载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响
收稿日期: 2021-01-25
修回日期: 2021-04-06
网络出版日期: 2021-07-02
基金资助
国家自然科学基金青年科学基金项目“轴对称型金属弹簧动态相对重力仪非线性误差抑制关键技术研究”(41804170);国家自然科学基金面上项目“静电悬浮重力仪测量环路线性化的理论与实验研究”(41874217)
Influence of Vertical Disturbance from the Carrier on Axisymmetric Metal Spring Marine Gravimeter
Received date: 2021-01-25
Revised date: 2021-04-06
Online published: 2021-07-02
Supported by
the National Natural Science Foundation of China "Research on the nonlinear error suppression of dynamic relative gravimeter with axisymmetric metal spring"(41804170);"Theoretical and experimental research of the measurement linearization of an electrostatic suspension gravimeter"(41874217)
刘雷钧 , 何建刚 , 涂海波 , 郎骏健 , 柳林涛 . 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021 , 36(5) : 520 -527 . DOI: 10.11867/j.issn.1001-8166.2021.049
The axisymmetric metal spring marine gravimeter is inevitably affected by carrier disturbance in dynamic measurement. Taking CHZ-Ⅱ marine gravimeter developed by Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences as an example, we set up its measuring model by mechanical analysis under working condition, and analyzed the influence of carrier disturbance on capacitance micro displacement detection. The results show that the vertical disturbance acceleration of the carrier directly affects the output of capacitance micro displacement detection of CHZ-Ⅱ marine gravimeter. We also analyzed the influence of carrier disturbance on dynamic nonlinear error of the gravimeter. The conclusions are as follows: Disturbance acceleration from the carrier (such as survey ship, investigation boat) is the direct factor of the marine gravimeter's nonlinear error. The dynamic nonlinear error is positively correlated with the amplitude of disturbance acceleration and the frequency of disturbance acceleration. The research in this paper is of great significance to improving the dynamic measurement accuracy of marine gravimeter.
1 | HU Pinghua, ZHAO Ming, HUANG He, et al. Review on the development of airbone/marine gravimetry instruments[J]. Navigation Positioning&Timing, 2017, 4(4): 10-19. |
1 | 胡平华, 赵明, 黄鹤,等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 4(4):10-19. |
2 | FANG Fengzhou, GU Chunyang. Measurement principle and developmentstatus of high precision gravimeters[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1 830-1 838. |
2 | 房丰洲, 顾春阳. 高精度重力仪的测量原理与发展现状[J]. 仪器仪表学报, 2017, 38(8): 1 830-1 838. |
3 | ZHANG Xiangyu, GUAN Yongxian, XU Xing, et al. Some question about data processing of GT-2M marine gravimeter[J]. Hydrographic Surveying and Charting, 2017, 37(1): 30-33. |
3 | 张向宇, 关永贤, 徐行, 等. GT-2M型海洋重力仪数据处理若干问题的讨论[J]. 海洋测绘, 2017, 37(1): 30-33. |
4 | HUANG Motao, ZHAI Guojun, GUAN Zheng, et al. The determination and application of marine gravity field[M]. Beijing: Surveying and Mapping Press, 2005. |
4 | 黄谟涛, 翟国君, 管铮, 等. 海洋重力场测定及其应用[M]. 北京: 测绘出版社, 2005. |
5 | LIU Ruozeng. On the liquid damping of CHZ sea gravimeter[J]. Acta Geodaetica et Geophysica,1986(8): 113-118. |
5 | 刘若曾. CHZ海洋重力仪的液体阻尼[J]. 测量与地球物理集刊,1986(8): 113-118. |
6 | ZHANG Shanyan, LI Xiqi, LIANG Chujian, et al. Newly developed CHZ sea gravimeter[J]. Acta Geodetica et Cartographica Sinica, 1987, 16(1): 1-6. |
6 | 张善言,李锡其,梁础坚, 等. 新研制的CHZ海洋重力仪[J]. 测绘学报,1987,16(1): 1-6. |
7 | FAN Weiguang. Research of the detecting and controlling scheme for the zero length spring-based sea-gravimeter[D]. Nanjing: Southeast University, 2003. |
7 | 范维光. 零长弹簧海洋重力仪测控技术研究[D]. 南京: 东南大学, 2003. |
8 | ZHANG Shanyan. Several distinguishing features of the CHZ sea gravimeter[J]. Acta Geodaetica et Geophysica,1991(12): 93-102. |
8 | 张善言. CHZ海洋重力仪的若干特点[J]. 测量与地球物理集刊,1991(12): 93-102. |
9 | HU Ming, TU Haibo, LIU Lintao, et al. Design and realization of the control system digitalization for the CHZ sea gravimeter[J]. Navigation and Control, 2016, 15(4): 1-7. |
9 | 胡明, 涂海波, 柳林涛, 等. CHZ型重力仪控制系统的数字化设计与实现[J]. 导航与控制, 2016, 15(4): 1-7. |
10 | TU Haibo, HE Jiangang, LIU Leijun, et al. Performance characteristics for the g-sensitive elastic structure of CHZ-Ⅱ sea gravimeter[J]. Journal of Geodesy and Geodynamics, 2015, 35(4): 711-714. |
10 | 涂海波, 何建刚, 刘雷钧, 等. CHZ-Ⅱ海洋重力仪重力敏感结构的性能测试与分析[J]. 大地测量与地球动力学, 2015, 35(4): 711-714. |
11 | LIU Xiangdong, PANG Fuzhen. Study on the vibrant characteristic of base system of marine main engine[J]. Marine Technology, 2009(3): 36-40. |
11 | 刘向东, 庞福振. 船用主机基座系统的振动特性研究[J]. 造船技术, 2009(3): 36-40. |
12 | ZHU Pan. Signal concersionand non-lnear correction of capacitive displacement sensor[D]. Harbin: Harbin Institute of Technology, 2007. |
12 | 朱盼. 电容位移传感器信号转换及非线性校正技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
13 | ZONG Jie. On the effect of dynamic non-linearity of CHZ sea gravimeter in dynamic gravity measurement[J]. Acta Geodetica et Cartographica Sinica, 1987 (1):9-18. |
13 | 宗杰. CHZ重力仪在动态重力测量中的非线性问题[J]. 测绘学报,1987(1): 9-18. |
14 | TU Haibo, HU Ming, DONG Qinqin, et al. Frequency-piecewise control scheme for the gravity measurement servo loop of the CHZ gravimeter[J]. Navigation and Control, 2015, 14(2): 41-45. |
14 | 涂海波, 胡明, 董琴琴, 等. CHZ型重力仪重力测量伺服回路的分频段控制方案[J]. 导航与控制, 2015, 14(2): 41-45. |
/
〈 |
|
〉 |