印度洋偶极子研究进展回顾
收稿日期: 2021-04-02
修回日期: 2021-05-25
网络出版日期: 2021-07-22
基金资助
中国科学院战略性先导科技专项“工业革命以来海陆气相互作用的气候环境影响”(XDB40030204);国家自然科学基金项目“青藏高原地—气耦合过程和海洋对区域能量和水分循环及全球气候的协同影响”(91637312)
Indian Ocean Dipole: A Review and Perspective
Received date: 2021-04-02
Revised date: 2021-05-25
Online published: 2021-07-22
Supported by
the Strategic Priority Research Program of Chinese Academy of Sciences "Climatic and environment impacts of sea-land-air interaction since the industrial revolution"(XDB40030204);The National Natural Science Foundation of China "The synergistic influence of coupling process of land-atmosphere of the Tibet Plateau and the ocean on regional energy and water cycles and global climate"(91637312)
印度洋偶极子是热带印度洋中重要的年际变率之一,对印度洋周边国家乃至全球的气候有着重要的影响,关于其形成机制及气候影响的研究对于气候预测具有重要意义。主要回顾了近10年印度洋偶极子的相关研究进展,包括印度洋偶极子的基本特征、与热带太平洋中厄尔尼诺—南方涛动之间的关系、与亚洲夏季风之间的关系、对全球气候的影响以及全球变暖背景下的变化等。印度洋偶极子与热带太平洋中厄尔尼诺—南方涛动之间的关系体现为二者之间是相互影响的,但不同类型的印度洋偶极子对热带太平洋中厄尔尼诺—南方涛动的影响机制尚不明确,还需进一步的研究。印度洋偶极子与亚洲夏季风之间的关系体现为二者之间存在强烈的相互作用,印度洋偶极子与印度洋东部夏季风环流之间存在相互促进作用,而印度洋偶极子与印度夏季风环流之间的相互作用尚需进一步研究。此外,研究表明全球变暖背景下极端正印度洋偶极子的发生将增多,同时极端印度洋偶极子对我国极端气候事件的发生有着重要影响。以往的研究主要集中于单独的印度洋偶极子或印度洋偶极子和热带太平洋中厄尔尼诺—南方涛动的结合对我国极端气候的影响,而印度洋偶极子与中高纬环流系统或泛热带海洋之间的协同作用对我国极端气候事件的影响还亟需相关研究。对印度洋偶极子的系统性回顾可为未来印度洋偶极子的研究提供一定的科学基础。
姜继兰 , 刘屹岷 , 李建平 , 张人禾 . 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021 , 36(6) : 579 -591 . DOI: 10.11867/j.issn.1001-8166.2021.066
The Indian Ocean Dipole (IOD) is one of the dominant interannual variabilities in the tropical Indian Ocean, which has important impacts on countries around the Indian Ocean and even the global climate. The research on the formation mechanism of IOD and its climatic effects is of great significance for climate prediction. This study mainly reviews the related research progress of IOD during the past 10 years, such as its basic characteristics, its relationship with El Ni?o-Southern Oscillation (ENSO) and the Asian summer monsoon, its climate effect, and its variation under the global warming. The relationship between IOD and ENSO is reflected in their mutual influence. The influence mechanism of different types of IOD on the development of ENSO is not clear and needs further investigation. A strong interaction between IOD and the Asian summer monsoon is found. The positive IOD and the summer monsoon circulation in the eastern Indian Ocean mutually promote, while the interaction between the IOD and the Indian summer monsoon needs further study. Furthermore, the extreme positive IOD will increase under the global warming, which has an important influence on extreme climatic events in China. Researches primarily focus on the effect of IOD alone or the combination effect of IOD and ENSO on extreme climatic events in China, but the synergistic effect between IOD and the mid-high latitude circulation system or the pan-tropical ocean on extreme climatic events in China needs further studies. A systematic review of IOD research progress during the past 10 years can provide a scientific basis for the future research of IOD.
Key words: Indian Ocean Dipole; ENSO; Asian summer monsoon; Interaction; Global warming
1 | SAJI N H, GOSWAMI B N, VINAYACHANDAN P N, et al. A dipole mode in the tropical Indian Ocean [J]. Nature, 1999, 401(6 751):360-363. |
2 | WEBSTER P J, MOORE A M, LOSCHNIGG J P, et al. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98 [J]. Nature, 1999, 401(6 751): 356-360. |
3 | REVERDIN G, CADE D L, GUTZLER D. Interannual displacements of convection and surface circulation over the equatorial Indian Ocean [J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(471):43-67. |
4 | NICHOLLS N. Sea surface temperatures and Australian winter rainfall [J]. Journal of Climate, 1989, 2(9):965-973. |
5 | TAN Yanke, ZHANG Renhe, HE Jinhai. Features of the interannual variation of Sea Surface Temperature anomalies and the air-sea interaction in Tropical Indian Ocean [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(1): 53-66. |
5 | 谭言科,张人禾,何金海. 热带印度洋海温的年际异常及其海气耦合特征[J]. 大气科学,2003, 27(1): 53-66. |
6 | BEHERA S K, LUO J J, MASSON S, et al. A CGCM study on the interaction between IOD and ENSO [J]. Journal of Climate, 2006, 19(9):1 688-1 705. |
7 | ANNAMALAI H, MURTUGUDDE R, POTEMRA J, et al. Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(12/13): 2 305-2 330. |
8 | ZHANG W J, WANG Y L, JIN F F, et al. Impact of different El Ni?o types on the El Ni?o/IOD relationship [J]. Geophysical Research Letters, 2015, 42: 8 570-8 576. |
9 | DONG D, HE J H, LI J P. Linkage between Indian Ocean Dipole and two types of El Ni?o and its possible mechanisms [J]. Journal of tropical meteorology, 2016, 22:172-181. |
10 | FAN L, LIU Q Y, WANG C Z, et al. Indian Ocean Dipole modes associated with different types of ENSO development [J]. Journal of Climate, 2017, 30: 2 233-2 249. |
11 | STUECKER M F, TIMMERMANN A, JIN F F, et al. Revisiting ENSO/Indian Ocean Dipole phase relationships [J]. Geophysical Research Letters, 2017, 44:2 481-2 492. |
12 | FISCHER A S, TERRAY P, GUILYARDI E, et al. Two independent triggers for the Indian Ocean Dipole/zonal mode in a coupled GCM [J]. Journal of Climate, 2005, 18(17): 3 428-3 449. |
13 | DRBOHLAV H K L, GUALDI S, NAVARRA A. A diagnostic study of the Indian Ocean Dipole mode in El Ni?o and non-El Ni?o years [J]. Journal of Climate, 2007, 20(13): 2 961-2 977. |
14 | TANIZAKI C, TOZUKA T, DOI T, et al. Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability [J]. Climate Dynamics, 2017, 49: 1 289-1 304. |
15 | YUAN C X, LI W J, GUAN Z Y, et al. Impacts of April snow cover extent over Tibetan Plateau and the central Eurasia on Indian Ocean Dipole [J]. International Journal of Climatology, 2019, 39: 1 756-1 767. |
16 | ZHANG L Y, DU Y, CAI W J, et al. Triggering the Indian Ocean Dipole from the southern hemisphere [J]. Geophysical Research Letters, 2020, 47: 9. |
17 | LU B, REN H L. What caused the extreme Indian Ocean Dipole event in 2019?[J]. Geophysical Research Letters, 2020, 47: 8. |
18 | DU Y, ZHANG Y, ZHANG L Y, et al. Thermocline warming induced extreme Indian Ocean Dipole in 2019 [J]. Geophysical Research Letters, 2020, 47(18). DOI:10.1029/2020GL090079. |
19 | BEHERA S K, KRISHNAN R, YAMAGATA T. Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994 [J]. Geophysical Research Letters, 1999, 26: 3 001-3 004. |
20 | LOSCHNIGG J, MEEHL G A, WEBSTER P J, et al. The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM [J]. Journal of Climate, 2003, 16: 1 617-1 642. |
21 | KRISHNAN R, SWAPNA P. Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events [J]. Journal of Climate, 2009, 22: 5 611-5 634. |
22 | SAJI N H, YAMAGATA T. Possible impacts of Indian Ocean Dipole mode events on global climate [J]. Climate Research, 2003, 25(2): 151-169. |
23 | CHAN S C, BEHERA S K, YAMAGATA T. Indian Ocean Dipole influence on South American rainfall [J]. Geophysical Research Letters, 2008, 35(14):63-72. |
24 | NUNCIO M, YUAN X. The influence of the Indian Ocean Dipole on Antarctic Sea Ice [J]. Journal of Climate, 2015, 28(7): 2 682-2 690. |
25 | NUR'UTAMI M N, HIDAYAT R. Influences of IOD and ENSO to indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-Pacific sector [J]. Procedia Environmental Sciences, 2016, 33:196-203. |
26 | LESTARI D O, SUTRIYONO E, SABARUDDIN, et al. Severe drought event in indonesia following 2015/16 El Ni?o/positive Indian Dipole Events [J]. Journal of Physics Conference Series, 2018, 1011. DOI:10.1088/1742-6596/1011/1/012040. |
27 | GUAN Z Y, YAMAGATA T. The unusual summer of 1994 in East Asia: IOD teleconnections [J]. Geophysical Research Letters, 2003, 30(10): 4. |
28 | WENG H Y, WU G X, LIU Y M, et al. Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans [J]. Climate Dynamics, 2011,36:769-782. |
29 | XIAO Ying, ZHANG Zuqiang, HE Jinhai. Summary of research progress on Indian Ocean Dipole [J]. Journal of Tropical Meteorology, 2009, 25(5):621-627. |
29 | 肖莺, 张祖强, 何金海.印度洋偶极子研究进展综述[J]. 热带气象学报, 2009, 25(5):621-627. |
30 | LIU Huafeng, ZHANG Xiangming, TANG Youmin, et al. Research progress of Indian Ocean Dipole and its predictability [J]. Advances in Marine Science, 2014, 32(3):405-414. |
30 | 刘华锋, 章向明, 唐佑民, 等.印度洋偶极子及其可预报性研究进展[J]. 海洋科学进展, 2014, 32(3):405-414. |
31 | SCHOTT F A, XIE S P, MCCREARY J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47:46. |
32 | XUE P F, RIZZOLI P M, WEI J, et al. Coupled ocean-atmosphere modeling over the maritime continent: a review [J]. Journal of Geophysical Research—Oceans, 2020, 125(6). DOI:10.1029/2019JC014978. |
33 | KUCHARSKI F, BIASTOCH A, ASHOK K, et al. Chapter5-Indian Ocean variability and interactions[M]// Mechoso C R. Interacting climates of ocean basins: observation, mechanisms, predictability, and impacts. New York: Cambridge University Press, 2020. |
34 | BEHERA S K, DOI T, RATNAM J V. Chapter5-air-sea interactions in tropical Indian Ocean: the Indian Ocean Dipole, editor(s): BEHERA S K, tropical and extratropical air-sea interactions: modes of climate variations [M]. Elsevier, 2021. |
35 | LUO J J, ZHANG R C, BEHERA S K, et al. Interaction between El Ni?o and extreme Indian Ocean Dipole [J]. Journal of Climate, 2010, 23: 726-742. |
36 | DU Y, CAI W J, WU Y. A new type of the Indian Ocean Dipole since the mid-1970s [J]. Journal of Climate, 2013, 25(3): 959-972. |
37 | GUI Fayin, TAN Yanke, LI Chongyin, et al. Possible triggering of the Indian Ocean Dipole by early summer rainfall anomalies over the eastern bay of Bengal [J]. Transactions of Atmospheric Sciences, 2016, 39(5): 589-599. |
37 | 桂发银,谭言科,李崇银,等.初夏孟加拉湾东部降水异常对印度洋海温偶极子的触发作用[J].大气科学学报,2016, 39(5):589-599. |
38 | WANG Y H, LI J P, ZHANG Y Z, et al. Atmospheric energetics over the tropical Indian Ocean during Indian Ocean Dipole events [J]. Climate Dynamics, 2018, 52: 6 243-6 256. |
39 | SUN S W, FANG Y, TANA, et al. Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean Dipoles [J]. Journal of Geophysical Research—Oceans, 2014,119: 3 076-3 097. |
40 | ENDO S, TOZUKA T. Two flavors of the Indian Ocean Dipole [J]. Climate Dynamics, 2016, 46:3 371-3 385. |
41 | TOZUKA T, ENDO S, YAMAGATA T. Anomalous walker circulations associated with two flavors of the Indian Ocean Dipole [J]. Geophysical Research Letters, 2016, 43: 5 378-5 384. |
42 | LI T, WANG B, CHANG C P, et al. A theory for the Indian Ocean Dipole-Zonal mode [J]. Journal of the Atmospheric Sciences, 2003, 60(17): 2 119-2 135. |
43 | CAI W J, ZHENG X T, WELLER E, et al. Projected response of the Indian Ocean Dipole to greenhouse warming [J]. Nature Geoscience, 2013, 6: 999-1 007. |
44 | YUAN D L, LIU H L. Long-wave dynamics of sea level variations during Indian Ocean Dipole events [J]. Journal of Physical Oceanography, 2009, 39(5): 1 115-1 132. |
45 | WANG J, YUAN D L. Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events [J]. Journal of Physical Oceanography, 2015, 45(7): 1 804-1 821. |
46 | HONG C C, LI T, HO L, et al. Asymmetry of the Indian Ocean Dipole. part I: observational analysis [J]. Journal of Climate, 2008, 21: 4 834-4 848. |
47 | HONG C C, LI T, LUO J J. Asymmetry of the Indian Ocean Dipole. part II: model diagnosis [J]. Journal of Climate, 2008, 21: 4 849-4 858. |
48 | OGATA T, XIE S P, LAN J, et al. Importance of Ocean Dynamics for the Skewness of the Indian Ocean Dipole Mode [J]. Journal of Climate, 2013, 26: 2 145-2 159. |
49 | ZHANG L Y, DU Y, CAI W J. Low-frequency variability and the unusual Indian Ocean Dipole events in 2015 and 2016 [J]. Geophysical Research Letters, 2018, 45: 1 040-1 048. |
50 | WANG C Z. Three-ocean interactions and climate variability: a review and perspective [J]. Climate Dynamics, 2019, 53: 5 119-5 136. |
51 | CAI W J, WU L X, Lengaigne M, et al. Pantropical climate interactions [J]. Science, 2019, 363(6 430): eaav4236. |
52 | HAMEED S N, JIN D, Thilakan V. A model for super El Ni?os [J]. Nature communications, 2018, 9: 2 528. |
53 | RAYNER N A, PARKER D E, HORTON E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. Journal of Geophysical Research—Atmospheres, 2003 108(D14): 37. |
54 | KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project [J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471. |
55 | ZHANG Y Z, LI J P, XUE J Q, et al. The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean Dipole development [J]. Climate Dynamics, 2019, 53: 6 665-6 680. |
56 | ABRAM N J, HARGREAVES J A, WRIGHT N M, et al. Palaeoclimate perspectives on the Indian Ocean Dipole [J]. Quaternary Science Reviews, 2020, 237: 20. |
57 | ZHANG R H, TAN Y K. El Ni?o and interannual variation of the sea surface temperature in the tropical Indian Ocean[C]// Proceedings of the SPIE. 2003. DOI: 10.1117/12.466694. |
58 | TAN Yanke, ZHANG Renhe, HE Jinhai, et al. Relationship of the interannual variations of sea surface temperature in tropical Indian Ocean to ENSO [J]. Acta Meteorologica Sinica, 2004, 62(6): 831-840. |
58 | 谭言科, 张人禾, 何金海, 等.热带印度洋海温的年际变化与ENSO[J]. 气象学报,2004, 62(6):831-840. |
59 | BEHERA S K, YAMAGATA T. Influence of the Indian Ocean Dipole on the southern oscillation [J]. Journal of the Meteorological Society of Japan, 2003, 81:169-177. |
60 | ANNAMALAI H, KIDA S, Hafner J. Potential impact of the tropical Indian Ocean-Indonesian Seas on El Ni?o characteristics [J]. Journal of Climate, 2010, 23: 3 933-3 952. |
61 | IZUMO T, VIALARD J, LENGAIGNE M, et al. Influence of the state of the Indian Ocean Dipole on the following year's El Ni?o [J]. Nature Geoscience, 2010, 3(3): 168-172. |
62 | YUAN D L, WANG J, XU T F, et al. Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow [J]. Journal of Climate, 2011, 24(14): 3 593-3 608. |
63 | YUAN D L, ZHOU H, ZHAO X. Interannual climate variability over the Tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow [J]. Journal of Climate, 2013, 26(9): 2 845-2 861. |
64 | YUAN D L, XU P, XU T F. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model [J]. Chinese Journal of Oceanology and Limnology, 2016, 35(1): 23-38. |
65 | ZHAO X, YUAN D L, YANG G, et al. Role of the oceanic channel in the relationships between the basin/dipole mode of SST anomalies in the tropical Indian Ocean and ENSO transition [J]. Advances in Atmospheric Sciences, 2016, 33(12): 1 386-1 400. |
66 | YUAN D L, HU X Y, XU P, et al. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming [J]. Journal of Oceanology and Limnology, 2018, 36(1): 4-19. |
67 | ZHANG Y, ZHOU W, LI T. Impact of the Indian Ocean Dipole on evolution of the subsequent ENSO: relative roles of dynamic and thermodynamic processes [J]. Journal of Climate, 2021, 34(9): 1-51. |
68 | XU J J, CHAN J C L. The role of the Asian-Australian monsoon system in the onset time of El Ni?o events [J]. Journal of Climate, 2001, 14: 418-433. |
69 | HORII T, HANAWA K. A relationship between timing of El Ni?o onset and subsequent evolution [J]. Geophysical Research Letters, 2004, 31(6): L06304. |
70 | ZHONG A H, HENDON H H, ALVES O. Indian Ocean variability and its association with ENSO in a global coupled model [J]. Journal of Climate, 2005, 18: 3 634-3 649. |
71 | SOORAJ K, KUG J S, LI T, et al. Impact of El Ni?o onset timing on the Indian Ocean: Pacific coupling and subsequent El Ni?o evolution[J]. Theoretical and Applied Climatology, 2009, 97: 17-27. |
72 | ROXY M, GUALDI S, DRBOHLAV H K L, et al. Seasonality in the relationship between El Ni?o and Indian Ocean Dipole [J]. Climate Dynamics, 2011, 37: 221-236. |
73 | ASHOK K, BEHERA S K, RAO S A, et al. El Ni?o Modoki and its possible teleconnection [J]. Journal of Geophysical Research-Oceans, 2007,112: 27. |
74 | WENG H Y, ASHOK K, BEHERA S K, et al. Impacts of recent El Ni?o Modoki on dry/wet conditions in the Pacific rim during boreal summer [J]. Climate Dynamics, 2007,29: 113-129. |
75 | YU J Y, KAO H Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001 [J]. Journal of Geophysical Researchs—Atmospheres, 2007, 112(D13). DOI: 10.1029/2006JD007654. |
76 | KAO H Y, YU J Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO [J]. Journal of Climate, 2009, 22: 615-632. |
77 | WANG C Z, WANG X. Classifying El Ni?o Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks [J]. Journal of Climate, 2013, 26: 1 322-1 338. |
78 | WANG X, WANG C Z. Different impacts of various El Ni?o events on the Indian Ocean Dipole [J]. Climate Dynamics, 2014, 42: 991-1 005. |
79 | LIU L, YANG G, ZHAO X, et al. Why was the Indian Ocean Dipole Weak in the context of the extreme El Ni?o in 2015? [J]. Journal of Climate, 2017, 30: 4 755-4 761. |
80 | HUANG B H, SHUKLA J. Mechanisms for the interannual variability in the tropical Indian Ocean. part II: regional processes [J]. Journal of Climate, 2007,20: 2 937-2 960. |
81 | KAJIKAWA Y, YASUNARI T, KAWAMURA R. The role of the local hadley circulation over the western Pacific on the zonally asymmetric anomalies over the Indian Ocean [J]. Journal of the Meteorological Society of Japan, 2003, 81: 259-276. |
82 | ZHANG Y Z, LI J P, XUE J Q, et al. Impact of the South China Sea summer monsoon on the Indian Ocean Dipole [J]. Journal of Climate, 2018, 31: 6 557-6 573. |
83 | SUN S W, LAN J, FANG Y, et al. A Triggering mechanism for the Indian Ocean Dipoles independent of ENSO[J]. Journal of Climate, 2015, 28: 5 063-5 076. |
84 | LI C Y, MU M Q. The influence of the Indian Ocean Dipole on atmospheric circulation and climate [J]. Advances in Atmospheric Sciences, 2001, 18(5): 831-843. |
85 | LI Chongyin, MU Mingquan. The dipole in the equatorial Indian Ocean and its impacts on climate[J]. Chinese Journal of Atmospheric Sciences, 2001, 48(4): 433-443. |
85 | 李崇银, 穆明权. 赤道印度洋海温偶极子型振荡及其气候影响 [J]. 大气科学, 2001, 48(4):433-443. |
86 | LAU N C, NATH M J. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes [J]. Journal of Climate, 2003, 16: 3-20. |
87 | KULKARNI A, SABADE S S, KRIPALANI R H. Association between extreme monsoons and the dipole mode over the Indian subcontinent [J]. Meteorology and Atmospheric Physics, 2006, 95: 255-268. |
88 | ASHOK K, GUAN Z Y, YAMAGATA T. Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO [J]. Geophysical Research Letters, 2001,28: 4 499-4 502. |
89 | GADGIL S, FRANCIS P A, VINAYACHANDRAN P N. Summer monsoon of 2019: understanding the performance so far and speculating about the rest of the season [J]. Current Science, 2019,117: 783-793. |
90 | ASHOK K, GUAN Z, SAJI N H, et al. Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon [J]. Journal of Climate, 2004, 17(16): 3 141-3 155. |
91 | ANIL N, KUMAR M R R, SAJEEV R, et al. Role of distinct flavours of IOD events on Indian summer monsoon [J]. Natural Hazards, 2016, 82: 1 317-1 326. |
92 | BEHERA S K, RATNAM J V. Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD [J]. Scientific Reports, 2018, 8(1): 123. |
93 | HRUDYA P, VARIKODEN H, VISHNU R N. Changes in the relationship between Indian Ocean dipole and Indian summer monsoon rainfall in early and recent multidecadal epochs during different phases of monsoon [J]. International Journal of Climatology, 2021, 41(suppl.1): E305-E318. |
94 | HRUDYA P, VARIKODEN H, VISHNU R. A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD [J]. Meteorology and Atmospheric Physics, 2021, 133: 1-14. |
95 | LIU Q Y, FENG M, WANG D X, et al. Interannual variability of the Indonesian Throughflow transport: a revisit based on 30 year expendable bathythermograph data [J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 270-8 282. |
96 | CHEN G X, HAN W Q, LI Y L, et al. Seasonal-to-interannual time-scale dynamics of the Equatorial Undercurrent in the Indian Ocean [J]. Journal of Physical Oceanography, 2015, 45(6): 1 532-1 553. |
97 | CHEN G X, HAN W Q, LI Y L, et al. Interannual variability of Equatorial Eastern Indian Ocean upwelling: local versus remote forcing [J]. Journal of Physical Oceanography, 2016, 46(3): 789-807. |
98 | CHEN G X, HAN W Q, SHU Y Q, et al. The role of equatorial undercurrent in sustaining the Eastern Indian Ocean upwelling [J]. Geophysical Research Letters, 2016, 43(12): 6 444-6 451. |
99 | DU Yan,ZHANG Lianyi,ZHANG Yuhong. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes[J]. Advances in Earth Science,2019,34(3):243-254. |
99 | 杜岩,张涟漪,张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响 [J]. 地球科学进展,2019,34(3):243-254. |
100 | LATIF M, DOMMENGET D, DIMA M, et al. The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/98 [J]. Journal of Climate, 1999, 12: 3 497-3 504. |
101 | BIRKETT C, MURTUGUDDE R, ALLAN T. Indian Ocean climate event brings floods to East Africa's lakes and the Sudd marsh [J]. Geophysical Research Letters, 1999, 26: 1 031-1 034. |
102 | YAN Hongming. YANG Hui, LI Chongyin. Numerical simulations on the climate impacts of temperature dipole in the equatorial Indian Ocean [J]. Acta Oceanologica Sinica, 2007, 29(5): 31-39. |
102 | 晏红明, 杨辉, 李崇银. 赤道印度洋海温偶极子的气候影响及数值模拟研究[J]. 海洋学报, 2007, 29(5): 31-39. |
103 | CAI W J, RENSCH P V, COWAN T, et al. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall [J]. Journal of Climate, 2011, 24(15): 3 910-3 923. |
104 | NG B, CAI W J, COWAN T, et al. Influence of internal climate variability on Indian Ocean Dipole properties [J]. Scientific Reports, 2018,8: 13500. |
105 | YUAN Junpeng, CAO Jie. North Indian Ocean tropical cyclone activities influenced by the Indian Ocean Dipole mode [J]. Science China: Earth Sciences, 2013,56: 855-865. |
105 | 袁俊鹏, 曹杰. 印度洋偶极子对北印度洋热带气旋活动的影响研究. 中国科学: 地球科学, 2013, 43: 570-581. |
106 | XIAO F A, WANG D X, LEUNG Y T M. Early and extreme warming in the South China Sea during 2015/16: role of an unusual Indian Ocean Dipole event [J]. Geophysical Research Letters, 2020, 47(17). DOI: 10.1029/2020GL089936. |
107 | WANG G J, CAI W J. Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Ni?o preconditioned the 2019/2020 Australian "black summer" bushfires [J]. Geoscience Letters, 2020, 7(1). DOI: 10.1186/s40562-020-00168-2. |
108 | ZHANG W J,MAO W,JIANG F, et al. Tropical Indo‐Pacific compounding thermal conditions drive the 2019 Australian extreme drought[J]. Geophysical Research Letters,2021,48(2). DOI: 10.1029/2020GL090323. |
109 | WOOD K M,KLOTZBACH P J,COLLINS J M, et al. Factors affecting the 2019 Atlantic hurricane season and the role of the Indian Ocean Dipole[J]. Geophysical Research Letters, 2020, 47(13). DOI: 10.1029/2020GL087781. |
110 | DOI T, BEHERA S K, YAMAGATA T. Wintertime impacts of the 2019 super IOD on East Asia[J]. Geophysical Research Letters, 2020, 47(18). DOI:10.1029/2020GL089456. |
111 | TAKAYA Y, ISHIKAWA I, KOBAYASHI C, et al. Enhanced Meiyu-Baiu rainfall in early summer 2020:aftermath of the 2019 super IOD event[J]. Geophysical Research Letters, 2020, 47(22). DOI: 10.1029/2020GL090671. |
112 | ZHOU Z Q, XIE S P, ZHANG R H. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions[J]. Proceedings of the National Academy of Sciences, 2021, 118(12): e2022255118. |
113 | LI Jianping, WU Guoxiong, HU Dunxin. Ocean-atmosphere interaction over the joining area of Asia and Indian-Pacific ocean and its impact on the short-term climate variation in China (Volume I) [M]. Beijing: China Meteorological, 2011. |
113 | 李建平, 吴国雄, 胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响(上卷) [M]. 北京: 气象出版社, 2011. |
114 | LI Jianping, WU Guoxiong, HU Dunxin. Ocean-atmosphere interaction over the joining area of Asia and Indian-Pacific ocean and its impact on the short-term climate variation in China (Volume II) [M]. Beijing: China Meteorological, 2011. |
114 | 李建平, 吴国雄, 胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响(下卷) [M]. 北京: 气象出版社, 2011. |
115 | LIU Xuanfei, YUAN Huizhen. The relationship between Indian Ocean Dipole and autumn rainfall in China [J]. Journal of Nanjing Institute of Meteorology, 2006, 29: 644-649. |
115 | 刘宣飞, 袁慧珍. 印度洋偶极子与中国秋季降水的关系[J]. 南京气象学院学报, 2006, 29: 644-649. |
116 | QIU Y, CAI W J, GUO X G, et al. The asymmetric influence of the positive and negative IOD events on China's rainfall [J]. Scientific Reports, 2014, 4: 6. |
117 | LIU Jia, MA Zhenfeng, YANG Shuqun. The relationship between Indian Ocean Dipole and Huaxi Qiuyu [J]. Plateau Meteorology, 2015, 34(4): 950-962. |
117 | 刘佳, 马振峰, 杨淑群. 印度洋偶极子和华西秋雨的关系[J]. 高原气象, 2015, 34(4): 950-962. |
118 | ZHANG Y, ZHOU W, CHOW E C H, et al. Delayed impacts of the IOD: cross-seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze-Huaihe River region [J]. Climate Dynamics, 2019, 53: 4 077-4 093. |
119 | XU K, ZHU C W, WANG W Q. The cooperative impacts of the El Ni?o-Southern Oscillation and the Indian Ocean Dipole on the interannual variability of autumn rainfall in China [J]. International Journal of Climatology, 2016, 36: 1 987-1 999 |
120 | XU K, MIAO H Y, LIU B Q, et al. Aggravation of record‐breaking drought over the mid‐to‐lower reaches of the Yangtze river in the post‐monsoon season of 2019 by anomalous Indo‐Pacific oceanic conditions [J]. Geophysical Research Letters, 2020, 47(24). DOI:10.1029/2020GL090847. |
121 | LI C X, ZHAO T B. Seasonal responses of precipitation in China to El Ni?o and positive Indian Ocean Dipole Modes [J]. Atmosphere, 2019, 10(7): 372. |
122 | HENG C, YOON S K, KIM J S, et al. Inter-seasonal precipitation variability over Southern China associated with commingling effect of Indian Ocean Dipole and El Ni?o [J]. Water, 2019, 11(10): 2 023. |
123 | XU C X, AN W L, WANG S Y S, et al. Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole [J]. Science of the Total Environment, 2019, 661: 645-653. |
124 | LUO Y, LU J, LIU F, et al. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming [J]. Advances in Atmospheric Sciences, 2016, 33: 476-488. |
125 | ZHENG X T, XIE S P, VECCHI G A, et al. Indian Ocean Dipole response to global warming: analysis of ocean-atmospheric feedbacks in a coupled model [J]. Journal of Climate, 2010, 23: 1 240-1 253. |
126 | ZHENG X T, XIE S P, DU Y. Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble [J]. Journal of Climate, 2013, 26: 6 067-6 080. |
127 | HUI C, ZHENG X T. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability [J]. Climate Dynamics, 2018, 51(9/10): 3 597-3 611. |
128 | CAI W, COWAN T, SULLIVAN A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall [J]. Geophysical Research Letters, 2009, 36(11). DOI: 10.1029/2009GL037604. |
129 | CAI W J, SANTOSO A, WANG G J, et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming [J]. Nature, 2014, 510(7 504): 254-258. |
130 | CAI W J, WANG G J, GAN B, et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 ℃ warming [J]. Nature Communications, 2018, 9: 1 419. |
131 | KRISHNAN R, SANJAY J, GNANASEELAN C, et al. Assessment of climate change over the Indian Region: a report of the Ministry of Earth Sciences (MoES)[M]. Springer Nature, 2020. DOI:10.1007/978-981-15-4327-2. |
132 | WANG G J, CAI W J, YANG K, et al. A unique feature of the 2019 extreme positive Indian Ocean Dipole event [J]. Geophysical Research Letters, 2020, 47(18).DOI: 10.1029/2020GL088615. |
133 | CAI W J, YANG K, WU L X, et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming [J]. Nature Climate Change, 2021, 11: 27-32. |
134 | CAI W J, COWAN T. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? [J]. Geophysical Research Letters, 2013, 40(6): 1 200-1 205. |
135 | WANG G J, CAI W J, SANTOSO A. Assessing the impact of Model Biases on the projected increase in frequency of extreme positive Indian Ocean Dipole events [J]. Journal of Climate, 2017, 30(8): 2 757-2 767. |
136 | MCKENNA S, SANTOSO A, GUPTA A S, et al. Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO [J]. Scientific Reports, 2020, 10(1): 13. |
137 | LI G, XIE S P, DU Y. Monsoon-induced biases of climate models over the Tropical Indian Ocean [J]. Journal of Climate, 2015, 28(8): 3 058-3 072. |
138 | WANG G J, CAI W J, SANTOSO A. Simulated thermocline tilt over the tropical Indian Ocean and its influence on future sea surface temperature variability [J]. Geophysical Research Letters, 2021, 48(6): 9. |
139 | WELLER E, CAI W J. Realism of the Indian Ocean Dipole in CMIP5 Models: the implications for climate projections [J]. Journal of Climate, 2013, 26(17): 6 649-6 659. |
140 | SUN Y, ZHANG X B, ZWIERS F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China [J]. Nature Climate Change, 2014, 4(12): 1 082-1 085. |
141 | ZHOU T J, ZHANG W X. Anthropogenic warming of Tibetan Plateau and constrained future projection [J]. Environmental Research Letters, 2021, 16(4): 10. |
142 | EFFY J B, FRANCIS P A, RAMAKRISHNA S V, et al. Anomalous warming of the western equatorial Indian Ocean in 2007: role of ocean dynamics [J]. Ocean Modelling, 2020, 147: 101542. |
/
〈 |
|
〉 |