“青促会成立10周年之地球科学领域”专刊

中亚地区干旱变化及其影响分析

  • 李稚 ,
  • 李玉朋 ,
  • 李鸿威 ,
  • 刘永昌 ,
  • 王川
展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
李稚(1987-),女,新疆乌鲁木齐人,研究员,主要从事干旱区气候变化与水循环研究. E-mail: liz@ms.xjb.ac.cn

收稿日期: 2021-09-28

  修回日期: 2021-12-03

  网络出版日期: 2022-01-29

基金资助

国家自然科学基金项目“中亚地区干旱变化的区域分异特征及驱动因子研究”(U2003302);中国科学院青年创新促进会项目(2018480)

Analysis of Drought Change and Its Impact in Central Asia

  • Zhi LI ,
  • Yupeng LI ,
  • Hongwei LI ,
  • Yongchang LIU ,
  • Chuan WANG
Expand
  • 1.State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
LI Zhi (1987-), female, Urumqi City, Xinjiang Uygur Autonomous Region, Professor. Research areas include climate change and water cycle in arid area. E-mail: liz@ms.xjb.ac.cn

Received date: 2021-09-28

  Revised date: 2021-12-03

  Online published: 2022-01-29

Supported by

Project suppoted by the National Natural Science Foundation of China "Spatial and temporal variations of terrestrial evapotranspiration and its components in Central Asia"(U2003302);The Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018480)

摘要

全球变暖加剧了中亚地区的干旱威胁,使得因干旱引发的水资源短缺、生态退化及跨境河流争端等问题更加突出。研究显示:过去半个多世纪,基于帕默尔干旱指数表征的中亚地区干旱程度整体变化趋势不显著,但伴随着区域的高温波动,中亚地区帕默尔干旱指数自2000年以来呈现明显下降趋势,约65%的区域表现为干旱化程度加剧,且在未来共享社会经济路径下中亚地区干旱强度持续增强。设计“去趋势”数字试验定量解析干旱指标对气候变化中各项因子的敏感性,发现气温对中亚干旱化趋势影响较大,降水变化加大了干旱的变率。从不同干旱亚类来看,中亚地区极端干旱区和干旱区面积以0.02×104和0.22×104 km2/a的速率增加,主要集中在新疆塔里木盆地北缘和哈萨克斯坦南部等地区。同时,平原荒漠区的植被蒸腾和土壤水耗散量加大,浅层土壤含水量(0~10 和10~40 cm)分别约有84%和81%的区域表现为下降趋势,导致一些依靠地下水和土壤水维系生存的、抗旱性弱的浅根系荒漠植物衰亡,生态农业干旱加剧,且水文干旱呈更加复杂的态势,研究结论为中亚地区水资源规划管理和生态保护提供科学依据。

本文引用格式

李稚 , 李玉朋 , 李鸿威 , 刘永昌 , 王川 . 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022 , 37(1) : 37 -50 . DOI: 10.11867/j.issn.1001-8166.2021.124

Abstract

Global warming has intensified the threat of drought in Central Asia, making problems such as water shortage, ecological degradation and transboundary river disputes more prominent. The research shows that in the past half century, the overall change trend of meteorological drought degree in Central Asia has not been significant. However, with the regional high temperature fluctuation, it has shown an obvious drying trend since 2000. About 65% of the regions show the intensification of drought degree, and the drought intensity will continue to increase under the SSPs scenarios in the future. We designed numerical experiments and found that drying trend responding to the dramatic increase in air temperature and slight decline in precipitation. From different drought sub categories, the area of extreme arid areas and arid areas in Central Asia shows an increasing trend at the rate of 0.02 × 104 km2/a and 0.22 × 104 km2/a, mainly concentrated in the northern margin of Tarim Basin in Xinjiang and in southern Kazakhstan. At the same time, about 84% and 81% of the soil moisture in the shallow layers (0~10 cm,10~40 cm) have exhibited decreasing trend, respectively. The increase of vegetation transpiration and soil water dissipation in plain desert areas has led to the decline and death of some shallow root desert plants with weak drought resistance, which depend on groundwater and soil water. The agro-ecological drought is intensified, and the hydrological drought is more complex. The conclusions will provide a scientific basis for water resources planning and management and ecological protection in Central Asia.

参考文献

1 JI F, WU Z, HUANG J, et al. Evolution of land surface air temperature trend [J]. Nature Climate Change, 2014, 4(6): 462-466.
2 HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges [J]. Reviews of Geophysics, 2017, 55(3): 719-778.
3 HUANG J, YU H, DAI A, et al. Drylands face potential threat under 2?°C global warming target [J]. Nature Climate Change, 2017, 7(6): 417-422.
4 BERDUGO M, DELGADO-BAQUERIZO M, SOLIVERES S, et al. Global ecosystem thresholds driven by aridity [J]. Science, 2020, 367(6 479): 787-790.
5 IMMERZEEL W W, BEEK L P H VAN, BIERKENS M F P. Climate change will affect the Asian Water Towers [J]. Science, 2010, 328(5 984): 1 382-1 385.
6 PRITCHARD H. Asia's glaciers are a regionally important buffer against drought [J]. Nature, 2017, 545(7 653): 169-174.
7 LI Z, CHEN Y, FANG G, et al. Multivariate assessment and attribution of droughts in Central Asia [J]. Scientific Reports, 2017, 7(1): 1316.
8 WANG Chenghai,ZHANG Shengning,ZHANG Feimin,et al. On the increase of precipitation in the Northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.
8 王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
9 LI Z, CHEN Y, LI W, et al. Potential impacts of climate change on vegetation dynamics in Central Asia [J]. Journal of Geophysical Research: Atmospheres, 2015, 120(24): 12 345-12 356.
10 DAI A, TRENBERTH K E, QIAN T T. A global dataset of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming [J]. Journal of Hydrometeorology, 2004, 5(6): 1 117-1 130.
11 WANG L, YUAN X, XIE Z, et al. Increasing flash droughts over China during the recent global warming hiatus [J]. Scientific Reports, 2016, 6: 30571.
12 HUANG J, YU H, GUAN X, et al. Accelerated dryland expansion under climate change [J]. Nature Climate Change, 2015, 6(2): 166-171.
13 DURACK P J, WIJFFELS S E, MATEAR R J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000 [J]. Science, 2012, 336(6 080): 455-458.
14 DONAT M G, LOWRY A L, ALEXANDEr L V, et al. More extreme precipitation in the world's dry and wet regions [J]. Nature Climate Change, 2016, 6(5): 508-513.
15 HELD I M, SODEN B J. Robust responses of the hydrological cycle to global warming [J]. Journal of Climate, 2006, 19(21): 5 686-5 699.
16 CHOU C, NEELIN J D, CHEN C A, et al. Evaluating the "Rich-Get-Richer" mechanism in tropical precipitation change under global warming [J]. Journal of Climate, 2009, 22(8): 1 982-2 005.
17 GIORGI F, COPPOLA E, RAFFAELE F. A consistent picture of the hydroclimatic response to global warming from multiple indices: models and observations [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(20): 11,695-611,708.
18 SCHRIER G VAN DER, JONES P D, BRIFFA K R. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration [J]. Journal of Geophysical Research, 2011, 116(D3). DOI: 10.1029/2010JD015001.
19 ZHANG J, SUN F, XU J, et al. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model [J]. Geophysical Research Letters, 2016, 43(1): 206-213.
20 WOOD A, HOBBINS M, STREUBEL D, et al. What drives the variability of evaporative demand across the conterminous United States? [J]. Journal of Hydrometeorology, 2012, 13(4): 1 195-1 214.
21 SHEFFIELD J, WOOD E F, RODERICK M L. Little change in global drought over the past 60 years [J]. Nature, 2012, 491(7 424): 435-438.
22 GREVE P, ORLOWSKY B, MUELLER B, et al. Erratum: corrigendum: global assessment of trends in wetting and drying over land [J]. Nature Geoscience, 2014, 7(11): 848.
23 LI Z, CHEN Y, LI Y, et al. Declining snowfall fraction in the alpine regions, central Asia[J]. Scientific Reports, 2020, 10: 3476.
24 CHEN Yaning, LI Zhi, FANG Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia [J]. Acta Geographica Sinica, 2017, 72(1): 18-26.
24 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
25 BALES R C, GOULDEN M L, HUNSAKER C T, et al. Mechanisms controlling the impact of multi-year drought on mountain hydrology [J]. Scientific Reports, 2018, 8(1): 690.
26 SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review [J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
27 ZHAO T, DAI A. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes [J]. Climatic Change, 2016, 144(3): 535-548.
28 YIN D Q, RODERICK M L, LEECH G, et al. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought [J]. Geophysical Research Letters, 2014, 41(22): 7 891-7 897.
29 CHEN Fahu, HUANG Wei, JIN Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China: Earth Sciences, 2011, 41(11): 1 647-1 657.
29 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异 [J]. 中国科学: 地球科学, 2011, 41(11): 1 647-1 657.
30 YAN Xiyang, ZHANG Qiang, ZHANG Wenbo, et al. Analysis of climate characteristics in the Pan-Central-Asia arid region[J]. Arid Zone Research, 2021, 38(1): 1-11.
30 闫昕旸, 张强, 张文波, 等. 泛中亚干旱区气候变化特征分析. 干旱区研究, 2021, 38(1): 1-11.
31 PALMER W C. Meteorological drought, U.S. Department of commerce[M]. Washington, D.C. Weather Bureau: 1965:1-58.
32 Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements - FAO Irrigation and Drainage 56[M]. UN Rome, 1998: 1-15.
33 ZHANG J, SUN F, XU J, et al. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model[J]. Geophysical Research Letters, 2016, 43(1): 206-213.
34 DRACUP J, LEE K, PAULSON E. On the definition of droughts[J]. Water Resources Research, 1980, 16(2): 297-302.
35 MISHRA A. SINGH V. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1/2): 202-216.
36 HAO Z, SINGH V, XIA Y. Seasonal drought prediction: advances, challenges, and future prospects[J]. Reviews of Geophysics, 2018, 56(1): 108-141.
37 LI Z, CHEN Y, LI Y, et al. Potential impacts of climate change on vegetation dynamics in Central Asia[J]. Journal of Geophysical Research, 2015, 120: 12 345-12 356.
38 LI Z, CHEN Y, LI Y, et al. Declining snowfall fraction in the alpine regions, Central Asia[J]. Scientific Reports, 2020, 10: 3476.
39 ZHANG J, SUN F, XU J, et al. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model[J]. Geophysical Research Letters, 2016, 43(1): 206-213.
40 LI Y, CHEN Y, SUN F, et al. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia[J]. Ecological Indicators, 2021, 129: 107912.
41 LI Z, CHEN Y, ZHANG Q, et al. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia[J]. Journal of Hydrology, 2020, 590: 125355.
42 CHEN Y, LI W, DENG H, et al. Changes in Central Asia's water tower: past, present and future[J]. Scientific Reports, 2016, 6:35458.
43 WANG X, CHEN Y, LI Z, et al. Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia[J]. Hydrology and Earth System Sciences, 2021, 25: 3 281-3 299.
44 YAN Xinyang, ZHANG Qiang, YAN Xiaomin, et al. An overview of distribution characteristics and formation mechanisms in global arid areas [J]. Advances in Earth Science, 2019, 34(8): 826-841.
44 闫昕旸, 张强, 闫晓敏, 等. 全球干旱区分布特征及成因机制研究进展. 地球科学进展, 2019, 34(8): 826-841.
45 JIANG Xiaowei, BAI Jianjun, LIU Xianfeng, et al. Research progress and prospect of integrated drought monitoring based on multi-source information[J]. Advances in Earth Science, 2019, 34(3): 275-287.
45 江笑薇, 白建军, 刘宪峰. 基于多源信息的综合干旱监测研究进展与展望 [J]. 地球科学进展, 2019, 34(3): 275-287.
46 TEULING A J, LOON A F VAN, SENEVIRATNE S I, et al. Evapotranspiration amplifies European summer drought [J]. Geophysical Research Letters, 2013, 40(10): 2 071-2 075.
文章导航

/