倩倩, 靳才溢, 李同文, 等. 数据驱动的定量遥感研究进展与挑战[J]. 遥感学报, 2022,26(2): 268-285. |
62 | LAI Lai, ZHANG Yuchao, JING Yuanyuan, et al. Research progress on remote sensing monitoring of phytoplankton in eutrophic water[J]. Journal of Lake Sciences, 2021,33(5): 1 299-1 314. |
62 | 来莱, 张玉超, 景园媛, 等. 富营养化水体浮游植物遥感监测研究进展[J]. 湖泊科学, 2021,33(5): 1 299-1 314. |
63 | STERCKX S, KNAEPS S, KRATZER S, et al. SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters[J]. Remote Sensing of Environment, 2015,157: 96-110. |
64 | FENG L, HU C M. Land adjacency effects on MODIS Aqua top‐of‐atmosphere radiance in the shortwave infrared: statistical assessment and correction[J]. Journal of Geophysical Research: Oceans, 2017,122(6): 4 802-4 818. |
65 | JUSTICE C O, VERMOTE E, TOWNSHEND J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research[J]. IEEE Transactions on Geoence & Remote Sensing, 1998,36(4): 1 228-1 249. |
66 | KAUFMAN Y J. Effect of the Earth’s atmosphere on contrast for zenith observation[J]. Journal of Geophysical Research: Oceans, 1979, 84(C6): 3 165-3 172. |
67 | LI Lingling. Study on remote sensing classification method of urban black and odorous water based on water color classification[D]. Nanjing: Nanjing Normal University, 2021. |
67 | 李玲玲. 基于水色分类的城市河流黑臭遥感分级方法研究[D]. 南京: 南京师范大学, 2021. |
68 | FENG L, HU C M. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment[J]. Remote Sensing of Environment, 2016, 174: 301-313. |
69 | FORGET P, OUILLON S, LAHET F, et al. Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters[J]. Remote Sensing of Environment, 1999,68(3): 264-272. |
70 | GORDON H R, BROWN O B, JACOBS M M. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean[J]. Applied Optics, 1975, 14(2): 417-427. |
71 | ZHANG Junru. Research of suspended sediment concentration and size distribution impact on the water spectrum at the maximum turbid zone of Yangtze River estuary[D]. Shanghai: East China Normal University, 2010. |
71 | 张俊儒. 长江口最大浑浊带表层悬浮物浓度及粒径对水体光谱特性影响的研究[D]. 上海: 华东师范大学, 2010. |
72 | LIU Yongsheng, CHEN Shenliang, CHEN Xiaoying, et al. Variation trend of sediment flux in the middle and lower streams of the Yellow River[J]. Geography and Geo-Information Science, 2006,22(4): 47-51. |
72 | 刘勇胜, 陈沈良, 陈小英, 等. 黄河中下游泥沙通量变化规律[J]. 地理与地理信息科学, 2006,22(4): 47-51. |
73 | LUDWIG W, PROBST J, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996,10(1): 23-41. |
74 | DING Tiping, GAO Jianfei, SHI Guoyu, et al. The contents and mineral and chemical compositions of suspended particulate materials in the Yangtze River, and their geological and environmental implications[J]. Acta Geologica Sinica, 2013,87(5): 634-660. |
74 | 丁悌平, 高建飞, 石国钰, 等. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义[J]. 地质学报, 2013,87(5): 634-660. |
75 | LIU D, BAI Y, HE X Q, et al. Satellite estimation of particulate organic carbon flux from Changjiang River to the estuary[J]. Remote Sensing of Environment, 2019, 223: 307-319. |
/
〈 |
|
〉 |