综述与评述

铼—锇同位素和铂族元素分析方法及地学应用进展

  • 储著银 ,
  • 许继峰
展开
  • 1.中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029
    2.中国地质大学地球科学和资源学院,北京 100083
储著银(1970-),男,安徽霍山人,研究员,主要从事分析地球化学和同位素地球化学研究. E-mail:zhychu@mail.iggcas.ac.cn

收稿日期: 2021-01-07

  修回日期: 2021-02-28

  网络出版日期: 2021-04-30

基金资助

国家重点研发计划项目“难熔元素和同位素分析技术创建与革新及地学应用”(2020YFA0714800);国家自然科学基金面上项目“油气藏样品Re-Os-PGE分析方法及应用研究”(42073050)

Re-Os and PGE: Analytical Methods and Their Applications in Geosciences

  • Zhuyin CHU ,
  • Jifeng XU
Expand
  • 1.State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
CHU Zhuyin (1970-), male, Huoshan County, Anhui Province, Professor. Research areas include analytical geochemistry and isotope geochemistry. E-mail: zhychu@mail.iggcas.ac.cn

Received date: 2021-01-07

  Revised date: 2021-02-28

  Online published: 2021-04-30

Supported by

the National Key Research and Development Program of China “Highly refractory elements and their isotopic compositions: Analytical techniques and geoscience applications”(2020YFA0714800);The National Natural Science Foundation of China “Re-Os-PGE geochronology and geochemistry for petroleum system: Analytical methods and case studies”(42073050)

摘要

近30年来,国内外铼—锇(Re-Os)同位素和铂族元素(PGE)分析方法及其地学应用取得了诸多研究进展。首先对铼—锇同位素和铂族元素分析的样品溶解、化学分离及质谱测定等方面的进展情况进行了综述;然后,对铼—锇同位素和铂族元素在天体化学、大陆岩石圈地幔定年、金属矿床定年、沉积地层定年及古环境,以及在油气系统定年与示踪等领域的应用进展情况进行了简要评述。可供地质分析工作者针对不同分析任务及分析对象,选择分析方法并进一步发展Re-Os-PGE分析技术时参考,也可供地质科研工作者开展Re-Os-PGE地球化学研究工作时借鉴。

本文引用格式

储著银 , 许继峰 . 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021 , 36(3) : 245 -264 . DOI: 10.11867/j.issn.1001-8166.2021.024

Abstract

In the recent decades, there has been plenty of progress, both in analytical methods for Re-Os and PGE in geological samples and the applications of the Re-Os and PGE systems in geosciences. We first briefly review the recent advances for analytical methods of Re-Os and PGE in geological materials including sample dissolution, chemical separation and mass spectrometric determinations. Thereafter, we simply outline the recent progresses in major application fields of the Re-Os isotopic and PGE elemental systems in geosciences, including tracing the evolution of planetary formation and evolution, tracing the evolution of earth's mantle, dating of metal sulfide ore deposits, dating sedimentations and investigating the variations of earth's paleo-environment, as well as dating and tracing of the petroleum systems.This review stands as a comprehensive reference for researchers to facilitate the choice of the analytical method best adapted to each specific scientific problem and sample type, or to consider in the development of analytical methods for Re-Os-PGE in geological materials, as well as to promote the development of the applications of Re-Os and PGE in geosciences.

参考文献

1 ZHANG Xun, JIN Lixin, CHEN Jiangfeng. Progress in chemical separation and purification for Re and Os isotopic analyses [J]. Rock and Mineral Analysis, 2002, 21(1): 49-54.
1 张巽,金立新,陈江峰. 铼—锇同位素分析中试样化学预处理方法进展[J]. 岩矿测试,2002, 21(1): 49-54.
2 LI Jie, XU Jifeng, LIANG Xirong. Progress in Re-Os isotope analytical techniques [J]. Journal of Chinese Mass Spectrometry Society, 2005, 26(3): 175-181.
2 李杰,许继峰,梁细荣. Re-Os同位素分析测试技术进展[J]. 质谱学报,2005,26(3): 175-181.
3 YANG Hongmei, LING Wenli. Progress of measuring method and its application for Re-Os isotopic system [J]. Advances in Earth Science, 2006, 21(10):1 014-1 024.
3 杨红梅,凌文黎. Re-Os同位素组成测试方法及其应用进展[J].地球科学进展, 2006,21(10):1 014-1 024.
4 DU Andao, QU Wenjun, LI Chao, et al. A review on the development of Re-Os isotopic dating methods and techniques [J]. Rock and Mineral Analysis, 2009, 28(3):288-304.
4 杜安道,屈文俊,李超,等. 铼—锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试,2009,28(3):288-304.
5 JIN Xindi, LI Wenjun, WU Huaying, et al. Development of Re-Os isotopic dating analytical technique and determination know-how on ICP-MS precise dating for molybdenite [J]. Acta Petrologica Sinica, 2010, 26(5): 1 617-1 624.
5 靳新娣,李文君,吴华英,等. Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术[J]. 岩石学报,2010,26(5): 1 617-1 624.
6 HUANG Xiaowen, QI Liang, GAO Jianfeng. A review on sample preparation in Re-Os isotopic analysis [J]. Rock and Mineral Analysis, 2011, 30(1): 90-103.
6 黄小文,漆亮,高剑锋. 铼—锇同位素分析样品预处理研究进展[J]. 岩矿测试,2011,30(1): 90-103.
7 REISBERG L, MEISEL T. The Re-Os isotopic system: A review of the analytical techniques [J]. Geostandard Newsletter, 2002, 26(3): 249-267. DOI:10.1111/j.1751-908X.2002.tb00633.x.
8 MEISEL T, HORAN M F. Analytical methods for the highly siderophile elements [J]. Reviews in Mineralogy & Geochemistry, 2016, 81: 89-106. DOI:10.2138/rmg.2016.81.02.
9 HE Hongliao, Caifen Lü, ZHOU Zhaoru, et al. Determination of platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICPMS I. Simplification of the analytical procedure [J]. Rock and Mineral Analysis, 2001, 20(3):191-194.
9 何红蓼,吕彩芬, 周肇如,等. 锍镍试金—等离子体质谱法测定地球化学勘探样品中的铂族元素和金I. 分析流程的简化[J]. 岩 矿 测 试,2001,20(3):191-194.
10 PEARSON D G, WOODLAND S J. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in samples by isotope dilution [J]. Chemical Geology, 2000, 165: 87-107. DOI:10.1016/S0009-2541(99)00161-8.
11 Caifen Lü, HE Hongliao, ZHOU Zhaoru, et al. Determination of platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICPMS II. Reduction of reagent blank [J]. Rock and Mineral Analysis, 2002, 21(1): 7-11.
11 吕彩芬, 何红蓼,周肇如,等. 锍镍试金—等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ .分析流程空白的降低[J]. 岩 矿 测 试,2002,21(1):7-11.
12 SUN Y L, SUN M. Nickel sulfide fire assay improved for pre-concentration of platinum group elements in geological samples: A practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry[J]. Analyst, 2005, 130: 664-669. DOI:10.1039/b416844e.
13 HU Z, QI L. 15.5-Sample digestion methods[M]// Holland H D, Turekian K K, Treatise on geochemistry. Elsevier, Oxford, 2014:87-109. DOI: 10.1016/B978-0-08-095975-7.01406-6.
14 RAVIZZA G, PYLE D. PGE and Os isotope analyses of single sample aliquots with NiS fire assay preconcentration [J]. Chemical Geology, 1997, 141: 251-268. DOI:10.1016/S0009-2541(97)00091-0.
15 SUN Y L, CHU Z Y, SUN M, et al. An improved Fe-Ni sulfide fire assay method for determination of Re, platinum group elements, and Os isotopic ratios by inductively coupled plasma- and negative thermal ionization-mass spectrometry [J]. Applied Spectroscopy, 2009, 63(11): 1 232-1 237. DOI:10.1366/000370209789806966.
16 BRANDON A D, WALKER R J, MORGAN J W, et al. Coupled 186Os and 187Os evidence for core-mantle interaction [J]. Science, 1998, 280: 1 570-1 573. DOI: 10.1126/science.280.5369.1570.
17 IRELAND T J, WALKER R J, BRANDON A D. 186Os-187Os systematics of Hawai-ian picrites revisited: New insights into Os isotopic variations in ocean island basalts [J]. Geochimica et Cosmochimica Acta, 2011, 75: 4 456-4 475. DOI:10.1016/j.gca.2011.05.015.
18 DAY J M D, WALKER R J, WARREN J M. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys [J]. Geochimica et Cosmochimica Acta, 2017, 200: 232-254. DOI:10.1016/j.gca.2016.12.013.
19 WALKER R J. Low-blank chemical separation of rhenium and osmium from gram quantities of silicate rock for measurement by resonance ionization mass spectrometry[J]. Analytical Chemistry, 1988, 60: 1 231-1 234. DOI:10.1021/ac00162a026.
20 J-L BIRCK, ROY-BARMAN M, CAPMAS F. Re-Os isotopic measurements at the femtomole level in natural samples [J]. Geostandard Newsletter, 1997, 20(1): 19-27. DOI:10.1111/j.1751-908X.1997.tb00528.x.
21 GANNOUN A, BURTON K W, PARKINSON I J, et al. The scale and origin of the osmium isotope variations in mid-ocean ridge basalts [J]. Earth and Planetary Science Letters, 2007, 259: 541-556. DOI:10.1016/j.epsl.2007.05.014.
22 MEISEL T, REISBERG L, MOSER J, et al. Re-Os systematics of UB-N, a serpentinized peridotite reference material [J]. Chemical Geology, 2003, 201: 161-179. DOI:10.1016/S0009-2541(03)00234-1.
23 QI L, GAO J F, HUANG X W, et al. An improved digestion technique for determination of platinum-group elements in geological samples [J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 1 900-1 904. DOI:10.1039/c1ja10114e.
24 MORGAN J W, WALKER J M. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations [J]. Analytica Chimica Acta, 1989, 222: 291-300.
25 QI Liang, HU Jing. Fast determination of platinum group elements and gold in geological samples by ICP-MS [J]. Rock and Mineral Analysis, 1999, 18(4): 267-271.
25 漆亮,胡静. 等离子体质谱法快速测定地质样品中的痕量铂族元素和金[J]. 岩矿测试,1999,18(4):267-271.
26 JIN X D, ZHU H P. Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and tellurium co-precipitation[J]. Journal of Analytical Atomic Spectrometry, 2000, 15: 747-751. DOI:10.1039/b000470g.
27 DU Andao, HE Hongliao, YIN Ningwan, et al. A study of the rhenium-osmium geochronometry of molybdenite [J]. Acta Geologica Sinica, 1995, 8(2): 171-181.
27 DOI:10.1111/j.1755-6724.1995.mp8002004.x.[杜安道,何红蓼,殷宁万,等. 辉钼矿的铼—锇同位素地质年龄测定方法研究[J]. 地质学报,1994,68(4): 339-347.]
28 DU Andao, SUN Dezhong, WANG Shuxian, et al. The Re-Os dating using modified alkali fusion method [J]. Rock and Mineral Analysis, 2002, 21(2): 100-104.
28 杜安道,孙德忠,王淑贤,等. 铼—锇定年法中碱熔分解样品方法的改进[J]. 岩矿测试,2002,21(2): 100-104.
29 MARKEY R J, STEIN H J, MORGAN J W. Highly precise Re-Os dating of molybdenite using alkaline fusion and NTIMS [J]. Talanta, 1998, 45: 935-946. DOI:10.1016/S0039-9140(97)00198-7.
30 QI L, ZHOU M F, WANG C Y. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2004, 19: 1 335-1 339. DOI:10.1039/b400742e.
31 SHIREY S B, WALKER R J. Carius tube digestion for low blank rhenium-osmium analysis [J]. Analytical Chemistry, 1995, 34: 2 136-2 141. DOI:10.1021/ac00109a036.
32 QU Wenjun, DU Andao, REN Jing. Influence of H2O2 on the signal intensity of rhenium, osmium and Re-Os age in the process of dissolution for pyrite [J]. Chinese Journal of Analytical Chemistry, 2008, 36(2): 223-226.
32 屈文俊,杜安道,任静.过氧化氢在黄铁矿的溶解过程中对铼—锇信号强度及年龄的影响[J]. 分析化学,2008,36(2): 223-226.
33 LI Chao, QU Wenjun, WANG Denghong, et al. Dissolving experimental research of Re-Os isotope system for bitumen samples [J]. Rock and Mineral Analysis, 2011, 30(6): 688-694.
33 李超,屈文俊,王登红,等. 沥青样品铼—锇同位素分析溶解实验研究[J]. 岩矿测试,2011,30(6): 688-694.
34 REN Jing, QU Wenjun, LIU Hua. Preparation and calibration of isotope spike solutions for platinum-group elements analysis by ID-ICPMS [J]. Rock and Mineral Analysis, 2007, 26(5): 351-355.
34 任静,屈文俊,刘华,等. 铂族元素稀释剂溶液的制备及标定[J]. 岩矿测试,2007,26(5): 351-355.
35 QI L, ZHOU M F, GAO J F, et al. An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 585-589. DOI:10.1039/b919016c.
36 YANG G, ZIMMERMAN A, STEIN H, et al. Pretreatment of nitric acid with hydrogen peroxide reduces total procedural Os blank to femtogram levels [J]. Analytical Chemistry, 2015, 87: 7 017-7 021. DOI:10.1021/acs.analchem.5b01751.
37 SEO J H, SHARMA M, OSTERBERG E C, et al. Determination of osmium concentration and isotope composition at ultra-low level in polar ice and snow [J]. Analytical Chemistry, 2018, 90: 5 781-5 787. DOI:10.1021/acs.analchem.8b00150.
38 BECKER H, HORAN M F, WALKER R J, et al. Highly siderophile element composition of the Earth's primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths [J]. Geochimica et Cosmochimica Acta, 2006, 70: 4 528-4 550. DOI:10.1016/j.gca.2006.06.004.
39 QI Liang, ZHOU Meifu, YAN Zaifei, et al. A Carius tube technique for digesting geological samples in the determination of PGEs and Re by ICP-MS [J]. Geochimica, 2006, 35(6): 667-674.
39 漆亮, 周美夫, 严再飞, 等. 改进的Carius 管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量 [J]. 地球化学, 2006,35(4): 667-674.
40 QI L, ZHOU M F. Determination of platinum-group elements in OPY-1: Comparison of results using different digestion techniques [J]. Geostandards and Geoanalytical Research, 2008, 32: 377-387. DOI:10.1111/j.1751-908X.2008.00893.x.
41 ISHIKAWA A, SENDA R, SUZUKI K, et al. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials [J]. Chemical Geology, 2014, 384: 27-46. DOI:10.1016/j.chemgeo.2014.06.013.
42 LI J, ZHAO P P, LIU J, et al. Reassessment of hydrofluoric acid desilicification in the Carius tube digestion technique for Re-Os isotopic determination in geological samples [J]. Geostandards and Geoanalytical Research, 2015, 39: 17-30. DOI:10.1111/j.1751-908X.2014.00299.x.
43 DAY J M D, WATERS C L, SCHAEFER B F, et al. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in mafic-ultramafic rocks [J]. Geostandards and Geoanalytical Research, 2016, 40: 49-65. DOI:10.1111/j.1751-908X.2015.00367.x.
44 LAWLEY C J M, SELBY D. Re-Os geochronology of quartz-enclosed ultrafine molybdenite: Implications for ore geochronology [J]. Economic Geology, 2012, 107: 1 499-1 505. DOI:10.2113/econgeo.107.7.1499.
45 SELBY D, CREASER R A. Re-Os geochronology of organic rich sediments: An evaluation of organic matter analysis methods [J]. Chemical Geology, 2003, 200: 225-240. DOI:10.1016/S0009-2541(03)00199-2.
46 KENDALL B S, CREASER R A, ROSS G M, et al. Constraints on the timing of marinoan "snowball Earth" glaciation by 187Re-187Os dating of a neoproterozoic, post-glacial black shale in Western Canada [J]. Earth and Planetary Science Letters, 2004, 222: 729-740. DOI:10.1016/j.epsl.2004.04.004.
47 LIU Hua, QU Wenjun, WANG Yingbin, et al. Primary study on Re-Os isotopic dating of black shale using CrO3-H2SO4-Carius Tube inductively coupled Plasma Mass Spectrometry System [J]. Rock and Mineral Analysis, 2008, 27(4): 245-249.
47 刘华,屈文俊,王英滨,等.用三氧化铬—硫酸溶剂对黑色页岩铼—锇定年方法初探[J].岩矿测试,2008,27(4): 245-249.
48 YIN L, LI J, LIU J G, et al. Precise and accurate Re-Os isotope dating of organic-rich sedimentary rocks by thermal ionization mass spectrometry with an improved H2O2-HNO3 digestion procedure [J]. International Journal of Mass Spectrometry, 2017, 421: 263-270. DOI:10.1016/j.ijms.2017.07.013.
49 MEISEL T, MOSER J, FELLNER N, et al. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICPMS and acid digestion [J]. Analyst, 2001, 126: 322-328.DOI:10.1039/b007575m.
50 MEISEL T, FELLNER N, MOSER J. A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials [J]. Journal of Analytical Atomic Spectrometry, 2003, 18: 720-726. DOI:10.1039/b301754k.
51 MEISEL T, MOSER J. Reference materials for geochemical PGE analysis: New analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials [J]. Chemical Geology, 2004, 208: 319-338. DOI:10.1016/j.chemgeo.2004.04.019.
52 YANG Jinghong, JIANG Shaoyong, BRUBGMANN G. Precise determination of the platinum-group elements and Os isotopic ratios in low-level rock samples [J]. Acta Petrologica Sinica, 2001, 17(2): 325-331.
52 杨竟红,蒋少涌,BRUBGMANN G. 岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法[J]. 岩石学报, 2001,17(2): 325-331.
53 DAY J M D, WALKER R J. Highly siderophile element depletion in the Moon [J]. Earth and Planetary Science Letters, 2015, 423: 114-124. DOI:10.1016/j.epsl.2015.05.001.
54 DALE C W, MACPHERSON C G, PEARSON D G, et al. Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source [J]. Geochimica et Cosmochimica Acta, 2012, 89: 202-225. DOI:10.1016/j.gca.2012.03.025.
55 GEORGIEV S V, STEIN H J, HANNAH J L, et al. Re-Os dating of maltenes and asphaltenes within single samples of crude oil [J]. Geochimica et Cosmochimica Acta, 2016, 179: 53-75.DOI:10.1016/j.gca.2016.01.016.
56 CHEN C, SHARMA M. High precision and high sensitivity measurements of osmium in seawater [J]. Analytical Chemistry, 2009, 81: 5 400-5 406. DOI:10.1021/ac900600e.
57 SUN Y L, ZHOU M F, SUN M. Routine Os analysis by isotope dilution inductively coupled plasma mass spectrometry: OsO4 in water solution gives high sensitivity [J]. Journal of Analytical Atomic Spectrometry, 2001, 16: 345-349. DOI:10.1039/b008533m.
58 MENG Qing, ZHENG Lei, XIA Qiongxia, et al. Study on analytical method for Re-Os Isotopic system in Mafic-ultramafic rocks [J]. Rock and Mineral Analysis, 2004, 23(2): 92-96.
58 孟庆,郑磊,夏琼霞,等. 镁铁—超镁铁岩铼—锇同位素体系分析方法[J]. 岩矿测试,2004,23(2):92-96.
59 CHU Zhuyin, CHEN Fukun, WANG Wei, et al. High-precision measurement for the concentration and isotopic composition of rhenium and osmium in micro-amount of geological samples [J]. Rock and Mineral Analysis, 2007, 26(6): 431-435.
59 储著银,陈福坤,王伟,等.微量地质样品铼锇含量及其同位素组成的高精度测定方法[J].岩矿测试,2007,26(6): 431-435.
60 LI Chao, QU Wenjun, ZHOU Limin, et al.Rapid separation of osmium by direct distillation with Carius Tube [J]. Rock and Mineral Analysis, 2010, 29(1): 14-16.
60 李超,屈文俊,周利敏,等.Carius 管直接蒸馏快速分离锇方法研究[J].岩矿测试,2010,29(1): 14-16.
61 JIN X D, LI W J, XIANG P, et al. A contribution to common Carius tube distillation techniques [J]. Journal of Analytical Atomic Spectrometry, 2013, 28: 396-404. DOI:10.1039/c2ja10374e.
62 COHEN A S, WATER F G. Separation of osmium from geological materials solvent extraction for analysis by TIMS [J]. Analytica Chimica Acta, 1996, 332: 269-275. DOI:10.1016/0003-2670(96)00226-7.
63 SHEN J J, PAPANASTASSIOU D A, WASSERBURG G J. Precise Re-Os determinations and systematics of iron meteorites [J]. Geochimica et Cosmochimica Acta, 1996, 60: 2 887-2 900. DOI:10.1016/0016-7037(96)00120-2.
64 PAUL M, REISBERG L, VIGIER N. A new method for analysis of osmium isotopes and concentrations in surface and subsurface water samples [J]. Chemical Geology, 2009, 258: 136-144. DOI:10.1016/j.chemgeo.2008.09.018.
65 LEVASSEUR S, BIRCK J L, ALLèGRE C J. Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater [J]. Science, 1998, 282: 272-274. DOI:10.1126/science.282.5387.272.
66 NAKANISHI N, YOKOYAMA T, ISHIKAWA A. Refinement of the micro-distillation technique for isotopic analysis of geological samples with pg-level Osmium contents [J]. Geostandards and Geoanalytical Research, 2019, 43: 231-243. DOI: 10.1111/ggr.12262.
67 PEARSON D G, SHIREY S B, HARRIS J W, et al. Sulphide inclusions in diamonds from the Koffiefontein kimberlite, South Africa: Constraints on diamond ages and mantle Re-Os systematics [J]. Earth and Planetary Science Letters, 1998, 160: 311-326. DOI:10.1016/S0012-821X(98)00092-2.
68 HARVEY J, GANNOUN A, BURTON K W, et al. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes from the Mid-Atlantic Ridge [J]. Earth and Planetary Science Letters, 2006, 244: 606-621. DOI:10.1016/j.epsl.2006.02.031.
69 WARREN J M, SHIREY S B. Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides [J]. Earth and Planetary Science Letters, 2012, 359/360: 279-293. DOI:10.1016/j.epsl.2012.09.055.
70 LI Chao, QU Wenjun, DU Andao, et al. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating [J]. Rock and Mineral Analysis, 2009, 28(3): 233-238.
70 李超,屈文俊,杜安道,等. 铼—锇同位素定年法中丙酮萃取铼的系统研究[J]. 岩矿测试,2009,28(3): 233-238.
71 WANG Libing, QU Wenjun, LI Chao, et al. Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry [J]. Rock and Mineral Analysis, 2013, 32(3): 402-408.
71 王礼兵,屈文俊,李超,等. 负离子热表面电离质谱法测量铼的化学分离方法研究[J]. 岩矿测试,2013,32(3): 402-408.
72 GEORGIEV S V, ZIMMERMAN A, YANG G, et al. Comparison of chemical procedures for Re-isotopic measurements by NTIMS [J]. Chemical Geology, 2018, 483: 151-161. DOI:10.1016/j.chemgeo.2018.03.006.
73 CHU Z Y, YAN Y, CHEN Z, et al. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples [J]. Geostandards and Geoanalytical Research, 2015, 39: 151-169. DOI:10.1111/j.1751-908X.2014.00283.x.
74 SUN Y L, XU P, LI J, et al. A practical method for determination of molybdenite Re-Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO3 digestion [J]. Analytical Methods, 2010, 2: 575-581. DOI:10.1039/b9ay00258h.
75 REHK?MPER M, HALLIDAY A N. Development and application of new ion-exchange techniques for the separation of the platinum group and other siderophile elements from geological samples [J]. Talanta, 1997, 44: 663-672. DOI:10.1016/S0039-9140(96)02100-5.
76 SHINOTSUKA K, SUZUKI K. Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction [J]. Analytica Chimica Acta, 2007, 603: 129-139. DOI:10.1016/j.aca.2007.09.042.
77 FISCHER-G?DDE M, BECKER H, WOMBACHER F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths [J]. Chemical Geology, 2011, 280: 365-383. DOI:10.1016/j.chemgeo.2010.11.024.
78 LI J, JIANG X-Y, XU J-F, et al. Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation [J]. Geostandards and Geoanalytical Research, 2014, 383: 37-50. DOI:10.1111/j.1751-908X.2013.00242.x.
79 REN M H, SUN Y L, WANG C Y, et al. Determination of platinum-group elements in geological samples by isotope dilution-inductively coupled plasma-mass spectrometry combined with sulfide fire assay preconcentration [J]. Geostandards and Geoanalytical Research, 2016, 40: 67-83. DOI:10.1111/j.1751-908X.2015.00349.x.
80 ZHOU X Y, TANAKA R, YAMANAKA M, et al. A method to suppress isobaric and polyatomic interferences for measurements of highly siderophile elements in desilicified geological samples[J]. Geostandards and Geoanalytical Research, 2019, 43: 611-633. DOI: 10.1111/ggr.12280.
81 V?LKENING J, WALCZYK T, HEUMANN K G. Osmium isotope ratio determinations by negative thermal ionization mass-spectrometry [J]. International Journal of Mass Spectrometry Ion Process, 1991, 105: 147-159. DOI:10.1016/0168-1176(91)80077-Z.
82 CREASER R A, PAPANASTASSIOU D A, WASSERBURG G J. Negative thermal ion mass spectrometry of Osmium, Rhenium and Iridium [J]. Geochimica et Cosmochimica Acta, 1991, 55: 397-401. DOI:10.1016/0016-7037(91)90427-7.
83 DU Andao, ZHAO Dunmin, WANG Shuxian. Precise Re-Os dating for molybdenite by ID-NTIMS with Carius Tube sample preparation [J]. Rock and Mineral Analysis, 2001, 20 (14): 247-252.
83 杜安道,赵敦敏,王淑贤,等. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼—锇同位素地质年龄[J]. 岩矿测试,2001,20(4): 247-252.
84 BIRCK J L. The precision and sensitivity of Thermal Ionisation Mass Spectrometry (TIMS): An overview of the present status [J]. Geostandards and Geoanalytical Research, 2001, 25: 253-259. DOI:10.1111/j.1751-908X.2001.tb00600.x.
85 SUN Weidong, PENG Zicheng, WANG Zhaorong. Oxygen corrections in negative thermal ionization mass spectrometry determination of Rhenium and Osminum [J]. Journal of Chinese Mass Spectrometry Society, 1997, 18(3): 1-6.
85 孙卫东,彭子成,王兆荣. 铼锇负热电离质谱测定中的氧同位素校正[J]. 质谱学报,1997,18(3):1-6.
86 GAO Hongtao, ZHAO Dunmin, DU Andao, et al. Study on Os-Os dating method [J]. Rock and Mineral Analysis, 1999, 18 (3): 176-180.
86 高洪涛, 赵敦敏, 杜安道, 等. 锇—锇测年方法研究 [J]. 岩矿测试,1999,18(3):176-180.
87 ZHENG Lei, ZHI Xiachen, JIN Yongbin. Mass fractionation correction of osmium isotopic compositions in Negative Thermal Ionization Mass spectrometric measurement [J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(4): 193-197.
87 郑磊,支霞臣,靳永斌. 负热电离质谱法测量Os同位素组成的质量分馏校正 [J]. 质谱学报,2004,25(4):193-197.
88 LIU Y, HUANG M, MASUDA A, et al. High-precision determination of osmium and rhenium isotope ratios by in-situ oxygen isotope correction using negative thermal ionisation mass spectrometry [J]. International Journal of Mass Spectrometry Ion Process, 1998, 173: 163-175. DOI:10.1016/S0168-1176(97)00270-X.
89 LI Chao, ZHOU Limin, DU Andao, et al. N-TIMS measurement and calculation method for Re-Os isotopes [J]. Geochimica, 2017, 46(1): 1-14.
89 李超, 周利敏, 杜安道, 等. Re-Os 同位素稀释N-TIMS 测定计算方法[J]. 地球化学,2017,46(1): 1-14.
90 LIU J, PEARSON D G. Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS [J]. Chemical Geology, 2014, 363: 301-311. DOI:10.1016/j.chemgeo.2013.11.008.
91 WANG G, SUN T, XU J. A comparison using Faraday cups with 1013 Ω amplifiers and a secondary electron multiplier to measure Os isotopes by negative thermal ionization mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2017, 31: 1 616-1 622. DOI:10.1002/rcm.7943.
92 LUGUET A, NOWELL G M, PEARSON D G. 184Os/188Os and 186Os/188Os measurements by negative thermal ionisation mass spectrometry (N-TIMS): Effects of interfering element and mass fractionation corrections on data accuracy and precision [J]. Chemical Geology, 2008, 248: 342-362. DOI:10.1016/j.chemgeo.2007.10.013.
93 CHATTERJEE R, LASSITER J C. High precision Os isotopic measurement using N-TIMS: Quantification of various sources of error in 186Os/188Os measurements [J]. Chemical Geology, 2015, 396: 112-123. DOI:10.1016/j.chemgeo.2014.12.014.
94 CHU Z-Y, LI C-F, CHEN Z, et al. High-precision measurement of 186Os/188Os and 187Os/188Os: Isobaric oxide corrections with in-run measured oxygen isotope ratios [J]. Analytical Chemistry, 2015, 87: 8 765-8 771. DOI:10.1021/acs.analchem.5b01689.
95 SCHOENBERG R, N?GLER T F, KRAMERS K. Precise and accurate Os and Re isotopic measurements by multicollector ICP-MS down to the picogram level [J]. International Journal of Mass Spectrometry, 2000, 197: 85-94. DOI:10.1016/S1387-3806(99)00215-8.
96 NOWELL G M, LUGUET A, PEARSON D G, et al. Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-Collector Plasma Ionisation Mass Spectrometry (MC-ICP-MS) part I: Solution analyses. Special Issue on Highly Siderophile Element Geochemistry[J]. Chemical Geology, 2008, 248: 363-393. DOI:10.1016/j.chemgeo.2007.10.020.
97 LI Jie, LIANG Xirong, DONG Yanhui, et al. Measurements of Re-Os isotopic composition in mafic-ultramafic rocks by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) [J]. Geochimica, 2007, 36(2): 153-160.
97 李杰,梁细荣,董彦辉,等.利用多接收器电感耦合等离子体质谱仪( MC-ICPMS) 测定镁铁: 超镁铁质岩石中的铼—锇同位素组成[J].地球化学,2007,36(2): 153-160.
98 HE Hongliao, DU Andao, ZOU Xiaoqiu, et al. A study on Rhenium-Osmium isotope systematics by using inductively coupled plasma mass spectrometry and its application to molybdenite dating [J]. Rock and Mineral Analysis, 1993, 12(3): 161-165.
98 何红蓼,杜安道,邹晓秋,等. 铼—锇同位素的等离子体质谱法测定及其在辉钼矿测年中的应用[J]. 岩矿测试,1993, 12(3): 161-165.
99 QU Wenjun, DU Andao. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius Tube sample digestion [J]. Rock and Mineral Analysis, 2003, 22(4): 254-262.
99 屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄[J].岩矿测试, 2003,22(4): 254-262.
100 HE Hongliao, DU Andao, ZOU Xiaoqiu, et al. Chemical behavior of Osmium in the Rhenium-Osmium geochronometry [J]. Chinese Journal of Analytical Chemistry, 1994, 22(2): 109-114.
100 何红蓼,杜安道,邹晓秋,等. 铼—锇测年法中锇的化学行为研究[J]. 分析化学,1994, 22(2): 109-114.
101 YANG Shenghong, QU Wenjun, YANG Gang, et al. The correction of mass fractionation in the measurement of Rhenium and Osmium isotope ratios by ICP-MS [J]. Rock and Mineral Analysis,2007, 26(1): 4-8.
101 杨胜洪,屈文俊,杨刚,等.电感耦合等离子体质谱法测量铼和锇同位素比值的质量分馏校正[J]. 岩矿测试,2007,26(1): 4-8.
102 HASSLER D R, PEUCKER-EHRENBRINK B, RAVIZZA G E. Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS [J]. Chemical Geology, 2000, 166: 1-14. DOI:10.1016/S0009-2541(99)00180-1.
103 NORMAN M, BENNETT V, MCCULLOCH M, et al. Osmium isotopic compositions by vapor phase sample introduction using a multi-collector ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 1 394-1 397. DOI:10.1039/b204518d.
104 NOZAKI T, SUZUKI K, RAVIZZA G, et al. A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method [J]. Geostandards and Geoanalytical Research, 2012, 36: 131-148. DOI:10.1111/j.1751-908X.2011.00125.x.
105 SEN I S, PEUCKER-EHRENBRINK B. Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer [J]. Analytical Chemistry, 2014, 86: 2 982-2 988. DOI:10.1021/ac403413y.
106 JIN X D, DU A D, LI W J, et al. A new modification of the sample introduction system for Os isotope ratio measurements [J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 1 245-1 252. DOI:10.1039/C1JA00004G.
107 HIRATA T, HATTORI M, TANAKA T. In-situ osmium isotope ratio analyses of iridosmines by laser ablation-multiple collector inductively coupled plasma mass spectrometry [J]. Chemical Geology, 1998, 144: 269-280. DOI:10.1016/S0009-2541(97)00138-1.
108 WALKER R J, BRANDON A D, BIRD J M, et al. 187Os-186Os systematics of Os-Ir-Ru alloy grains from southwestern Oregon [J]. Earth and Planetary Science Letters, 2005, 230: 211-226. DOI:10.1016/j.epsl.2004.11.009.
109 SHI R, ALARD O, ZHI X, et al. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet [J]. Earth and Planetary Science Letters, 2007, 261: 33-48. DOI:10.1016/j.epsl.2007.05.044.
110 PEARSON N J, ALARD O, GRIFFIN W L, et al. In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results [J]. Geochimica et Cosmochimica Acta, 2002, 66: 1 037-1 050. DOI:10.1016/S0016-7037(01)00823-7.
111 XU X S, GRIFFIN W L, O'REILLY S Y, et al. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle [J]. Lithos, 2008, 102 (1/2): 43-64. DOI:10.1016/j.lithos.2007.06.010.
112 YU Chunmei, ZHENG Jianping, GRIFFIN W L. In situ Re-Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: Significance for the frequently-occurring mantle events beneath the North China Block [J]. Chinese Science Bulletin, 2007, 52(20): 2 847-2 853. DOI:10.1007/s11434-007-0354-2.
112 余淳梅,郑建平, GRIFFIN W L. 汉诺坝橄榄岩捕虏体原位Re-Os同位素年龄与多发地幔事件[J]. 科学通报, 2007,52(15): 1 814-1 819.
113 ZHU L Y, LIU Y S, JIANG S Y, et al. An improved in situ technique for the analysis of the Os isotope ratio in sulfides using laser ablation-multiple ion counter inductively coupled plasma mass spectrometry [J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 1 546-1 552. DOI:10.1039/c9ja00066f.
114 NOWELL G M, PEARSON D G, PARMAN S W, et al. Precise, accurate 186Os/188Os and 187Os/188Os measurements by Multi-Collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt-Os and Re-Os geochronology [J]. Chemical Geology, 2008, 248: 394-425. DOI:10.1016/j.chemgeo.2007.12.004.
115 LIU J, SELBY D. A matrix-matched reference material for validating petroleum Re-Os measurements [J]. Geostandards and Geoanalytical Research, 2018, 42(1): 97-113. DOI:10.1111/ggr.12193.
116 MARKEY R, STEIN H J, HANNAH J L, et al. Standardizing Re-Os geochronology: A new molybdenite reference material (Henderson, USA) and the stoichiometry of Os salts [J]. Chemical Geology, 2007, 244: 74-87. DOI:10.1016/j.chemgeo.2007.06.002.
117 SUZUKI K, MIYATA Y, KANAZAWA N. Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique [J]. International Journal of Mass Spectrometry, 2004, 235: 97-101. DOI:10.1016/j.ijms.2004.04.006.
118 ALARD O, GRIFFIN W L, LORAND J P, et al. Non-chondritic distribution of the highly siderophile elements in mantle sulphides [J]. Nature, 2000, 407: 891-894. DOI:10.1038/35038049.
119 J-P LORAND, LUGUET A, ALARD O, et al. Distribution of platinum group elements in orogenic lherzolites: A case study in a Fontête Rouge lherzolite (French Pyrenees) [J]. Chemical Geology, 2008, 248: 174 -194. DOI:10.1016/j.chemgeo.2007.06.030.
120 J-P LORAND, ALARD O, LUGUET A. Platinum-group element micronuggetts and refertilization process in the Lherz peridotite (northeastern Pyrenees, France) [J]. Earth and Planetary Science Letters, 2010, 289: 298-310. DOI:10.1016/j.epsl.2009.11.017.
121 CAMPBELL A J, HUMAYUN M. Trace element microanalysis in iron meteorites by laser ablation ICPMS [J]. Analytical Chemistry, 1999, 71: 939-946. DOI:10.1021/ac9808425.
122 DAY J M D, BRANDON A D, WALKER R J. Highly siderophile elements in Earth, Mars, the Moon, and asteroids [J]. Reviews in Mineralogy & Geochemistry, 2016, 81: 161-238. DOI:10.2138/rmg.2016.81.04.
123 WALKER R J. Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation [J]. Chemie der Erde Geochemistry, 2009, 69: 101-125. DOI:10.1016/j.chemer.2008.10.001.
124 WALKER R J. Rhenium-Osmium dating (meteorites) [M]//Rink J W, Thompson J W. Encyclopedia of scientific dating methods. Dordrecht: Springer Press, 2015:703-707. DOI:10.1007/978-94-007-6304-3.
125 WALKER R J. Siderophile elements in tracing planetary formation [J]. Geochemical Perspectives, 2016, 5: 1-145. DOI: 10.7185/geochempersp.5.1.
126 YANG Gang, XIE Zhi, CHEN Jiangfeng. Applications of the Re-Os isotope system to meteorites [J]. Earth Science Frontiers, 2001, 8(1): 339-344.
126 杨刚,谢智,陈江峰. Re-Os同位素体系在陨石研究中的应用[J]. 地学前缘,2001,8(2): 339-344.
127 SMOLIAR M I, WALKER R J, MORGAN J W. Re-Os ages of Group IIA, IIIA, IVA and IVB iron meteorites [J]. Science, 1996, 271: 1 099-1 102. DOI:10.1126/science.271.5252.1099.
128 KRUIJER T S, TOUBOUL M, FISCHER-G?DDE M, et al. Protracted core formation and rapid accretion of protoplanets [J]. Science, 2014, 344: 1 150-1 154.DOI:10.1126/science.1251766.
129 ALVAREZ L W, ALVAREZ W, ASARO F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction: Experimental results and theoretical interpretation [J]. Science, 1980, 208: 1 095-1 108. DOI:10.1126/science.208.4448.1095.
130 KRUIJER T S, KLEINE T, FISCHER-G?DDE M, et al. Lunar tungsten isotopic evidence for the late veneer [J]. Nature, 2015, 520: 534-537. DOI:10.1038/nature14360.
131 TOUBOUL M, PUCHTEL I S, WALKER R J. Tungsten isotopic evidence for dispro-portional late accretion to the Earth and Moon [J]. Nature, 2015, 520: 530-533. DOI:10.1038/nature14355.
132 SHIREY S B, WALKER R J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry [J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 423-500. DOI:10.1146/annurev.earth.26.1.423.
133 ZHI Xiachen. Re-Os isotopic system and formation age of subcontinental lithosphere mantle [J]. Chinese Science Bulletin, 2000, 45(3): 193-200.
133 支霞臣. Re-Os同位素体系和大陆岩石圈地幔定年[J]. 科学通报,1999,44(22): 2 362-2 371.
134 WU Fuyuan, YANG Jinhui, CHU Zhuyin, et al. Dating the subcontinental lithospheric mantle [J]. Earth Science Frontiers, 2007, 14(2): 76-86.
134 吴福元, 杨进辉, 储著银, 等. 大陆岩石圈地幔定年[J]. 地学前缘,2007,14(2): 76-86.
135 RUDNICK R L, WALKER R J. Interpreting ages from Re-Os isotopes in peridotites [J]. Lithos, 2009, 112: 1 083-1 095. DOI:10.1016/j.lithos.2009.04.042.
136 WALKER R J, CARLSON R W, SHIREY S B, et al. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of the subcontinental mantle [J]. Geochimica et Cosmochimica Acta, 1989, 53: 1 583-1 595. DOI:10.1016/0016-7037(89)90240-8.
137 REISBERG L, LORAND J P. Longevity of sub-continental mantle lithosphere form osmium isotope systematics in orogenic peridotite massifs [J]. Nature, 1995, 376: 159-162. DOI:10.1038/376159a0.
138 LUGUET A, SHIREY S B, J-P LORAND, et al. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle [J]. Geochimica et Cosmochimica Acta, 2007, 71: 3 082-3 097. DOI:10.1016/j.gca.2007.04.011.
139 LIU C Z, SNOW J E, HELLEBRAND E, et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean [J]. Nature, 2008, 452: 311-316. DOI:10.1038/nature06688.
140 O'REILLY S Y, ZHANG M, GRIFFIN W L, et al. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem?[J]. Lithos, 2009, 112: 1 043-1 054. DOI:10.1016/j.lithos.2009.04.028.
141 CHU Z Y, WU F Y, WALKER R J, et al. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton [J]. Journal of Petrology, 2009, 50: 1 857-1 898. DOI:10.1093/petrology/egp055.
142 CHESLEY J T, RIGHTER K, RUIZ J. Large-scale mantle metasomatism: A Re-Os perspective [J]. Earth and Planetary Science Letters, 2004, 219: 49-60. DOI:10.1016/S0012-821X(03)00698-8.
143 REHK?MPER M, HALLIDAY A N, BARFOD D, et al. Platinum group element abundance patterns in different mantle environments [J]. Science, 1997, 278: 1 595-1 598. DOI:10.1126/science.278.5343.1595.
144 PEARSON D G, IRVINE G J, IONOV D A, et al. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites [J]. Chemical Geology, 2004, 208: 29-59. DOI:10.1016/j.chemgeo.2004.04.005.
145 DAY J M D. Hotspot volcanism and highly siderophile elements [J]. Chemical Geology, 2013, 341: 50-74. DOI:10.1016/j.chemgeo.2012.12.010.
146 XU J F, SUZUKI K, XU Y G, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province [J]. Geochimica et Cosmochimica Acta, 2007, 71: 2 104-2 119. DOI:10.1016/j.gca.2007.01.027.
147 CHU Z-Y, HARVEY J, LIU C-Z, et al. Source of highly potassic basalts in northeast China: Evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry [J]. Chemical Geology, 2013, 357: 52-66. DOI:10.1016/j.chemgeo.2013.08.007.
148 HUANG F, CHEN J L, XU J F, et al. Os-Nd-Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: Partial melting of a pyroxenite-bearing lithospheric mantle?[J]. Geochimica et Cosmochimica Acta, 2015, 163: 279-298. DOI:10.1016/j.gca.2015.04.053.
149 CHU Z, YAN Y, ZENG G, et al. Petrogenesis of Cenozoic basalts in central-eastern China: Constraints from Re-Os and PGE geochemistry [J]. Lithos, 2017, 278/281: 72-83. DOI:10.1016/j.lithos.2017.01.022.
150 WIDOM E, HOERNLE K A, SHIREY S B, et al. Os isotope systematic in the Canary Islands and Madeira: Lithospheric contamination and mantle plume signatures [J]. Journal of Petrology, 1999, 40: 297-314. DOI:10.1093/petroj/40.2.279.
151 JACKSON M G, SHIREY S B. Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions [J]. Earth and Planetary Science Letters, 2011, 312: 91-101. DOI:10.1016/j.epsl.2011.09.046.
152 S-J BARNES, RIPLEY E M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits [J]. Reviews in Mineralogy & Geochemistry, 2016, 81: 725-774. DOI:10.2138/rmg.2016.81.12.
153 JIANG Shaoyong, YANG Jinghong, ZHAO Kuidong, et al. Re-Os isotope tracer and dating methods in ore deposits research [J]. Journal of Nanjing University, 2000, 36(6): 669-677.
153 蒋少涌, 杨竞红, 赵葵东, 等. 金属矿床Re-Os 同位素示踪与定年研究[J]. 南京大学学报, 2000, 36(6): 669-677.
154 QU Wenjun, CHEN Jiangfeng, DU Andao, et al. Review on Re-Os dating for magmatic copper-nickel sulfide ore deposit [J]. Mineral Deposits, 2012, 31(1): 151-160.
154 屈文俊,陈江峰,杜安道,等. Re-Os同位素定年对岩浆型Cu-Ni硫化物矿床成矿时代的制约[J]. 矿床地质,2012, 31(1): 151-160.
155 FOSTER J G, LAMBERT D D, FRICK L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites [J]. Nature, 1996, 382: 703-706. DOI:10.1038/382703a0.
156 WALKER R J, MORGAN J W, HORAN M F, et al. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia [J]. Geochimica et Cosmochimica Acta, 1994, 58: 4 179-4 197. DOI:10.1016/0016-7037(94)90272-0.
157 YANG Gang, DU Andao, LU Jiren, et al. Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit [J]. Science China Earth Sciences, 2005, 48(10): 1 672-1 677. DOI:10.1360/02yd0124.
157 杨刚,杜安道,卢记仁,等. 金川镍—铜—铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J]. 中国科学:地球科学,2005,35(3): 241-245.
158 YANG S H, QU W J, TIAN Y L, et al. Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: Post-segregation diffusion of Os [J]. Chemical Geology, 2008, 247: 401-418. DOI:10.1016/j.chemgeo.2007.11.002.
159 QU W J, CHEN J F, WANG L B, et al. Re-Os pseudo-isochron of disseminated ore from the Kalatongke Cu-Ni sulfide deposit, Xinjiang, Northwest China: Implications for Re-Os dating of magmatic Cu-Ni sulfide deposits [J]. Ore Geology Review, 2013, 53: 39-49. DOI:10.1016/j.oregeorev.2012.12.007.
160 STEIN H J. Dating and tracing the history of ore formation[M]// Holland H D,Turekian H D. Treatise on geochemistry (Second edition). Oxford: Elsevier Press, 2014: 87-118. DOI:10.1016/B978-0-08-095975-7.01104-9.
161 STEIN H, HANNAH J. Rhenium-Osmium geochronology: Sulfides, shales, oils, and mantle[M]// Rink J W,Thompson J W. Encyclopedia of scientific dating methods. Dordrecht: Springer Press, 2015: 707-723. DOI:10.1007/978-94-007-6304-3.
162 DU A, WU S, SUN D, et al. Preparation and certification of Re-Os dating reference materials: molybdenites HLP and JDC [J]. Geostandards and Geoanalytical Research, 2004, 28: 41-52. DOI:10.1111/j.1751-908X.2004.tb01042.x.
163 QU Wenjun, LI Chao, DU Andao. Discussion and evaluation of traceability and total uncertainty for the determination results of copper-nickel-sulfide Re-Os reference materials [J]. Rock and Mineral Analysis, 2011, 30(6): 664-668.
163 屈文俊,李 超,杜安道. 铜镍硫化物铼—锇标准物质定值的溯源性讨论及总不确定度评估[J]. 岩矿测试,2011,30(6): 664-668.
164 STEIN H, SCHERSTéN A, HANNAH J, et al. Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite [J]. Geochimica et Cosmochimica Acta, 2003, 67: 3 673-3 686. DOI:10.1016/S0016-7037(03)00269-2.
165 SELBY D, CREASER R A. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite [J]. Geochimica et Cosmochimica Acta, 2004, 68: 3 897-3 908. DOI:10.1016/j.gca.2004.03.022.
166 DU Andao, QU Wenjun, WANG Denghong, et al. Subgrain-size decoupling of Re and 187Os within molybednite [J]. Mineral Deposits, 2007, 26(5): 572-580.
166 杜安道,屈文俊,王登红,等.辉钼矿亚晶粒范围内Re和187Os的失耦现象[J]. 矿床地质,2007,26(5): 572-580.
167 LI Chao, QU Wenjun, DU Andao. Decoupling of Re and Os and migration model of 187Os in coarse-grained molybdenite [J]. Mineral Deposits, 2009, 28(5): 707-712.
167 李超,屈文俊,杜安道. 大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究[J]. 矿床地质,2009,28(5): 707-712.
168 STEIN H J, MORGAN J W, Scherstén A. Re-Os dating of Low-Level Highly-Radiogenic (LLHR) sulfides: The Harn?s gold deposit, southwest Sweden records continental scale tectonic events [J]. Economic Geology, 2000, 95: 1 657-1 671. DOI:10.2113/gsecongeo.95.8.1657.
169 MARKEY R J, HANNAH J L, MORGAN J W, et al. A double spike for osmium analysis of highly radiogenic samples [J]. Chemical Geology, 2003, 200: 395-406. DOI:10.1016/S0009-2541(03)00197-9.
170 QU W, DU A, ZHAO D. Determination of 187Os in molybdenite by ICP-MS with neutron-induced 186Os and 188Os spikes [J]. Talanta, 2001, 55: 815-820. DOI:10.1016/S0039-9140(01)00506-9.
171 SELBY D, CREASER R A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada [J]. Economic Geology, 2001, 96: 197-204. DOI:10.2113/gsecongeo.96.1.197.
172 LI Y, SELBY D, CONDON D, et al. Cyclic magmatic-hydrothermal evolution in porphyry systems:High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit [J]. Economic Geology, 2017, 112: 1 419-1 440. DOI:10.5382/econgeo.2017.4515.
173 RAVIZZA G, TUREKIAN K K. Application of the 187Re-187Os system to black shale geochronometry [J]. Geochimica et Cosmochimica Acta, 1989, 53: 3 257-3 262. DOI:10.1016/0016-7037(89)90105-1.
174 CREASER R A, SANNIGRAHI P, CHACKO T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw formation, Western Canada Sedimentary Basin [J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 441-3 452. DOI:10.1016/S0016-7037(02)00939-0.
175 LI Chao, QU Wenjun, WANG Denghong, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples [J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430.
175 李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志,2010,29(4):421-430.
176 LI Chao, QU Wenjun, WANG Denghong, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment [J]. Acta Geoscientical Sinica, 2014, 35 (4): 405-414.
176 李超, 屈文俊, 王登红, 等. Re-Os 同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报,2014,35 (4): 405-414.
177 JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering [J]. Earth and Planetary Science Letters, 2002, 198: 339-353. DOI:10.1016/S0012-821X(02)00526-5.
178 SELBY D, CREASER R, DEWING K, et al. Evaluation of bitumen as a Re-Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada [J]. Earth and Planetary Science Letters, 2005, 235: 1-15. DOI:10.1016/j.epsl.2005.02.018.
179 SELBY D, CREASER R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale chronometer [J]. Geology, 2005, 33: 545-548.DOI:10.1130/G21324.1.
180 KENDALL B, CREASER R A, SELBY D. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of ''Sturtian" glaciation [J]. Geology, 2006, 34: 729-732. DOI:10.1130/G22775.1.
181 ROONEY A D, MACDONALD F A, STRAUSS J V, et al. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth [J]. PNAS, 2014, 111: 51-56. DOI:10.1073/pnas.1317266110.
182 Kendall B, Creaser R A, Selby D. 187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks[J]. Geological Society, London, Special Publications, 2009, 326: 85-107. DOI: 10.1144/SP326.5.
183 XU L G, LEHMANN B, MAO J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in early Cambrian black shales of South China—A reassessment [J]. Economic Geology, 2011, 106: 511-522. DOI:10.2113/econgeo.106.3.511.
184 ZHU B, BECKER H, JIANG S-Y, et al. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China [J]. Precambrian Research, 2013, 225: 67-76. DOI:10.1016/j.precamres.2012.02.002.
185 ZHAO Hong, LI Chao, JIANG Xiaojun, et al. Direct radiometric dating of limestone from Changxing Permian-Triassic boundary using the Re-Os geochronometer [J]. Chinese Science Bulletin, 2015, 60(23): 2 209-2 215. DOI:10.1360/N972015-00409.
185 赵鸿,李超,江小均,等. Re-Os同位素精确厘定长兴“金钉子”灰岩沉积年龄[J]. 科学通报,2015, 60(23): 2 209-2 215. DOI:10.1360/N972015-00409.
186 PEI Haoxiang, FU Yong, LI Chao, et al. Mineralization age and metallogenic environment of Daotuo manganese deposits in Guizhou: Evidence from Re-Os isotopes [J]. China Science Bulletin, 2017, 62(28/29): 3 346-3 355. DOI: 10.1360/N972017-00450.
186 裴浩翔, 付勇, 李超, 等. 贵州道坨锰矿成矿时代及环境的Re-Os同位素证据[J]. 科学通报, 2017, 62(28/29): 3 346-3 355. DOI: 10.1360/N972017-00450.
187 CHEN Zhenghui, LI Chao, QU Wenjun, et al. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples [J]. Acta Petrologica Sinica, 2010, 26(11): 3 411-3 417.
187 陈郑辉,李超,屈文俊,等. 石墨Re-Os同位素分析及其在成矿年代学中的初步运用[J]. 岩石学报, 2010, 26(11): 3 411-3 417.
188 LI Chao, WANG Denghong, ZHOU Limin, et al. Study on the Re-Os isotope composition of graphite from the lutang graphite deposit in Hunan Province [J]. Rock and Mineral Analysis, 2017, 36(3): 297-304.
188 DOI:10.15898/j.cnki.11-2131/td.201704060050.[李超,王登红,周利敏,等. 湖南鲁塘石墨矿Re-Os同位素研究[J]. 岩矿测试, 2017, 36(3): 297-304. DOI:10.15898/j.cnki.11-2131/td.201704060050.]
189 HANNAH J L, BEKKER A, STEIN H J, et al. Primitive Os and 2316 Ma age for marine shale: Implications for paleoproterozoic glacial events and the rise of atmospheric oxygen [J]. Earth and Planetary Science Letters, 2004, 225: 43-52. DOI:10.1016/j.epsl.2004.06.013.
190 RAVIZZA G, PEUCKER-EHRENBRINK B. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record [J]. Science, 2003, 302: 1 392-1 395. DOI:10.1126/science.1089209.
191 TURGEON S C, CREASER R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode [J]. Nature, 2008, 454: 323-326. DOI:10.1038/nature07076.
192 SATO H, ONOUE T, NOZAKI T, et al. Osmium isotope evidence for a large Late Triassic impact event [J]. Nature Communication, 2013, 4: 2 455. DOI:10.1038/ncomms3455.
193 CAI Chang'e, QIU Nansheng, XU Shaohua. Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation [J]. Advances in Earth Science, 2014, 29(12): 1 362-1 371.
193 蔡长娥, 邱楠生, 徐少华. Re-Os 同位素测年法在油气成藏年代学的研究进展[J]. 地球科学进展,2014,29(12):1 362-1 371.
194 SHEN Chuanbo, SELBY D, MEI Lianfu, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation [J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93.
194 沈传波,Selby D,梅廉夫,等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石,2011,31(4): 87-93.
195 SHEN Chuanbo, LIU Zeyang, XIAO Fan, et al. Advancements of the research on Re-Os isotope system in petroleum system [J]. Advances in Earth Science, 2015, 30(2): 187-195.
195 沈传波,刘泽阳,肖凡,等. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展,2015,30(2): 187-195.
196 LI Zhen, WANG Xuance, LIU Keyu, et al. Rhenium-Osmium geochronology in dating petroleum systems: Progress and challenges [J]. Acta Petrolei Sinica, 2017, 38(3): 297-306.
196 李真, 王选策, 刘可禹, 等. 油气藏铼—锇同位素定年的进展与挑战[J]. 石油学报,2017, 38(3): 297-306.
197 Yanming SAI, TIAN Hui, LI Jie, et al. Recent research progresses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems [J]. Natural Gas Geoscience, 2020, 31(7):939-951.
197 DOI:10.11764/j.issn.1672-1926.2020.04.025. [赛彦明,田辉,李杰,等. 含油气系统Re-Os定年及Re-Os元素和同位素体系研究新进展[J]. 天然气地球科学,2020,31(7): 939-951. DOI:10.11764/j.issn.1672-1926.2020.04.025.]
198 SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes [J]. Science, 2005, 308: 1 293-1 295. DOI:10.1126/science.1111081.
199 FINLAY A J, SELBY D, OSBORNE M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems [J]. Geology, 2011, 39: 475-478. DOI:10.1130/G31781.1.
200 LILLIS P G, SELBY D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA [J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. DOI:10.1016/j.gca.2013.04.021.
201 LIU J, SELBY D, OBERMAJER M, et al. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, Western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems [J]. AAPG Bulletin, 2018, 102: 1 627-1 657. DOI:10.1306/12081717105.
202 HUANG Shaohua, QIN Mingkuan, SELBY D, et al. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin [J]. Earth Science Frontiers, 2018, 25(2): 254-266.
202 黄少华,秦明宽,Selby D,等. 准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年[J]. 地学前缘,2018,25(2): 254-266.
203 GEORGIEV S V, STEIN H J, HANNAH J L, et al. Comprehensive evolution of a petroleum system in absolute time: The example of Brynhild, Norwegian North Sea [J]. Chemical Geology, 2019, 522: 260-282. DOI:10.1016/j.chemgeo.2019.05.025.
204 GE X, SHEN C, SELBY D, et al. Petroleum evolution within the Tarim Basin, northwestern China: Insights from organic geochemistry, fluid inclusions, and rhenium-osmium geochronology of the Halahatang oil field [J]. AAPG Bulletin, 2020, 104: 329-355. DOI:10.1306/05091917253.
205 FINLAY A J, SELBY D, OSBORNE M J. Petroleum source rock identification of United Kingdom Atlantic Margin oil fields and the Western Canadian Oil Sands using platinum, palladium, osmium and rhenium: Implications for global petroleum systems [J]. Earth and Planetary Science Letters, 2012, 313/314: 95-104. DOI:10.1016/j.epsl.2011.11.003.
206 FINLAY A J, SELBY D, OSBORNE M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes [J]. Geology, 2010, 38: 979-982. DOI:10.1130/G31201.1.
207 WANG Jie, TENGER, LIU Wenhui, et al. Definition of petroleum generating time for Lower Cambrian bitumen of the Kuangshanliang in the West Sichuan Basin, China: Evidence from Re-Os isotopic isochron age [J]. Natural Gas Geoscience, 2016, 27(7): 1 290-1 298.
207 王杰, 腾格尔, 刘文汇, 等. 川西矿山梁下寒武统沥青脉油气生成时间的厘定——来自于固体沥青Re-Os同位素等时线年龄的证据[J].天然气地球科学,2016, 27(7): 1 290-1 298.
208 WANG P, HU Y, LIU L, et al. Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong Antimony deposit, Guizhou Province, China and its geological significance [J]. Acta Geologica Sinica, 2017, 91(6): 2 153-2 163.
209 GE X, SHEN C, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems [J]. Geology, 2016, 44: 491-494. DOI:10.1130/G37666.1.
210 GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, Northern Sichuan Basin, China: Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis [J]. AAPG Bulletin, 2018, 102: 1 429-1 453. DOI:10.1306/1107171616617170.
211 GE X, SHEN C, SELBY D, et al. Petroleum generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil generation episodes and sources [J]. AAPG Bulletin, 2018, 102: 913-938. DOI:10.1306/0711171623017125.
212 SU A, CHEN H H, FENG Y X, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, Central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology [J]. Precambrian Research, 2020, 350: 1-14. DOI:10.1016/j.precamres.2020.105897.
213 SELBY D, CREASER R A, FOWLER M G. Re-Os elemental and isotopic systematics in crude oils [J]. Geochimica et Cosmochimica Acta, 2007, 71: 378-386. DOI:10.1016/j.gca.2006.09.005.
214 MAHDAOUI F, REISBERG L, MICHELS R, et al. Effect of the progressive precipitation of petroleum asphaltenes on the Re-Os radioisotope system [J]. Chemical Geology, 2013, 358: 90-100. DOI:10.1016/j.chemgeo.2013.08.038.
215 DIMARZIO J M, GEORGIEV S V, STEIN H J, et al. Residency of rhenium and osmium in a heavy crude oil [J]. Geochimica et Cosmochimica Acta, 2018, 220:180-200. DOI:10.1016/j.gca.2017.09.038.
216 LIU J, SELBY D, ZHOU H, et al. Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems[J]. Chemical Geology, 2019, 513: 1-22. DOI:10.1016/j.chemgeo.2019.03.004.
217 ROONEY A D, SELBY D, LEWAN M D, et al. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments [J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291. DOI:10.1016/j.gca.2011.11.006.
218 MAHDAOUI F, MICHELS R, REISBERG L, et al. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum [J]. Geochimica et Cosmochimica Acta, 2015, 158: 1-21. DOI:10.1016/j.gca.2015.02.009.
219 HURTIG N, GEORGIEV S V, STEIN H J, et al. Controlling factors on Re-Os systematics in petroleum during water-oil interaction: The effects of oil chemistry [J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161. DOI:10.1016/j.gca.2018.12.021.
文章导航

/