淮南深部地球物理实验场重力噪声水平初步分析
收稿日期: 2020-12-29
修回日期: 2021-03-25
网络出版日期: 2021-07-02
基金资助
中国科学院战略性先导科技专项(B类)“类地行星的形成演化及其宜居性”(XDB41000000);国家自然科学基金青年科学基金项目“陆态网络连续重力台站背景噪声模型构建及其应用”(41804078)
A Preliminary Analysis of Gravity Noise Levels at the Deep Geophysical Experimental Field in Huainan
Received date: 2020-12-29
Revised date: 2021-03-25
Online published: 2021-07-02
Supported by
the Strategic Priority Research Program of Chinese Academy of Sciences "Formation, evolution and habitability of terrestrial planets"(XDB41000000);The National Natural Science Foundation of China "Construction of the background noise model of continuous gravity stations of CMONOC and its applications"(41804078)
利用淮南深部地球物理实验场地下848 m巷道内的Burris弹簧重力仪和地表LCR-ET20弹簧重力仪同期连续重力潮汐观测资料,对实验场地表和地下重力噪声水平进行了初步分析。分析结果表明在频率小于1.70 mHz(对应周期约为9.8 min)时,地下重力噪声水平都要比地表低;特别是在重力仪敏感的信号频段(周期大于3 h的信号频段),地下848 m巷道内的重力噪声水平要比地表低约2个数量级,充分验证了实验场地下观测环境具有低重力噪声水平的超静特点。实验结果证明淮南深部地球物理实验场地下848 m巷道可为深地多物理场观测提供超静观测环境,为检测微弱地球物理场信号提供绝佳观测条件。
关键词: 深地观测; 重力噪声水平; 重力潮汐观测; Burris重力仪; LCR-ET20重力仪
张苗苗 , 陈晓东 , 徐建桥 , 崔小明 , 刘明 , 邢乐林 , 穆朝民 , 孙和平 . 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021 , 36(5) : 500 -509 . DOI: 10.11867/j.issn.1001-8166.2021.033
Utilizing simultaneously continuous tidal gravity observations from a Burris spring gravimeter in the -848 m deep tunnel and a LCR-ET20 spring gravimeter, surficial and underground gravity noise levels at the deep geophysical experimental field in Huainan were preliminarily analysed. Analysis results show that the underground gravity noise level is lower than the surficial noise level below 1.7 mHz (period about 9.8 min); especially in the gravimeter senstive frequency band (period over 3 h), the underground gravity noise level is lower by two orders of magnititude, which fully demonstrates the low noise of ungerground environment at the deep geophysical experimental field in Huainan. Our results further indicate that the -848 m deep tunnel can provide both an ultra quiet environment for deep multi-physical fields observations and a perfect condition for the detection of weak geophysical signals.
1 | ROSAT S, HINDERER J, BOY J P, et al. A two-year analysis of the iOSG-24 superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France: Environmental noise estimate [J]. Journal of Geodynamics, 2018, 119: 1-8. |
2 | BETTINI A. New underground laboratories: Europe, Asia and the Americas [J]. Physics of the Dark Universe, 2014, 4: 36-40. |
3 | SUZUKI Y, INOUE K. Kamioka underground observatories [J]. European Physical Journal Plus, 2012, 127(9): 111. |
4 | CHENG Jianping, WU Shiyong, YUE Qian, et al. A review of international underground laboratory developments [J]. Physics, 2011, 40(3): 149-154. |
4 | 程建平,吴世勇,岳骞,等. 国际地下实验室发展综述[J]. 物理,2011,40(3):149-154. |
5 | KANG Kejun, CHENG Jianping, CHEN Yunhua, et al. Status and prospects of a deep underground laboratory in China [J]. Journal of Physics: Conference Series, 2010, 203: 012028. |
6 | FRANCIS O, VAN DAM T, GERMAK A, et al. Results of the European comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2007 [M]//MERTIKAS S. Gravity, geoid and Earth observation. Berlin: Springer, 2010. |
7 | CHEN Hesheng. Deep underground sciences in China: Status and prospects [J]. Bulletin of National Natural Science Foundation of China, 2010, 2: 65-69. |
7 | 陈和生. 深地科学实验的发展现状及我国发展战略的思考[J]. 中国科学基金,2010,2:65-69. |
8 | NORMILE D. Chinese scientists hope to make deepest, darkest dreams come true [J]. Science, 2009, 324(5 932): 1 246-1 247. |
9 | EWAN G T, DAVIDSON W F. Early development of the underground SNO laboratory in Canada [J]. Physics in Canada, 2005, 61(6): 339-346. |
10 | LIU Weiqi. "Four Deep" combat—A new style for winning the future[J]. Civil-Military Integration on Cyberspace, 2018, 5: 33-36. |
10 | 刘玮琦.“四深”作战——致胜未来的新样式[J]. 网信军民融合,2018,5:33-36. |
11 | XIE Heping, GAO Feng, JU Yang, et al. Novel idea and disruptive technologies for the exploration and research of deep Earth[J]. Advanced Engineering Sciences, 2017, 49(1): 1-8. |
11 | 谢和平,高峰,鞠杨,等. 深地科学领域的若干颠覆性技术构想和研究方向[J].工程科学与技术,2017,49(1):1-8. |
12 | LI Sanzhong, ZHANG Guowei, LIU Baohua, et al. The future of structural geology in the new century: Advances in fields of deepsea, deep-interior, deep-space and deep-time and related key techniques [J]. Earth Science Frontiers, 2010, 17(3): 27-43. |
12 | 李三忠,张国伟,刘保华,等. 新世纪构造地质学的纵深发展:深海、深部、深空、深时四领域成就及关键技术[J]. 地学前缘,2010,17(3):27-43. |
13 | TIAN Hongshui, LOON Antonius Johannes VAN, WANG Hualin, et al. Seismites in the Dasheng Group: New evidences of strong tectonic and earthquake activities of the Tanlu Fault Zone [J]. Science China-Earth Sciences, 2016, 46(1): 79-96. |
13 | 田洪水,LOON Antonius Johannes VAN,王华林,等. 大盛群中的震积岩:郯庐断裂带强构造与地震活动新证据[J]. 中国科学:地球科学,2016,46(1):79-96. |
14 | ZHANG Yueqiao, DONG Shuwen. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: Advances and new understanding [J]. Geological Bulletin of China, 2008, 27(9): 1 371-1 390. |
14 | 张岳桥,董树文. 郯庐断裂带中生代构造演化史:进展与新认识[J]. 地质通报,2008,27(9):1 371-1 390. |
15 | ZHU Guang, WANG Daoxuan, LIU Guosheng, et al. Evolution of the Tan-Lu fault zone and its responses to plate movements in west Pacific basin [J]. Chinese Journal of Geology, 2004, 39(1): 36-49. |
15 | 朱光,王道轩,刘国生,等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学,2004,39(1):36-49. |
16 | XU Jiawei, MA Guofeng. Review of ten years (1981-1991) of research on the Tancheng-Lujiang fault zone [J]. Geological Review, 1992, 38(4): 316-324. |
16 | 徐嘉炜,马国锋. 郯庐断裂带研究的十年回顾[J]. 地质论评, 1992,38(4):316-324. |
17 | ZENG Hualin, ZHAO Yugang. The automatic Burris metal zero-length spring gravity meter [J]. Geophysical & Geochemical exploration, 2006, 30(6): 562-564. |
17 | 曾华霖,赵育刚. 贝尔雷斯金属零长弹簧自动重力仪[J]. 物探与化探,2006,30(6):562-564. |
18 | MAO Jinglun, ZHU Yiqing. Progress in the application of ground gravity observation data in earthquake prediction [J]. Advances in Earth Science, 2018, 33(3): 236-247. |
18 | 毛经伦,祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展,2018,33(3):236-247. |
19 | CHEN Xiaodong, SUN Heping, LIU Ming, et al. Accurate determination of the scale value of the LCR-ET20 gravimeter using observations recorded with the GWR-C032 superconducting gravimeter [J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3): 219-223. |
19 | 陈晓东,孙和平,刘明,等.用GWR-C032超导重力仪观测资料实施对LCR-ET20重力仪格值的精密测定[J]. 测绘学报,2003,32 (3):219-223. |
20 | SUN Heping, CHEN Xiaodong, LIU Ming, et al. Analysis and comparison of the tidal gravity observations obtained with LCR-ET20 spring gravimeter [J]. Acta Seismologica Sinica, 2002, 24(5): 510-515. |
20 | 孙和平,陈晓东,刘明,等. LCR-ET20弹簧型潮汐重力仪观测结果的分析和比较[J]. 地震学报,2002,24 (5):510-515. |
21 | YANG Jubao. A brief history of the Lacoste and Romberg ground gravimeter [J]. Petroleum Tubular Goods & Instruments, 1997, 11(1): 60. |
21 | 杨巨保. 拉科斯特—隆贝格地面重力仪的发展简史[J]. 石油仪器,1997,11(1):60. |
22 | CLARKSON H N, LACOSTE L J B. An improved instrument for measurement of tidal variations in gravity [J]. Eos Transactions American Geophysical Union, 1956, 37(3): 266-272. |
23 | ZHAO Yunfeng, WEI Shouchun, XU Yunma, et al. Effect of feedback scale factor of Burris gravimeter on relative gravity observation results [J]. Journal of Geodesy and Geodynamics, 2019, 39(7): 747-750. |
23 | 赵云峰,隗寿春,徐云马,等. Feedback Scale因子对Burris型相对重力仪观测成果的影响[J]. 大地测量与地球动力学,2019,39(7):747-750. |
24 | JENTZSCH G, SCHULZ R, WEIS A.Automated Burris gravity meter for single and continuous observation [J]. Geodesy and Geodynamics, 2018, 9(3): 204-209. |
25 | HE Zhitang, TANG Zhiming, HE Xiaoming, et al. Comparative analysis of static observations of Burris and LCR-G gravimeters [J]. Geomatics Technology and Equipment, 2012, 14(1): 55-58. |
25 | 何志堂,唐志明,贺小明,等. Burris型与LCR-G型重力仪静态观测比较分析[J]. 测绘技术装备,2012,14(1):55-58. |
26 | ZHANG Rui, HE Zhitang, GUO Shusong, et al. Characteristics test of Burris gravimeter [J]. Journal of Geodesy and Geodynamics, 2011, 31(6): 155-158. |
26 | 张锐,何志堂,郭树松,等. Burris重力仪性能测试[J]. 大地测量与地球动力学,2011,31(6):155-158. |
27 | ROSAT S, HINDERER J, CROSSLEY D,et al. The search for the Slichter mode: Comparison of noise levels of superconducting gravimeters and investigation of a stacking method [J]. Physics of the Earth and Planetary Interiors, 2003, 140(13): 183-202. |
28 | BANKA D, CROSSLEY D. Noise levels of superconducting gravimeters at seismic frequencies [J]. Geophysical Journal International, 1999, 139: 87-97. |
29 | BANKA D. Noise levels of superconducting gravimeters at seismic frequencies [D]. Clausthal: University of Clausthal, 1997. |
30 | ROSAT S, HINDERER J. Limits of detection of gravimetric signals on Earth [J]. Scientific Reports, 2018, 8: 15324. |
31 | ROSAT S, CALVO M, HINDERER J, et al. Comparison of the performances of different spring and superconducting gravimeters and STS-2 seismometer at the gravimetric observatory of Strasbourg, France [J]. Studia Geophysica et Geodaetica, 2015, 59: 58-82. |
32 | RICCARDI U, ROSAT S, HINDERER J. Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series [J]. Metrologia, 2011,48: 28-39. |
33 | ZHANG Miaomiao, XU Jianqiao, SUN Heping, et al. Comparison of noise levels of the new iGrav-007 superconducting gravimeter and the SG-065 superconducting gravimeter in Wuhan (China)[J]. Marees Terrestres Bulletin D'Infermations, 2014, 148: 11 987-12 000. |
34 | PETERSON J. Observations and modeling of seismic background noise[R]. Albuquerque, New Mexico: U.S. Department of Interior Geological Survey,1993. |
35 | WIDMER-SCHNIDRIG R. What can superconducting gravimeters contribute to normal-mode seismology?[J]. Bulletin of the Seismological Society of America,2003, 93(3): 1 370-1 380. |
36 | XU Jianqiao, SUN Heping, FU Rongshan. Detection of long-period core modes by using the data from global superconducting gravimeters [J]. Chinese Journal of Geophysics, 2005, 48(1): 69-77. |
36 | 徐建桥,孙和平,傅容珊. 利用全球超导重力仪数据检测长周期核模[J]. 地球物理学报,2005,48(1):69-77. |
37 | SMYLIE D E. The inner core translational triplet and the density near Earth's centre [J]. Science, 1992, 255: 1 678-1 682. |
38 | SLICHTER L B. The fundamental free mode of the Earth's inner core [J]. Proceedings of the National Academy of Sciences of the United States of America, 1961, 47: 186-190. |
/
〈 |
|
〉 |