“东南亚构造、沉积与资源环境效应”专辑

安达曼海东部台缘阶地中新世生物礁演化特征及其古环境响应

  • 叶传红 ,
  • 栾锡武 ,
  • 樊爱萍 ,
  • 冉伟民 ,
  • 穆敬轩 ,
  • 何明勇 ,
  • 魏新元 ,
  • 李阳 ,
  • 刘洁
展开
  • 1.山东科技大学 地球科学与工程学院,山东 青岛 266590
    2.中国地质调查局青岛海洋地质研究所,山东 青岛 266237
    3.青岛海洋科学与技术试点国家实验室,海洋矿产资源评价与探测技术功能 实验室,山东 青岛 266237
    4.中国海洋大学 海洋地球科学学院,山东 青岛 266100
叶传红(1994-),男,安徽潜山人,硕士研究生,主要从事地震资料解释、盆地分析以及海洋地质研究.E-mail:ych369693@163.com
栾锡武(1966-),男,山东青岛人,研究员,主要从事海洋地质地球物理研究. E-mail:xluan@sdust.edu.cn

收稿日期: 2021-04-22

  修回日期: 2021-10-22

  网络出版日期: 2022-04-14

基金资助

中国—东盟海上合作基金项目“中国—东盟海洋地震数据平台与研究中心建设”(12120100500017001);国家自然科学基金项目“孟加拉湾东北部沉积过程与特提斯东段构造变形耦合关系”(92055211)

Miocene Reef Evolution and Palaeo-environmental Response in Platform Margins of the Eastern Andaman Sea

  • Chuanhong YE ,
  • Xiwu LUAN ,
  • Aiping FAN ,
  • Weimin RAN ,
  • Jingxuan MU ,
  • Mingyong HE ,
  • Xinyuan WEI ,
  • Yang LI ,
  • Jie LIU
Expand
  • 1.College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China
    2.Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266237,China
    3.Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China
    4.College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
YE Chuanhong (1994-), male, Qianshan City, Anhui Province, Master student. Research areas include seismic data interpretation, basin analysis and marine geology. E-mail: ych369693@163.com
LUAN Xiwu (1966-), male, Qingdao City, Shandong Province, Professor. Research areas include marine geology and geophysics. E-mail: xluan@sdust.edu.cn

Received date: 2021-04-22

  Revised date: 2021-10-22

  Online published: 2022-04-14

Supported by

the China-ASEAN Maritime Cooperation Fund Project "China-ASEAN Marine seismic data center"(12120100500017001);The National Natural Science Foundation of China "Coupling relationship between sedimentary process and tectonic deformation of northeastern Bay of Bengal, an Eastern Tethys section"(92055211)

摘要

新近纪以来,在大陆边缘以及火山基底隆起等构造背景下,安达曼海域广泛分布生物礁碳酸盐。为了更好地了解安达曼海域的构造演化以及区域古环境特征,通过高分辨率地震剖面,将台地边缘地层划分为5个地震层序。在建立的地震层序格架下,探讨了区域中新世生物礁演化模式及发育控制因素。研究认为安达曼海域东部台缘阶地中新世生物礁生长发育以及空间展布形态主要受中新世时期构造作用所形成的地势形态和海平面升降等因素联合控制。安达曼海中新世经历了裂谷期至弧后走滑拉分期,且伴随着海平面的上升。南部实皆断裂造成的东高西低的地势形态为东部阶地生物礁碳酸盐发育提供了有利场所,次级断裂造成了生物礁东西分割的格局,而海平面的稳定上升使得生物礁稳定生长。

本文引用格式

叶传红 , 栾锡武 , 樊爱萍 , 冉伟民 , 穆敬轩 , 何明勇 , 魏新元 , 李阳 , 刘洁 . 安达曼海东部台缘阶地中新世生物礁演化特征及其古环境响应[J]. 地球科学进展, 2022 , 37(3) : 316 -330 . DOI: 10.11867/j.issn.1001-8166.2021.037

Abstract

Since the Neogene, reef carbonate has been widely distributed in the Andaman Sea under the tectonic background of the continental margin and volcanic basement uplift. To better understand the tectonic evolution and paleo-environmental characteristics of the Andaman Sea, the platform margin stratigraphy was divided into five seismic sequences through high-resolution seismic profiles. Based on the established seismic sequence framework, the evolution model and development controlling factors of regional Miocene biogenetic reefs are discussed. The research shows that the growth, development, and spatial distribution of reefs in the eastern Andaman Sea are mainly controlled by the formed topography and sea-level changes. During the Miocene, the Andaman Sea experienced a rift during the back-arc strike-slip stage, accompanied by an increase in sea level. The topography of the high east and low west caused by the southern Sagaing Fault provides a favorable place for the development of reef carbonate in the eastern terraces. The secondary fault caused the east-west division of the reef, while the steady rise in sea level caused the reef to grow steadily.

参考文献

1 PATRIAT P, ACHACHE J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates [J]. Nature, 1984, 311(5 987):615-621.
2 HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353-431.
3 YIN A. Cenozoic tectonic evolution of Asia: a preliminary synthesis [J]. Tectonophysics, 2010, 488(1/2/3/4):293-325.
4 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, Rhythms, and Aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5 517):686-693.
5 DEWEY J F, BIRD J M. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 1970, 75(14):2 625-2 647.
6 FERRARI O M, HOCHARD C, STAMPFLI G M. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma) [J]. Tectonophysics, 2008, 451(1/2/3/4):346-365.
7 HALL R. Reconstructing Cenozoic SE Asia [J]. Geological Society, London, Special Publications, 1996, 106(1):153-184.
8 HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean [J]. Tectonophysics, 2012, 570/571(11):1-41.
9 LIU J P, KUEHL S A, PIERCE A C, et al. Fate of Ayeyarwady and Thanlwin Rivers sediments in the Andaman Sea and Bay of Bengal [J]. Marine Geology, 2020, 423:106137.
10 ALI S, HATHORNE E C, FRANK M, et al. South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(2):505-521.
11 MOHAN K, DAMGWAL S G V, SENGUPTA S, et al. Andaman Basin—a future exploration target [J]. The Leading Edge, 2006, 25(8):964-967.
12 THOMAS T, FRAN?OIS F, MONTAGGIONI L F,et al. Development patterns of an isolated oligo-mesophotic carbonate buildup, early Miocene, Yadana field, offshore Myanmar [J]. Marine and Petroleum Geology, 2020, 111:440-460.
13 Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories [J]. Earth-Science Reviews, 2002, 58(1/2): 163-231.
14 FAN Jiasong, ZHANG Wei. On the basic concept and classification of organic reefs and their main identifying criteria [J]. Acta Petrologica Sinica, 1985,1(3):45-59,97.
14 范嘉松, 张维. 生物礁的基本概念、分类及识别特征[J]. 岩石学报,1985, 1(3): 45-59, 97.
15 JOHNSON J G, KLAPPER G, SANDBERG C A. Devonian eustatic fluctuations in Euramerica [J]. Geological Society of America Bulletin, 1985, 96(5): 567.
16 WEI Xinyuan, LUAN Xiwu, RAN Weimin, et al. Characteristics and Paleogeographic indications of the late oligocene to early miocene coral reefs in the Madura Strait Basin, Indonesia[J]. Earth Science, 2020, 45(4): 1 403-1 415.
16 魏新元, 栾锡武, 冉伟民,等. 印尼马都拉海峡盆地晚渐新世至早中新世珊瑚生物礁特征及其古地理指示[J]. 地球科学, 2020, 45(4): 1 403-1 415.
17 FAN Jiasong. Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation[J]. Earth Science Frontiers,2005,12(3):23-30.
17 范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-30.
18 KHAIN V E, POLYAKOVA I D. Oil and gas potential of deep- and ultradeep-water zones of continental margins[J]. Lithology & Mineral Resources, 2004, 39(6):530-540.
19 WILSON M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3/4):262-274.
20 CHAKRABARTI G, SHOME D, KUMAR S, et al. Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, Cuddapah Basin, India[J]. Journal of Asian Earth Sciences, 2014, 91(9):263-279.
21 SATTLER U, IMMENHAUSER A, SCHLAGER W, et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea)[J]. Sedimentary Geology, 2009, 219(1/2/3/4):318-331.
22 WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision [J]. American Journal of Science, 2014, 314(2):548-579.
23 XU Zhiqin, WANG Qin, LI Zhonghai, et al. Indo-Asian collision:tectonic transition from compression to strike slip[J]. Acta Geologica Sinica,2016,90(1):1-23.
23 许志琴,王勤,李忠海,等.印度—亚洲碰撞:从挤压到走滑的构造转换[J].地质学报,2016,90(1):1-23.
24 NAJMAN Y, APPEL E, BOUDAGHER-FADEL M, et al. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12416.
25 KHAN P K, SHAMIM S, MOHANTY M, et al. Myanmar-Andaman-Sumatra subduction margin revisited: insights of arc-specific deformations[J]. Journal of Earth Science, 2017,28(4): 683-694.
26 MOHAN K, DANGWAL S G V, SENGUPTA S, et al. Andaman Basin—a future exploration target[J]. The Leading Edge, 2006,25(8): 964-967.
27 KAMESH R K A, MURTY G P S, AMARNATH D, et al. The west Andaman fault and its influence on the aftershock pattern of the recent megathrust earthquakes in the Andaman-Sumatra region [J]. Geophysical Research Letters, 2007, 34(3): L03305.
28 DIEHL T, WALDHAUSER F, COCHRAN J R, et al. Back-arc extension in the Andaman Sea: tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation [J]. Journal of Geophysical Research Solid Earth, 2013,118(5): 2 206-2 224.
29 ABHISHEK S, ABHAY V, MUDHOLKAR K A, et al. Geochemical characteristics of basalts from Andaman subduction zone: implications on magma genesis at intraoceanic back-arc spreading centres [J]. Geological Journal, 2019, 54(6):3 489-3 508.
30 RAJU K, RAY D, MUDHOLKAR A, et al. Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea[J]. Journal of Asian Earth Sciences, 2012, 56:42-53.
31 MORLEY C K, ALVEY A. Is spreading prolonged, episodic or incipient in the Andaman Sea? Evidence from deepwater sedimentation [J]. Journal of Asian Earth Sciences, 2015, 98:446-456.
32 CURRAY J R. Tectonics and history of the Andaman Sea region [J]. Journal of Asian Earth Sciences, 2005, 25(1):187-232.
33 RACEY A, RIDD M F. Chapter 10 Petroleum geology of adjoining basins in Bangladesh, India and Thailand [J]. Geological Society, London, Memoirs, 2015, 45(1):109-115.
34 JHA P, ROS D, ALESSANDRINI A D, et al. P-261 speculative petroleum system & play model of east andaman basin from regional geology and basin evolution concepts: addressing the exploration challenges of an extreme frontier area [C]//SPG Conference & Exposition on Petroleum Geophysics. 2010.
35 SRISURIYON K, MORLEY C K. Pull-apart development at overlapping fault tips: oblique rifting of a Cenozoic continental margin, northern Mergui Basin, Andaman Sea [J]. Geosphere, 2014, 10(1):80-106.
36 KHAN P K, CHAKRABORTY P P. Two-phase opening of Andaman Sea: a new seismotectonic insight [J]. Earth and Planetary Science Letters, 2005, 229(3/4):259-271.
37 MORLEY C K. Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models [J]. Geological Society, London, Memoirs, 2017, 47(1):27-50.
38 PANDEY D K, ANITHA G, PRERNA R, et al. Late Cenozoic seismic stratigraphy of the Andaman Forearc Basin,Indian Ocean [J]. Petroleum Science, 2017,14(4): 648-661.
39 AWASTHI N, RAY J S, SINGH A K, et al. Provenance of the Late Quaternary sediments in the Andaman Sea: implications for monsoon variability and ocean circulation [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10):3 890-3 906.
40 FOURNIER F, BORGOMANO J, MONTAGGIONI L F. Development patterns and controlling factors of Tertiary carbonate buildups: insights from high-resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines) [J]. Sedimentary Geology, 2005, 175(1/2/3/4):189-215.
41 LüDMANN T, KALVELAGE C, BETZLER C, et al. The Maldives, a giant isolated carbonate platform dominated by bottom currents [J]. Marine and Petroleum Geology, 2013, 43:326-340.
42 ZHEMCHUGOVA V A, EVDOKIMOV N V, POORT J, et al. Lower Permian carbonate buildups in the Northern Timan-Pechora Basin as the main hydrocarbon exploration object [J]. Lithology and Mineral Resources, 2020, 55(4):245-260.
43 VALENTINA Z, WOLFGANG S. Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data: Luconia Province, offshore Sarawak, Malaysia[J]. Marine and Petroleum Geology, 2004,21(5): 519-534.
44 BETZLER C, FüRSTENAU J, LüDMANN T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean [J]. Basin Research, 2013, 25(2):172-196.
45 BORGOMANO 1 J R F. The Upper Cretaceous carbonates of the Gargano-Murge region, southern Italy: a model of platform-to-basin transition [J]. AAPG Bulletin, 2000, 84(10):1 561-1 588.
46 SUN S Q, ESTEBAN M. Paleoclimatic controls on sedimentation diagenesis and reservoir quality: lessons from Miocene carbonates [J]. AAPG Bulletin, 1994,78(4): 519-543.
47 TAPPONNIER P, PELTZER G, ARMIJO R. On the mechanics of the collision between India and Asia [J]. Geological Society, London, Special Publications, 1986, 19(1):113-157.
48 MITCHELL A H G. Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region [J]. Journal of the Geological Society, 1993, 150(6):1 089-1 102.
49 LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia [J]. Tectonophysics, 1995, 251(1/2/3/4):85-138.
50 BERTRAND G, RANGIN C, MALUSKI H, et al. Cenozoic metamorphism along the Shan Scarp (Myanmar): evidences for ductile shear along the Sagaing Fault or the northward migration of the Eastern Himalayan Syntaxis?[J]. Geophysical Research Letters, 1999, 26(7):915-918.
51 POLACHAN S, RACEY A. Stratigraphy of the Mergui Basin, Andaman Sea—implications for petroleum exploration [J]. Journal of Petroleum Geology, 1994,17(4): 373-406.
52 DAN B. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic [J]. Sedimentary Geology, 2005, 175(1/2/3/4):49-72.
53 DING W W, LI J B, DONG C Z, et al. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution [J]. Marine Geophysical Research, 2015, 36(2/3):149-165.
54 KENTER J. Carbonate platform flanks: slope angle and sediment fabric[J]. Sedimentology, 2010, 37(5): 777-794.
55 RACEY A, RIDD M F. Chapter 7 petroleum geology of the Moattama Region, Myanmar [J]. Geological Society, London, Memoirs, 2015, 45(1):63-81.
56 CHAPMAN H, BICKLE M, THAW S H, et al. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar [J]. Chemical Geology, 2015, 401:15-27.
文章导航

/