综述与评述

地球内核平动振荡模研究进展

  • 栾威 ,
  • 申文斌
展开
  • 1.武汉大学测绘学院地球物理大地测量研究所,湖北 武汉 430079
    2.武汉大学测绘遥感 信息工程国家重点实验室,湖北 武汉 430079
栾威(1991-),男,湖北孝感人,博士后,主要从事地球自由振荡简正模研究. E-mail: luanwei@whu.edu.cn
申文斌(1960-),男,湖北武汉人,教授,主要从事地球简正模理论、时频地学应用以及重力场理论及应用研究.E-mail: wbshen@sgg.whu.edu.cn

收稿日期: 2021-01-02

  修回日期: 2021-03-19

  网络出版日期: 2021-07-02

基金资助

国家自然科学基金项目“大地测量计算机代数分析及可视化研究”(41631072);“地球自由振荡的高精度探测及其对地球3D结构的约束”(41574007)

Advances in Earth's Inner Core Translational Oscillation Modes

  • Wei LUAN ,
  • Wenbin SHEN
Expand
  • 1.Institute of Geophysical Geodesy,School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China
    2.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China
LUAN Wei (1991-), male, Xiaogan City, Hubei Province, Postdoctor. Research areas include normal modes of Earth's free oscillation. E-mail: luanwei@whu.edu.cn
SHEN Wenbin (1960-), male, Wuhan City, Hubei Province, Professor. Research areas include Earth's normal modes, time and frequency applications in geoscience, and gravity theory and applications. E-mail: wbshen@sgg.whu.edu.cn

Received date: 2021-01-02

  Revised date: 2021-03-19

  Online published: 2021-07-02

Supported by

Projected supported by the National Natural Science Foundation of China ''The research on the computer algebra analysis and visualization of geodesy''(41631072);"High-precision detection of Earth's free oscillations and its constraining on the 3D structure of the Earth''(41574007)

摘要

地球内核平动振荡模,即Slichter模,是地球自由振荡的基本简正模之一,其三重分裂周期是确定地球内外核密度差异的重要物理量,对于约束地球深内部密度结构具有重要研究价值。然而,Slichter模的激发机制、衰减机制以及实际探测结果至今悬而未决,具有极大争议,其本征周期的确定也成为当前基础地球物理学的一个国际性难题。首先,总结了地球内核平动振荡模的基本理论,包括其动力学方程和主要求解理论与数值方法,并概述了在不同地球模型下利用不同求解理论计算的Slichter模理论周期。其次,讨论了Slichter模的激发机制和衰减机制的主要假设与猜想,其中液核一阶压力流可能激发Slichter模至可观测水平。最后,回顾了过去30年国内外利用超导重力数据开展Slichter模三重分裂信号探测的主要研究进展,探讨了关于Slichter模探测的未来可能研究方向,即从激发机制探究、超导重力数据精细预处理和极微弱信号叠积增强3个不同角度研究突破,有望实现Slichter模三重分裂信号的可靠探测。

本文引用格式

栾威 , 申文斌 . 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021 , 36(5) : 461 -471 . DOI: 10.11867/j.issn.1001-8166.2021.027

Abstract

The Earth's inner core translational oscillation modes, also referred to as Slichter modes, are the basic normal modes of Earth's free oscillation, and the periods of the Slichter triplet are important physical quantities which can be used to determine the density jump across the inner core boundary, and the latter is of great research value to constraining the density structure of the deep interior of the Earth. However, there are not generally accepted conclusions so far about the Slichter modes' excitation mechanism and attenuation mechanism as well as the actual detecting results, which lead to great arguments. Hence, the determination of the eigenperiods has become one of the international challenges in fundamental geophysics. This paper firstly summarizes the basic theories of the Earth's inner core translational oscillation modes, including their dynamic equations and main solving theories and numerical methods, and overviews their theoretical periods under different Earth models using different solving theories. Secondly, the main hypotheses and conjectures about Slichter excitation mechanism and attenuation mechanism are discussed, and thereinto, degree-one surficial pressure flow acting in the core may excite the Slichter modes to an observable level. Finally, we review the research progress in the study of the detections of the Slichter triplet signals using the superconducting gravity data in the past 30 years, and discuss some potential future research subjects about the Slichter triplet detection. Therefore, from three different perspectives including exploration of excitation mechanism, fine preprocessing of superconducting gravity data, stacking and enhancement of extremely weak signals, the research breakthrough is expected to achieve reliable detection of the Slichter triplet signals.

参考文献

1 SLICHTER L B. The fundamental free mode of the Earth's inner core[J]. Proceedings of the National Academy of Sciences of the United States of America,1961,47(2):186-190.
2 SMYLIE D E,ROCHESTER M G. Compressibility,core dynamics and the subseismic wave equation[J]. Physics of the Earth and Planetary Interiors,1981,24(4):308-319.
3 LOPER D E. The gravitationally powered dynamo[J]. Geophysical Journal of the Royal Astronomical Society,1978,54:389-404.
4 MASTERS G. Observational constraints on the chemical and thermal structure of the Earth's deep interior[J]. Geophysical Journal of the Royal Astronomical Society,1979,57(2):507-534.
5 GUBBINS D. Energetics of the Earth's core[J]. Journal of Geophysics,1977,43:453-464.
6 MCELHINNY M W,SENANAYAKE W E. Paleomagnetic evidence for existence of the geomagnetic field 3.5 Ga ago[J]. Journal of Geophysical Research,1980,85(B7):3 523-3 528.
7 ANDERSON O L,YOUNG D A. Crystallization of the Earth's inner core[C]//SMYLIE D E,HIDE R. Structure and dynamics of Earth's deep interior. Washington DC: American Geophysical Union Geophysical Monograph Series,1988.
8 MORSE S A. Adcumulus growth of the inner core[J]. Geophysical Research Letters,1986,13(13):1 557-1 560.
9 GUBBINS D. Energetics of the Earth's core[J]. Journal of Geophysical Research,1977,43:453-464.
10 BIGGIN A J,PIISPA E J,PESONEN L J,et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation[J]. Nature,2015,526(7 572):245-248.
11 DOORNBOS D J. The anelasticity of the inner core[J]. Geophysical Journal of the Royal Astronomical Society,1974,38(2):397-415.
12 SHEARER P,MASTERS G. The density and shear velocity contrast at the inner core boundary[J]. Geophysical Journal International,1990,102(2):491-498.
13 BUCHBINDER G G R,WRIGHT C,POUPINET G. Observations of PKiKP at distances less than 110°[J]. Bulletin of the Seismological Society of America,1973,63(5):1 699-1 707.
14 SOURIAU A,SOURIAU M. Ellipticity and density at the inner core boundary from sub-critical PKiKP and PcP data[J]. Geophysical Journal International,1989,98(1):39-54.
15 BOLT B A,QAMAR A. Upper bound to the density jump at the boundary of the Earth's inner core[J]. Nature,1970,228:148-150.
16 KOPER K D,PYLE M L. Observations of PKiKP/PcP amplitude ratios and implications for Earth structure at the boundaries of the liquid core[J]. Journal of Geophysical Research,2004,109:B03301.
17 KOPER K D,DOMBROVSKAYA M. Seismic properties of the inner core boundary from PKiKP/PcP amplitude ratios[J]. Earth and Planetary Science Letters,2005,237(3):680-694.
18 GILBERT F,DZIEWONSKI A M. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Proceedings of the Royal Society of London Series A,1975,278(1 280):187-269.
19 DZIEWONSKI A M,ANDERSON D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors,1981,25(4):297-356.
20 WIDMER-SCHNIDRIG R,MASERS G,GILBERT F. The Spherical Earth Revisited[C]//17th International Conference on Mathematical Geophysics. IUGG,Blanes,Spain,1988.
21 PENG Zhengrong. The Slichter modes in a realistic Earth model[D]. Canada: Memorial University of Newfoundland,1995.
22 ROCHESTER M G,PENG Zhengrong. The Slichter modes of the rotating Earth,a test of the subseismic approximation[J]. Geophysical Journal International,1993,113(3):575-585.
23 RYDELEK P A,KNOPOFF L. Spectral analysis of gapped data:search for mode 1S1 at the south pole[J]. Journal of Geophysical Research,1984,89(B3):1 899-1 902.
24 PROTHERO W A J,GOODKIND J M. A superconducting gravimeter[J]. Review of Scientific Instruments,1968,39(9):1 257-1 262.
25 HINDERER J,CROSSLEY D,JENSON O. A search for the Slichter triplet in superconducting gravimeter data[J]. Physics of the Earth and Planetary Interiors,1995,90(3):183-195.
26 ROSAT S,HINDERER J,CROSSLEY D,et al. Performance of superconducting gravimeters from long-period seismology to tides[J]. Journal of Geodynamics,2004,38(3):461-476.
27 CROSSLEY D,HINDERER J. A review of the GGP network and scientific challenges[J]. Journal of Geodynamics,2009,48(3):299-304.
28 CROSSLEY D,HINDERER J,RICCARDI U. The measurement of surface gravity[J]. Reports on Progress in Physics,2013,76(4):046101.
29 DAHLEN F A. Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field[J]. Geophysical Journal of the Royal Astronomical Society,1972,28:357-383.
30 WU Wenjing,ROCHESTER M G. Core dynamics:The two-potential description and a new variational principle[J]. Geophysical Journal International,1990,103(3):697-706.
31 PEKERIS C L,ACCAD Y. Dynamics of the liquid core of the Earth[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences,1972,273(1 233):237-260.
32 SMYLIE D E,MCMILLAN D G. Viscous and rotational splitting of the translational oscillations of Earth's solid inner core[J]. Physics of the Earth and Planetary Interiors,1998,106(1):1-18.
33 SMYLIE D E,MCMILLAN D G. The inner core as a dynamic viscometer[J]. Physics of the Earth and Planetary Interiors,2000,117(1):71-79.
34 LAPWOOD E R,USAMI T. Free oscillations of the Earth[M]. Cambridge:Combridge University Press,1982.
35 PEKERIS C L. The internal constitution of the Earth[J]. Geophysical Journal of the Royal Astronomical Society,1966,11(1):85-132.
36 TAKEUCHI H,SAITO M. Seismic surface waves[J]. Methods in Computational Physics Advances in Research and Applications,1972,11(1):217-295.
37 CROSSLEY D J. The free oscillation equations at the centre of the Earth[J]. Geophysical Journal of the Royal Astronomical Society,1975,41(2):153-163.
38 SMITH M L. The scalar equations of infinitesimal elastic gravitational motion for a rotating,slightly elliptical Earth[J]. Geophysical Journal of the Royal Astronomical Society,1974,37(3):491-526.
39 SMITH M L. Translational inner core oscillations of a rotating,slightly elliptical Earth[J]. Journal of Geophysical Research,1976,81(17):3 055-3 065.
40 ROGISTER Y,ROCHESTER M G. Normal-mode theory of a rotating Earth model using a Lagrangian perturbation of a spherical model of reference[J]. Geophysical Journal International,2004,159(3):874-908.
41 WU Wenjing,ROCHESTER M G. Computing core oscillation eigenperiods for the rotating Earth:A test of the subseismic approximation[J]. Physics of the Earth and Planetary Interiors,1993,78(1/2):33-50.
42 SMYLIE D E,BRAZHKIN V V,PALMER A. Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron[J]. Physics-Uspekhi,2009,52(1):79-92.
43 RIEURORD M. Slichter modes of the Earth revisited[J]. Physics of the Earth and Planetary Interiors,2002,131(3):269-278.
44 DAHLEN F A,SAILOR R V. Rotational and elliptical splitting of the free oscillation of the Earth[J]. Geophysical Journal of the Royal Astronomical Society,1979,58:609-623.
45 ALSOP L E. Free spheroidal vibrations of the Earth at very long periods,Part II—Effect of rigidity of the inner core[J]. Bulletin of the Seismological Society of America,1963,53(3):503-515.
46 WON I J,KUO J T. Oscillation of the Earth's inner core and its relation to the generation of geomagnetic field[J]. Journal of Geophysical Research,1973,78(5):905-911.
47 BUSSE F H. On the free oscillation of the Earth's inner core[J]. Journal of Geophysical Research,1974,79(5):753-757.
48 CROSSLEY D J. Core undertones with rotation[J]. Geophysical Journal of the Royal Astronomical Society,1975,42(2):477-488.
49 SMYLIE D E. The inner core translational triplet and the density near Earth's center[J]. Science,1992,255(5 052):1 678-1 682.
50 SMYLIE D E,JIANG Xianhua,BRENNAN B J. Numerical calculation of modes of oscillation of the Earth's core[J]. Geophysical Journal International,1992,108(2):465-490.
51 CROSSLEY D J. Eigensolutions and seismic excitation of the Slichter mode triplet for a fully rotating Earth model[J]. EOS,Transactions American Geophysical Union,1992,73(43):60.
52 CROSSLEY D J,ROCHESTER M G,PENG Zhengrong. Slichter modes and Love numbers[J]. Geophysical Research Letters,1992,19(16):1 679-1 682.
53 WU Wenjing,ROCHESTER M G.Gravity and Slichter modes of the rotating Earth[J]. Physics of the Earth and Planetary Interiors,1994,87(1/2):137-154.
54 PENG Zhengrong.Effects of a mushy transition zone at the inner core boundary on Slichter modes[J]. Geophysical Journal International,1997,131(3):607-617.
55 ROGISTER Y. Splitting of seismic-free oscillations and of the Slichter triplet using the normal mode theory of a rotating,ellipsoidal Earth[J]. Physics of the Earth and Planetary Interiors,2003,140(1):169-182.
56 GRINFELD P,WISDOM J. The effect of phase transformations at the inner core boundary on the Slichter modes[J]. Physics of the Earth and Planetary Interiors,2010,178(3):183-188.
57 SMYLIE D E,FRANCIS O,MERRIAM J B. Beyond tides-determination of core properties from superconducting gravimeter observations[J]. Journal of the Geodetic Society of Japan,2001,47(1):364-372.
58 ROSAT S. Optimal seismic source mechanisms to excite the Slichter Mode[C]//IAG Symposia,Dynamic Planet. New York,Springer Berlin Heidelberg,2007,130:571-577.
59 GREFF-LEFFTZ M,LEGROS H. Fluid core dynamics and degree-one deformations,Slichter mode and geocenter motions[J]. Physics of the Earth and Planetary Interiors,2007,161(3):150-160.
60 ALTERMAN Z,JAROSCH H,PEKERIS C L. Oscillations of the Earth[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Science,1959,252(1 268):80-95.
61 ROSAT S,ROGISTER Y. Excitation of the Slichter mode by collision with a meteoroid or pressure variations at the surface and core boundaries[J]. Physics of the Earth and Planetary Interiors,2012,190:25-31.
62 ROSAT S,Boy J P,ROGISTER Y. Surface atmospheric pressure excitation of the translational mode of the inner core[J]. Physics of the Earth and Planetary Interiors,2014,227:55-60.
63 CROSSLEY D J. The excitation of core modes by earthquakes[M]//SMYLIE D, HIDE R. Structure and dynamics of Earth's deep interior. Washington DC:AGU,1987.
64 CROSSLEY D J,HINDERER J,LEGROS H. On the excitation, detection and damping of core modes[J]. Physics of the Earth and Planetary Interiors,1991,68:97-116.
65 RUTTER M D,SECCO R A,UCHIDA T,et al. Towards evaluating the viscosity of the Earth's outer core,an experimental high pressure study of liquid Fe-S (8.5wt.%S)[J]. Geophysical Research Letters,2002,29(8):1217.
66 COURTIER N,DUCARME B,GOODKIND J,et al. Global superconducting gravimeter observations and the search for the translational modes of the inner core[J]. Physics of the Earth and Planetary Interiors,2000,117(1):3-20.
67 MATHEWS P M,GUO Junyi. Visco-electromagnetic coupling in precession-nutation theory[J]. Journal of Geophysical Research, 2005,110(B2):B02402.
68 BUFFETT B A,GOERTZ D E. Magnetic damping of the translational oscillations of the inner core[J]. Geophysical Journal International,1995,120(1):103-110.
69 GUO Junyi,DIERKS O,NEUMEYER J,et al. A search for the Slichter modes in superconducting gravimeter records using a new method[J]. Geophysical Journal International,2007,168(2):507-517.
70 JENSON O,CROSSLEY D J,HINDERER J. An attempt to confirm the observation of the translational triplet of the inner core[J].EOS,1992,73(14):206.
71 JENSON O,HINDERER J,CROSSLEY D J. Noise limitations in the core mode band of superconducting gravimeter data[J]. Physics of the Earth and Planetary Interiors,1995,90(3):169-181.
72 HINDERER J,CROSSLEY D J,JENSON O,et al. Gravity noise levels and periodic signals inferred from a common 2 year analysis of the French and Canadian superconducting gravimeters[J].EOS,1992,73(43):60.
73 HINDERER J,CROSSLEY D J,XU Hui. A two-year comparison between the French and Canadian superconducting gravimeter data[J]. Geophysical Journal International,1994,116(2):252-266.
74 HINDERER J,CROSSLEY D J,JENSON O. A search for the Slichter triplet in superconducting gravimeter data[J]. Physics of the Earth and Planetary Interiors,1995,90(3):183-195.
75 CROSSLEY D J,JENSON O G,HINDERER J. Effective barometric admittance and gravity residuals[J]. Physics of the Earth and Planetary Interiors,1995,90(3):221-241.
76 SUN Heping,XU Jianqiao,DUCARME B. Detection of the translational oscillations of the Earth's solid inner core based on the international superconducting gravimeter observations[J].Chinese Science Bulletin,2004,49(11):803-813.
77 XU Jianqiao,SUN Heping,FU Rongshan. Detection of long-period core modes by using the data from global superconducting gravimeters[J]. Chinese Journal of Geophysics,2005,48(1):69-77.
77 徐建桥,孙和平,傅容珊. 利用全球超导重力仪数据检测长周期核模[J]. 地球物理学报,2005,48(1):69-77.
78 XU Jianqiao,SUN Heping,ZHOU Jiangcun. Experimental detection of the inner core translational triplet[J]. Chinese Science Bulletin,2010,55(3):276-283.
79 JIANG Ying,XU Jianqiao,SUN Heping. Detection of inner core translational oscillations using superconducting gravimeters[J]. Journal of Earth Science,2013,24(5):750-758.
80 CUMMINS P,WAHR J M,AGNEW D C,et al. Constraining core undertones using stacked IDA gravity records[J]. Geophysical Journal International,1991,106(1):189-198.
81 BULAND R,BERGER J,GILBERT F. Observations from the IDA network of attenuation and splitting during a recent Earthquake[J]. Nature,1979,277(5 695):358-362.
82 ROSAT S,HINDERER J,CROSSLEY D,et al. The search for the Slichter mode, comparison of noise levels of superconducting gravimeters and investigation of a stacking method[J]. Physics of the Earth and Planetary Interiors,2003,140(1):183-202.
83 ROSAT S,ROGISTER Y,CROSSLEY D,et al. A search for the Slichter triplet with superconducting gravimeters:Impact of the density jump at the inner core boundary[J]. Journal of Geodynamics,2006,41(1):296-306.
84 GUO Junyi,DIERKS O,NEUMEYER J,et al. Weighting algorithms to stack superconducting gravimeter data for the potential detection of the Slichter modes[J]. Journal of Geodynamics,2006,41(1):326-333.
85 ROSAT S,PASCAL S,PASCAL G. A wavelet-based detection and characterization of damped transient waves occurring in geophysical time-series,theory and application to the search for the translational oscillations of the inner core[J]. Geophysical Journal International,2007,171(1):55-70.
86 ROSAT S,FUKUSHIMA T,SATO T,et al. Application of a non-linear damped harmonic analysis method to the normal modes of the Earth[J]. Journal of Geodynamics,2008,45(1):63-71.
87 DING Hao,SHEN Wenbin. Search for the Slichter modes based on a new method:Optimal sequence estimation[J]. Journal of Geophysical Research:Solid Earth,2013,118(9):5 018-5 029.
88 SHEN Wenbin,DING Hao. Detection of the inner core translational triplet using superconducting gravimetric observations[J]. Journal of Earth Science,2013,24(5):725-735.
89 SHEN Wenbin,LUAN Wei. Detection of the Slichter mode triplet using superconducting gravimetric observations[J]. Chinese Journal of Geophysics,2016,59(3):840-851.
89 申文斌,栾威. 利用超导重力数据探测Slichter模三重分裂信号[J]. 地球物理学报,2016,59(3):840-851.
90 LUAN Wei,SHEN Wenbin,DING Hao,et al.Potential Slichter triplet detection using global superconducting gravimeter data[J].Surveys in Geophysics,2019,40(5):1 129-1 150.
91 PAGIATAKI S D,YIN Hui,El-GELIL M ABD. Least-squares self-coherency analysis of superconducting gravimeter records in search for the Slichter triplet[J]. Physics of the Earth and Planetary Interiors,2007,160(2):108-123.
92 El-GELIL M ABD,PAGIATAKI S. Least squares self-coherence for sub-nGal signal detection in the superconducting gravimeter records[J]. Journal of Geodynamics,2009,48(3):310-315.
93 DING Hao,CHAO B F. The Slichter mode of the Earth:Revisit with optimal stacking and autoregressive methods on full superconducting gravimeter data set[J]. Journal of Geophysical Research:Solid Earth,2015,120(10):7 261-7 272.
文章导航

/