基于CMIP6的中国未来暴雨危险性变化评估
收稿日期: 2021-08-11
修回日期: 2022-01-22
网络出版日期: 2022-05-31
基金资助
国家重点研发计划项目“不同温升情景下区域气象灾害综合风险预估”(2019YFA0606900);国家自然科学基金面上项目“高温和干旱交互胁迫下中国区玉米成害机理及其风险评价”(42077436)
CMIP6 Assessment of Changes in Hazard of Future Rainstorms in China
Received date: 2021-08-11
Revised date: 2022-01-22
Online published: 2022-05-31
Supported by
the National Key Resaearch & Development Program of China “Comprehensive risk prediction of regional meteorological disasters under different temperature rise scenarios”(2019YFA0606900);The National Natural Science Foundation of China “Formation mechanism and risk assessment of corn damage in China under the interactive stress of high temperature and drought”(42077436)
使用1961—2019年全国2 510个气象站点日值降水数据和2030—2100年第六次耦合模式比较计划的12个耦合模式的SSP2-4.5未来情景的降水模拟数据,基于核密度函数分别计算4个重现期(五年一遇、十年一遇、二十年一遇和五十年一遇)历史和未来情景中3个年暴雨要素(年暴雨日数、年暴雨量和年暴雨强度)的数值,在此基础上评估了中国未来暴雨危险性的变化。得到的主要结论如下:
唐明秀 , 孙劭 , 朱秀芳 , 张世喆 , 徐昆 , 郭春华 . 基于CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022 , 37(5) : 519 -534 . DOI: 10.11867/j.issn.1001-8166.2022.019
Using the daily precipitation data of 2 510 meteorological stations in China from 1961 to 2019 and the precipitation simulation data of 12 coupling models of CMIP6 from 2030 to 2100 under the SSP2-4.5 future scenario, the values of three annual rainstorm elements (annual rainstorm days, annual rainstorm rainfall, and annual rainstorm intensity) in the historical and future scenarios were calculated based on the kernel density function under four return periods (5,10,20,50 years). Based on this, the future hazard change of rainstorms in China was assessed. The main conclusions are as follows:
1 | SHI Peijun. Theory and practice on disaster system research in a fifth time[J]. Journal of Natural Disasters, 2009, 18(5): 1-9. |
1 | 史培军. 五论灾害系统研究的理论与实践[J]. 自然灾害学报, 2009, 18(5): 1-9. |
2 | LI Dawei, SHI Shuzhong, YANG Fuping, et al. Summary of natural disaster risk assessment[J]. Value Engineering, 2014, 33(26): 322-325. |
2 | 李大卫, 石树中, 杨福平, 等. 自然灾害风险评估综述[J]. 价值工程, 2014, 33(26): 322-325. |
3 | YANG Yang, KE Liping, NIE Xiang, et al. Analysis on spatial and temporal distribution characteristics of Bijie heavy rain[J]. Meteorological, Hydrological and Marine Instruments, 2020, 37(4): 16-18. |
3 | 杨洋, 柯莉萍, 聂祥, 等. 毕节市暴雨时空分布特征分析[J]. 气象水文海洋仪器, 2020, 37(4): 16-18. |
4 | ZHANG Zhiru. Risk assessment of rainstorm disasters under different return periods: a case study of Bohai rim[D]. Dalian: Liaoning Normal University, 2020. |
4 | 张志茹. 不同重现期下环渤海地区暴雨灾害风险评估[D]. 大连: 辽宁师范大学, 2020. |
5 | CHENG Zhengquan, CHEN Lianshou, XU Xiangde, et al. Research progress on typhoon heavy rainfall in China for last ten years[J]. Meteorological Monthly, 2005, 31(12): 3-9. |
5 | 程正泉, 陈联寿, 徐祥德, 等. 近10年中国台风暴雨研究进展[J]. 气象, 2005, 31(12): 3-9. |
6 | SHUSTER W D, BONTA J, THURSTON H, et al. Impacts of impervious surface on watershed hydrology: a review[J]. Urban Water Journal, 2005, 2(4): 263-275. |
7 | DIEM J E, MOTE T L. Interepochal changes in summer precipitation in the southeastern United States: evidence of possible urban effects near Atlanta, Georgia[J]. Journal of Applied Meteorology and Climatology, 2005. DOI:10.1175/JAM2221.1 . |
8 | YIN J, YU D P, WILBY R. Modelling the impact of land subsidence on urban pluvial flooding: a case study of downtown Shanghai, China[J]. The Science of the Total Environment, 2016, 544: 744-753. |
9 | SHI Peijun, KONG Feng. Research on related factors to decadal accumulated heavy rainfall spatio-temporal patterns change in China during 1951-2010[J]. Scientia Geographica Sinica, 2016, 36(10): 1 457-1 465. |
9 | 史培军, 孔锋. 1951—2010年中国年代际累积暴雨时空格局变化的相关因素研究[J]. 地理科学, 2016, 36(10): 1 457-1 465. |
10 | LI Rouke, LI Yaohui, XU Ying. Projection of rainstorm and flooding disaster risk in China in the 21st century[J]. Journal of Arid Meteorology, 2018, 36(3): 341-352. |
10 | 李柔珂, 李耀辉, 徐影. 未来中国地区的暴雨洪涝灾害风险预估[J]. 干旱气象, 2018, 36(3): 341-352. |
11 | WANG G, ZHANG Q, YU H Q, et al. Double increase in precipitation extremes across China in a 1.5 ℃/2.0 ℃ warmer climate[J]. The Science of the Total Environment, 2020, 746: 140807. |
12 | XIE Wenhuan, ZHANG Youzhi, LIU Shubin. Research progress on agricultural flood disasters[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(1): 204-211. |
12 | 解文欢, 张有智, 刘述彬. 农业洪涝灾害研究进展[J]. 中国农业资源与区划, 2020, 41(1): 204-211. |
13 | FENG Yu. Temporal and spatial distribution of rainstorm and probability analysis of recurrence period in Liaoning Province[D]. Dalian: Liaoning Normal University, 2018. |
13 | 冯玉. 辽宁省暴雨时空分布及重现期发生概率分析[D]. 大连: 辽宁师范大学, 2018. |
14 | SHEN Xinkai, Yiqing Lü, ZHANG Jing, et al. Risk assessment of rainstorm disaster in Shanxi Province based on ArcGIS[J]. Scientific and Technological Management of Land and Resources, 2020, 37(1): 61-73. |
14 | 申欣凯, 吕义清, 张静, 等. 基于ArcGIS的山西省暴雨灾害风险评估[J]. 国土资源科技管理, 2020, 37(1): 61-73. |
15 | KONG Feng. Multi-attribute spatio-temporal evolution characteristics and regional differences of heavy rainfall in different months in China from 1961 to 2016[J]. Water Resources and Hydropower Engineering, 2020, 51(2): 26-37. |
15 | 孔锋. 中国不同月份暴雨的多属性时空演变特征及区域差异(1961—2016年)[J]. 水利水电技术, 2020, 51(2): 26-37. |
16 | SHI Peijun, KONG Feng, FANG Jiayi. Spatio-temporal patterns of China decadal storm rainfall[J]. Scientia Geographica Sinica, 2014, 34(11): 1 281-1 290. |
16 | 史培军, 孔锋, 方佳毅. 中国年代际暴雨时空变化格局[J]. 地理科学, 2014, 34(11): 1 281-1 290. |
17 | KONG Feng. SSPs scenarios-based evolution comparison and mutation characteristics pre-estimation of global sea-land rainstorm time series[J]. Water Resources and Hydropower Engineering, 2020, 51(10): 1-9. |
17 | 孔锋. 基于SSPs情景的全球海陆暴雨时序演变对比和突变特征预估[J]. 水利水电技术, 2020, 51(10): 1-9. |
18 | GAO Li, CHEN Jing, ZHENG Jiawen, et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science, 2019, 34(7): 706-716. |
18 | 高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716. |
19 | LI Donghuan, ZOU Liwei, ZHOU Tianjun. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457. |
19 | 李东欢, 邹立维, 周天军. 全球1.5℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457. |
20 | HUANG Ping, ZHOU Shijie. Advances and challenges in the study on the tropical rainfall changes under global warming[J]. Advances in Earth Science, 2018, 33(11): 1 181-1 192. |
20 | 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战[J]. 地球科学进展, 2018, 33(11): 1 181-1 192. |
21 | XU Y, GAO X J, GIORGI F, et al. Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble[J]. Advances in Atmospheric Sciences, 2018, 35(4): 376-388. |
22 | ZHOU Botao, WEN Qiuzihan, XU Ying, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17): 6 591-6 611. |
23 | LIU Y J, CHEN J, PAN T, et al. Global socioeconomic risk of precipitation extremes under climate change[J]. Earth’s Future, 2020, 8(9): e2019EF001331. |
24 | XU Ying, ZHANG Bing, ZHOU Botao, et al. Projected risk of flooding disaster in China based on CMIP5 models[J]. Climate Change Research, 2014, 10(4): 268-275. |
24 | 徐影, 张冰, 周波涛, 等. 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估[J]. 气候变化研究进展, 2014, 10(4): 268-275. |
25 | XIANG Junwen, ZHANG Liping, DENG Yao, et al. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models[J]. Engineering Journal of Wuhan University, 2021, 54(1): 46-57, 81. |
25 | 向竣文, 张利平, 邓瑶, 等. 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估[J]. 武汉大学学报(工学版), 2021, 54(1): 46-57, 81. |
26 | ZHANG Lixia, CHEN Xiaolong, XIN Xiaoge. Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519-525. |
26 | 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. |
27 | WANG Yu, LI Huixin, WANG Huijun, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5[J]. Acta Meteorologica Sinica, 2021, 79(3): 369-386. |
27 | 王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386. |
28 | ZHANG Q, KONG D D, SINGH V P, et al. Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications[J]. Global and Planetary Change, 2017, 152: 1-11. |
29 | XIAO M Z, ZHANG Q, SINGH V P, et al. Regionalization-based spatiotemporal variations of precipitation regimes across China[J]. Theoretical and Applied Climatology, 2013, 114(1/2): 203-212. |
30 | TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7 183-7 192. |
31 | WU Jia, ZHOU Botao, XU Ying. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015, 58(9): 3 048-3 060. |
31 | 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3 048-3 060. |
32 | CAI Yiheng, HAN Zhenyu, ZHOU Botao. Evaluation of RegCM4 downscaling simulations on regional rainstorm events in China[J]. Climate Change Research, 2021, 17(4): 420-429. |
32 | 蔡怡亨, 韩振宇, 周波涛. 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估[J]. 气候变化研究进展, 2021, 17(4): 420-429. |
33 | China Meteorological Administration. Crade of precipitation: [S]. Beijing: China Standard Press, 2012, 1. |
33 | 中国气象局. 降水量等级: [S]. 北京:中国标准出版社, 2012, 1. |
34 | JIANG Dabang, WANG Huijun, LANG Xianmei. Evaluation of east Asian climatology as simulated by seven coupled models[J]. Advances in Atmospheric Sciences, 2005, 22(4): 479-495. |
35 | CHENG Xuerong, REN Liliang, YANG Xiaoli, et al. A CMIP5 multi-model estimation of spatio-temporal characteristics of temperature, precipitation in 7 regions of China[J]. Journal of China Hydrology, 2016, 36(4): 37-43. |
35 | 程雪蓉, 任立良, 杨肖丽, 等. CMIP5多模式对中国及各分区气温和降水时空特征的预估[J]. 水文, 2016, 36(4): 37-43. |
36 | WU Yanjuan. Temporal and spatial distribution characteristics and future prediction of extreme precipitation in China under the background of climate change[D]. Shanghai: Shanghai Normal University, 2016. |
36 | 吴燕娟. 气候变化背景下我国极端降水的时空分布特征和未来预估[D]. 上海: 上海师范大学, 2016. |
37 | CHEN Huopo. Prediction of extreme precipitation events in China at the end of the 21st century by CMIP5[J]. Chinese Science Bulletin, 2013, 58(8): 743-752. |
37 | 陈活泼. CMIP5模式对21世纪末中国极端降水事件变化的预估[J]. 科学通报, 2013, 58(8): 743-752. |
38 | ZHANG Li, DING Yihui, SUN Ying. Evaluation of precipitation simulation in east Asian monsoon areas by coupled ocean-atmosphere general circulation models[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(2): 261-276. |
38 | 张莉, 丁一汇, 孙颖. 全球海气耦合模式对东亚季风降水模拟的检验[J]. 大气科学, 2008, 32(2): 261-276. |
39 | DING Y H, REN G Y, ZHAO Z C, et al. Detection, causes and projection of climate change over China: an overview of recent progress[J]. Advances in Atmospheric Sciences, 2007, 24(6): 954-971. |
40 | WENG Yuwei, CAI Wenjia, WANG Can. The application and future directions of the Shared Socioeconomic Pathways (SSPs)[J]. Climate Change Research, 2020, 16(2): 215-222. |
40 | 翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2): 215-222. |
41 | HAN Huiqing, LI Jianhong, AN Xupeng, et al. Change of precipitation concentration degree in Guizhou under future climate change scenarios[J]. Journal of China Three Gorges University (Natural Sciences), 2021, 43(1): 25-30. |
41 | 韩会庆, 李建鸿, 安徐朋, 等. 未来气候变化情景下贵州省降水集中度变化特征研究[J]. 三峡大学学报(自然科学版), 2021, 43(1): 25-30. |
/
〈 |
|
〉 |