链接热带东印度洋环流的海洋波动桥梁
收稿日期: 2021-09-30
修回日期: 2021-11-14
网络出版日期: 2022-01-29
基金资助
国家自然科学基金优秀青年科学基金项目“物理海洋学”(41822602);国家自然科学基金面上项目“东印度洋赤道区与非赤道区上中层环流季节内变化特征与动力联系”(41976016)
The Ocean Wave Bridge Linking the Circulation in the Tropical Eastern Indian Ocean
Received date: 2021-09-30
Revised date: 2021-11-14
Online published: 2022-01-29
Supported by
the National Natural Science Foundation of China "Physical oceanography"(41822602);"Intraseasonal variability of currents in the tropical Eastern Indian Ocean: characteristics and causes"(41976016)
热带印度洋环流动力研究对认识海盆尺度物质和水体交换、区域乃至全球气候变化具有重要意义,亦服务于人类的生产生活。回顾了近年来基于中国科学院南海海洋研究所热带印度洋观测取得的环流动力方面的研究进展,探讨提出海洋波动桥梁概念,即:赤道波通过水平传播、垂向传播和东边界反射,在赤道上混合层、次表层和中深层调制着赤道流系的生成与变化;随着波动能量在东边界以沿岸开尔文波和反射罗斯贝波的形式往外赤道传输,赤道动力过程亦调节着外赤道的环流结构变化。作为能量传输的十字路口,海洋东边界是环流变化的动力支点。在其支撑下,海洋波动成为环流间重要的能量纽带,贡献于环流的动力联系,是东印度洋环流多尺度变化的重要内因。基于观测,初步探讨了大尺度气候模态等外因对热带东印度洋环流的影响。凝练的海洋波动桥梁动力学框架,为进一步研究热带印度洋的环流的特征、变化及影响提供科学启示。
陈更新 . 链接热带东印度洋环流的海洋波动桥梁[J]. 地球科学进展, 2022 , 37(1) : 80 -86 . DOI: 10.11867/j.issn.1001-8166.2021.113
A large-scale hydrological observational network has been maintained in the tropical Indian Ocean since 2010 by the South China Sea Institute of Oceanography, Chinese Academy of Sciences (CAS). This paper reviews the research progress on the circulation dynamics over recent years based on the CAS observations. The results reveal an "ocean wave bridge in the eastern boundary". On the equator, the currents in the upper layer, the thermocline, and the middle layer are significantly modulated by the equatorial Kelvin and Rossby waves directly forced by equatorial winds and reflected from the eastern boundary, which effectively transport energy horizontally and vertically. Off the equator, the currents are still regulated by the equatorial dynamics, as equatorial-origin wave signals transmit energy there relying on the eastern boundary in the form of coastal Kelvin waves and reflected Rossby waves. Under the support of the dynamic fulcrum of the eastern boundary, the ocean wave bridge is thus an energy belt, which links generation and variation of the circulation in the tropical eastern Indian Ocean. In addition to the internal factor, contributions of external factors such as large-scale climate mode on the circulation are also discussed. The dynamic framework of ocean wave bridge will provide scientific enlightenment for further research on the characteristics, changes, and effects of the tropical Indian Ocean circulation.
Key words: Indian Ocean; Circulation; Kelvin wave; Rossby wave; Equatorial dynamics
1 | SCHOTT F A, MCCREARY Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1-123. |
2 | CHEN G, WANG Q, CHU X. Accelerated spread of Fukushima's waste water by ocean circulation[J]. The Innovation, 2021, 2(2): 100119. |
3 | SCHOTT F A, XIE S P, MCCREARY J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47. DOI:10. 1029/2007 RG 000245. |
4 | ZHOU Z Q, XIE S P, ZHANG R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions[J]. Proceedings of the National Academy of Sciences, 2021, 118(12).DOI: 10.1073/pnas.202255118. |
5 | MCPHADEN M J, MEYERS G, ANDO K, et al. RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction[J]. Bulletin of the American Meteorological Society, 2009, 90(4): 459-480. |
6 | DU Y, ZHANG Y, ZHANG L Y, et al. Thermocline warming induced extreme Indian Ocean Dipole in 2019[J]. Geophysical Research Letters, 2020, 47(18): e2020GL090079. |
7 | YU W, XIANG B, LIU L, et al. Understanding the origins of interannual thermocline variations in the tropical Indian Ocean[J]. Geophysical Research Letters, 2005, 32(24). DOI: 10.1029/200GL024327. |
8 | YUAN D, LIU H. Long-wave dynamics of sea level variations during Indian Ocean dipole events[J]. Journal of Physical Oceanography, 2009, 39(5): 1 115-1 132. |
9 | MADDEN R A, JULIAN P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. Journal of Atmospheric Sciences, 1971, 28(5): 702-708. |
10 | HENDON H H, GLICK J. Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans[J]. Journal of Climate, 1997, 10(4): 647-661. |
11 | SHINODA T, HENDON H H. Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans[J]. Journal of Climate, 1998, 11(10): 2 668-2 685. |
12 | DUAN Y, LIU H, YU W, et al. The onset of the Indonesian-Australian summer monsoon triggered by the first-branch eastward-propagating Madden-Julian oscillation[J]. Journal of Climate, 2019, 32(17): 5 453-5 470. |
13 | MASUMOTO Y, HASE H, KURODA Y, et al. Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean[J]. Geophysical Research Letters, 2005, 32(2). DOI: 10.1029/2004GL021896. |
14 | ISKANDAR I, TOZUKA T, SASAKI H, et al. Intraseasonal variations of surface and subsurface currents off Java as simulated in a high‐resolution ocean general circulation model[J]. Journal of Geophysical Research: Oceans, 2006, 111(C12). DOI: 10.1029/2006jc003486. |
15 | YUAN D, HAN W. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean[J]. Journal of Physical Oceanography, 2006, 36(5): 930-944. |
16 | HAN W, LAWRENCE D M, WEBSTER P J. Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow[J]. Geophysical Research Letters, 2001, 28(22): 4 215-4 218. |
17 | QIU Y, LI L, YU W. Behavior of the Wyrtki Jet observed with surface drifting buoys and satellite altimeter[J]. Geophysical Research Letters, 2009, 36(18). DOI: 10.1029/2009gl039120. |
18 | ZENG L, CHEN G, HUANG K, et al. A decade of eastern Tropical Indian Ocean Observation Network (TIOON)[J]. Bulletin of the American Meteorological Society, 2021. DOI: 10.1175/BAMS-D-19-02324.1. |
19 | CHEN G, LI Y, XIE Q, et al. Origins of eddy kinetic energy in the Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2 097-2 115. |
20 | ZHONG Q, CHEN G, LI Y, et al. Intraseasonal variability of the surface zonal current in the equatorial Indian Ocean: seasonal differences and causes[J]. Acta Oceanologica Sinica, 2021. DOI: 10.1007/S13131-021-1935-7. |
21 | CHEN G, HAN W, LI Y, et al. Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean[J]. Journal of Physical Oceanography, 2015, 45(6): 1 532-1 553. |
22 | CHEN G, HAN W, LI Y, et al. Intraseasonal variability of the equatorial undercurrent in the Indian Ocean[J]. Journal of Physical Oceanography, 2019, 49(1): 85-101. |
23 | HUANG K, HAN W, WANG D, et al. Features of the equatorial intermediate current associated with basin resonance in the Indian Ocean[J]. Journal of Physical Oceanography, 2018, 48(6): 1 333-1 347. |
24 | HAN W, MCCREARY J P, MASUMOTO Y, et al. Basin resonances in the equatorial Indian Ocean[J]. Journal of Physical Oceanography, 2011, 41(6): 1 252-1 270. |
25 | CHEN G, HAN W, ZHANG X, et al. Determination of spatiotemporal variability of the Indian Equatorial Intermediate Current[J]. Journal of Physical Oceanography, 2020, 50(11): 3 095-3 108. |
26 | CHEN G, HAN W, LI Y, et al. Intraseasonal variability of upwelling in the equatorial Eastern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 598-7 615. |
27 | CHEN G, HAN W, LI Y, et al. Interannual variability of equatorial Eastern Indian Ocean upwelling: local versus remote forcing[J]. Journal of Physical Oceanography, 2016, 46(3): 789-807. |
28 | CHEN G, HAN W, SHU Y, et al. The role of equatorial under current in sustaining the Eastern Indian Ocean upwelling[J]. Geophysical Research Letters, 2016, 43(12): 6 444-6 451. |
29 | CHEN G, HAN W, LI Y, et al. Strong intraseasonal variability of meridional currents near 5° N in the Eastern Indian Ocean: characteristics and causes[J]. Journal of Physical Oceanography, 2017, 47(5): 979-998. |
30 | HUANG K, WANG D, HAN W, et al. Semiannual variability of middepth zonal currents along 5° N in the Eastern Indian Ocean: characteristics and causes[J]. Journal of Physical Oceanography, 2019, 49(10): 2 715-2 729. |
31 | CHEN G, WANG D, HOU Y. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012, 47: 178-185. |
32 | CHENG X, MCCREARY J P, QIU B, et al. Dynamics of eddy generation in the central Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6 861-6 875. |
33 | HUANG K, WANG D, FENG M, et al. Baroclinic characteristics and energetics of annual Rossby waves in the southern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2020, 50(9): 2 591-2 607. |
34 | FENG M, WIJFFELS S. Intraseasonal variability in the South Equatorial Current of the East Indian Ocean[J]. Journal of Physical Oceanography, 2002, 32(1): 265-277. |
35 | CHEN G, WANG D, HAN W, et al. The extreme El Ni?o events suppressing the intraseasonal variability in the eastern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2020, 50(8): 2 359-2 372. |
36 | WANG J, YUAN D. Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events[J]. Journal of Physical Oceanography, 2015, 45: 1 804-1 821. |
37 | SHANKARA D, VINAYACHANDRANB P N, UNNIKRISHNANA A S. The monsoon currents in the North Indian Ocean[J]. Progress in Oceanography, 2000, 52(1): 63-120. |
/
〈 |
|
〉 |