研究论文

北极多年冻土区埋地输气管道周边温度场数值分析

  • 李欣泽 ,
  • 金会军 ,
  • 吴青柏 ,
  • 魏彦京 ,
  • 温智
展开
  • 1.中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.中石化石油工程设计有限公司,山东 东营 257000
    4.东北林业大学 土木工程学院与 寒区科学与工程研究院,黑龙江 哈尔滨 150000
    5.中国建筑东北设计研究院有限公司,沈阳 110006
李欣泽(1987-),男,新疆克拉玛依人,博士研究生,主要从事冻土与寒区工程研究. E-mail:slecclxz@sina.com
金会军(1967-),男,陕西岐山人,教授,主要从事冻土学和寒区工程、环境及其管理方面的研究. E-mail:hjjin@lzb.ac.cn

收稿日期: 2020-11-21

  修回日期: 2020-12-26

  网络出版日期: 2021-03-19

基金资助

中石化石油工程技术服务有限公司科研课题“阿拉斯加天然气管道建设关键技术可行性研究”(SG18-50J)

Numerical Analysis of Temperature Field Around Buried Gas Pipeline in Arctic Permafrost Regions

  • Xinze LI ,
  • Huijun JIN ,
  • Qingbai WU ,
  • Yanjing WEI ,
  • Zhi WEN
Expand
  • 1.State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Sinopec Petroleum Engineering Co. ,Dongying Shandong 257000,China
    4.School of Civil Engineering/Northeast-China Observatory and Research-Station of Permafrost Geo-Environment— Ministry of Education/Institute of Cold-Regions Engineering,Science and Technology,Northeast Forestry University,Harbin 150000,China
    5.China Northeast Architectural Design and Research Institute Co. ,Shenyang 110006,China
LI Xinze (1987-), male, Karamay City, Xinjiang Uygur Autonomous Region, Ph.D student. Research areas include permafrost and cold engineering. E-mail:slecclxz@sina.com
JIN Huijun (1967-), male, Qishan County, Shannxi Province, Professor. Research areas include permafrost, cold zone engineering, environment and project management. E-mail:hjjin@lzb.ac.cn

Received date: 2020-11-21

  Revised date: 2020-12-26

  Online published: 2021-03-19

Supported by

the Applied Science of Sinopec Petroleum Engineering Construction Co. ”Feasibility study on key technologies for Alaska natural gas pipeline construction”(SJ18-50J)

摘要

以北极规划输气管道工程为依托,建立埋地管道与冻土热交换相互作用数值计算模型,探究了埋地管道在连续多年冻土区、非连续多年冻土区和季节冻土区内,按照不同操作温度(5、-1和-5 ℃)运行情况下管道周围冻土温度演化过程。计算结果表明:同一区域不同管温对冻土上限值影响差异较大,尤其是在非连续多年冻土区,无论管道是正温输送还是负温输送,由于管道的运营,极大地影响了冻土上限值。5 ℃正温管道将导致冻土上限下降1~3倍管径;-1 ℃和-5 ℃负温管道将有助于提高冻土人为上限。建议在连续多年冻土区管道采用-1 ℃输送温度;在非连续多年冻土区冬季采用-1 ℃输送温度,夏季可以是正温,接近环境大气温度,但全年输气平均温度要小于0 ℃;在季节冻土区,若按照负温输送,反而容易引起管基土冻胀,建议输气温度不作特别控制,与温带地区管道类似,正温输送。希望能够为北极多年冻土区天然气管道建设提供新的思路。

本文引用格式

李欣泽 , 金会军 , 吴青柏 , 魏彦京 , 温智 . 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021 , 36(1) : 69 -82 . DOI: 10.11867/j.issn.1001-8166.2021.010

Abstract

Based on one planned arctic gas pipeline project which will cross continuous, discontinuous and sporadic permafrost zones and zones of seasonal frost from north to south, with 5 ℃, -1 ℃ and -5 ℃ settings of gas-flow in buried pipeline, a geothermal model for the interactions between pipeline and permafrost was established to investigate the thermal effect of pipelines on the freezing and thawing of soil around pipeline and thermal stability of permafrost by using a commercially available finite-element program for numerical analysis. The results show that different pipeline gas flow temperatures influence the permafrost table greatly. Especially in discontinuous permafrost zones the permafrost table is influenced in both positive temperature and negative temperature. The warm (+5 ℃) gas pipeline could lower permafrost table by about 1 to 3 times of pipe diameter and aggravate the degradation of permafrost around pipeline; The cold (-1 ℃) and chilled (-5 ℃) gas pipeline can effectively raise the permafrost table and maintain the thermal stability of frozen soil, but the temperature of soils under the chilled (-5 ℃) pipeline decreases obviously, which may lead to frost heave hazards. In terms of thermal stability around pipeline, it is advised that a transporting temperature of gas flow as -1 ℃ should be adopted in continuous permafrost zone all year round which causes only little disturbance to the permafrost environment; in discontinuous permafrost zone pipeline could operate above freezing in the summer months with the station discharge temperature trending the ambient air temperature, but the discharge temperature must be maintained as -1 ℃ throughout the winter months; in zone of seasonal frost the cold (-1 ℃) and chilled (-5 ℃) pipeline may cause frost heave, therefore pipeline should run in positive temperature without extra temperature cooling control. Finally, the initial framework solutions are proposed in hope of supplementing existing gas transporting process theory and identifying new approaches for gas pipeline in northern and upland permafrost regions.

参考文献

1 Alyeska Pipeline Service Company. Project description of the Trans-Alaska pipeline system: Summary [M]. Alaska of America: Alyeska Pipeline Service Company, 1971.
2 JOHNSON E R. Performance of the Trans-Alaska oil pipeline[C]//Proceedings 4th International Conference on Permafrost. Fairbanks, AK, USA. 1983, 2: 109-111.
3 NIXON J F, BURGESS M. Norman wells pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal, 1999, 36(1): 119-135.
4 HE Ruixia, JIN Huijun, Lanzhi Lü, et al. Permafrost and environment problems along the Golmud-Lhasa oil product pipeline and their mitigation[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 18-27.
4 何瑞霞, 金会军, 吕兰芝, 等. 格尔木—拉萨成品油管道沿线冻土工程和环境问题及其防治对策[J]. 冰川冻土, 2010, 32(1): 18-27.
5 HE Ruixia, JIN Huijun. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science and Technology, 2010, 64(3): 279-288.
6 DOBLANKO R M, OSWELL J M, HANNA A J. Right-of-way and pipeline monitoring in permafrost: The norman wells pipeline experience[C]//2002 4th International Pipeline Conference. American Society of Mechanical Engineers Digital Collection, 2002: 605-614.
7 JIN Huijun, HAO Jiaqian, CHANG Xiaoli, et al. Zonation and assessment of frozen-ground conditions for engineering geology along the China-Russia crude oil pipeline route from Mohe to Daqing, Northeastern China[J]. Cold Region Science and Technology, 2010, 64(3): 213-225.
8 SELIGMAN B J. Long-term variability of pipeline-permafrost interactions in North-west Siberia[J]. Permafrost and Periglacial Processes, 2010, 11: 5-22.
9 BREWER M C, JIN Huijun, HU Wanzhi, et al. The change of design of the Alyeska pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 809-817.
9 Brewer M C, 金会军, 胡万志,等. 阿拉斯加输油管的设计和施工方式方案变更过程及其背后的原因和哲学思想[J]. 冰川冻土, 2006, 28(6): 809-817.
10 OSWELL J M. Pipelines in permafrost: Geotechnical issues and lessons[J]. Canadian Geotechnical Journal, 2011, 48(9): 1 412-1 431.
11 YU Fan, QI Jilin, ZHANG Mingyi, et al. Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions[J]. Applied Thermal Engineering, 2016, 98: 220-227.
12 LI Junfeng, Hongqing Lü, LI Zhuxin. Experience and revelation learned from foreign pipeline construction projects in permafrost regions[J]. Petroleum Engineering Construction, 2006, 6(6):1-4.
12 李均峰, 吕宏庆, 李著信. 国外多年冻土区管道建设的经验与启示[J]. 石油工程建设, 2006, 6(6): 1-4.
13 LIU Zihao, LIU Jie, ZHANG Lei, et al. Analysis on the pipeline operation management technology in foreign severely cold and frozen Earth areas[J]. Oil-Gas Field Surface Engineering, 2017, 36(10): 77-80.
13 刘子浩, 刘婕, 张磊, 等. 国外高寒冻土区管道运行管理技术简析[J]. 油气田地面工程, 2017, 36(10): 77-80.
14 LIU Fujian, TAO Jin, JIANG Xu, et al. Technical standard system for new commissioning pipeline in severely cold and frozen Earth areas of Russia[J]. Oil Depot and Gas Station, 2018, 27(2): 5-8.
14 刘福建, 陶金, 姜旭, 等. 俄罗斯高寒冻土区新建管道投产的技术标准体系[J]. 石油库与加油站, 2018, 27(2) :5-8.
15 WANG Yumei, WANG Hongju, QIAN Chengwen, et al. Hydrostatic test technique used for Alaska pipeline in severely cold and frozen Earth areas[J]. Pipeline Technique and Equipment, 2009(4): 7-9.
15 王玉梅, 王红菊, 钱成文, 等. 阿拉斯加高寒冻土区水压试验技术[J]. 管道技术与设备, 2009(4): 7-9.
16 LI Guoyu, MA Wei, WANG Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2 964-2 972.
16 李国玉, 马巍, 王学力, 等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学, 2015, 36(10): 2 964-2 972.
17 JIN Huijun, YU Wenbing, CHEN Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipeline in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 455-464.
17 金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性) 融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3): 455-464.
18 FU Yuanhui, MA Guiyang, DU Mingjun, et al. Research on freeze-thaw hazards and protective measures of buried hot oil pipeline in permafrost regions[J]. Contemporary Chemical Industry, 2017, 46(3): 493-495.
18 富元晖, 马贵阳, 杜明俊, 等. 冻土区埋地热油管道冻融危害及防护措施研究[J]. 当代化工, 2017, 46(3): 493-495.
19 ZHOU Zhiwei, MA Wei, ZHANG Shujuan. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18.
20 LIU Yali, WANG Junfeng, WU Qingbai. The linear engineering impact on the eco-environment in permafrost regions: Research status and prospect[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 728-737.
20 刘亚丽, 王俊峰, 吴青柏. 多年冻土区线性工程的生态环境影响研究现状与展望[J]. 冰川冻土, 2018, 40(4): 728-737.
21 YU Wenbing, HAN Fenglei, LIU Weibo, et al. Geohazards and thermal regime analysis of oil pipeline along the Qinghai-Tibet Plateau engineering corridor[J]. Natural Hazards, 2016, 83(1): 193-209.
22 DONG Peng, ZHENG Dahai, HUANG Jianzhong, et al. Monitoring on the temperature field around buried pipeline of Mohe-Daqing crude oil pipeline in the permafrost region[J]. Oil & Gas Storage and Transportation, 2018, 37(5): 533-540.
22 董鹏, 郑大海, 黄建忠, 等. 漠大多年冻土区埋地输油管道周围温度场监测[J]. 油气储运, 2018, 37(5): 533-540.
23 KIM K,ZHOU W,HUANG S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology, 2008, 53(1): 382-396.
24 WILLIAMS P J. Pipelines and permafrost: Science in a cold climate[M]. Ottawa: Carleton University Press, 1986.
25 Hongqing Lü, LI Junfeng, TANG Yongliang. Some key techniques for natural gas pipelines in permafrost regions[J]. Natural Gas and Oil, 2009, 27(6): 1-4.
25 吕宏庆, 李均峰, 汤永亮. 多年冻土区管道的若干关键技术[J]. 天然气与石油, 2009, 27(6): 1-4.
26 DeGeer D, NESSIM M. Arctic pipeline design considerations[C]//ASME 2008 27th international conference on offshore mechanics and arctic engineering. American Society of Mechanical Engineers Digital Collection, 2008: 583-590.
27 LU Jianguo, ZHANG Mingyi, ZHANG Xiyun, et al. Review of the coupled hydro-thermo-mechanical interaction of frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 102-111.
27 路建国, 张明义, 张熙胤, 等. 冻土水热力耦合研究现状及进展[J]. 冰川冻土, 2017, 39(1): 102-111.
28 HUANG Long, SHENG Yu, HU Xiaoying, et al. Interactions between the pipeline and soils in permafrost: A review[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 112-122.
28 黄龙, 盛煜, 胡晓莹, 等. 冻土区管土相互作用研究综述[J]. 冰川冻土, 2017, 39(1): 112-122.
29 JURCA T, COUTTS R J, NIXON J F, et al. Thermal-hydraulics modeling for buried gas pipeline strain-based design[C]//The 27th international ocean and polar engineering conference. International Society of Offshore and Polar Engineers, 2017.
30 ZHANG Zhongqiong, WU Qingbai, LIU Yongzhi, et al. Characteristics of water and heat changes in near-surface layers under influence of engineering interface[J]. Applied Thermal Engineering, 2017, 125: 986-994.
31 LI Guoyu, MA Wei, ZHOU Zhiwei, et al. The limit state of pipeline based on stain design on cold regions[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1 099-1 105.
31 李国玉, 马巍, 周志伟, 等. 寒区输油管道基于应变设计的极限状态研究[J]. 冰川冻土, 2016, 38(4): 1 099-1 105.
32 WEI Yanjing, WEN Zhi, GAO Qiang, et al. Numerical analysis of temperature field around the buried gas pipeline in permafrost regions of Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1 078-1 086.
32 魏彦京, 温智, 高墙, 等. 青藏高原多年冻土区埋地输气管道周围温度场数值分析[J]. 冰川冻土, 2019, 41(5): 1 078-1 086.
33 WANG Fei, LI Guoyu, MA Wei, et al. Permafrost warming along the Mo'he-Jiagedaqi section of the China-Russia crude oil pipeline[J]. Journal of Mountain Science, 2019, 16(2): 285-295.
34 AN Weidong, WU Ziwang, SHEN Mu, et al. Interaction among temperature, moisture and stress fields in frozen soil[M]. Lanzhou:Lanzhou University Press, 1990: 21-75.
34 安维东,吴紫汪,沈沐,等.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990: 21- 75.
35 LAI Yuanming, ZHANG Luxin. Cooling effect of ripped-stone embankments on Qinghai-Tibet Railway under climatic warming [J]. Chinese Science Bulletin, 2003,48(6): 598.
36 Goodrich L E. The influence of snow cover on the ground thermal regime [J]. Canadian Geotechnical Journal,1982,19:421-432.
37 WANG Fei, LI Guoyu, MA Wei, et al. Permafrost thawing along the China-Russia crude oil pipeline and countermeasures: A case study in Jiagedaqi, Northeast China[J]. Cold Regions Science and Technology, 2018, 155: 308-313.
38 LING Feng, ZHANG Tingjun. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic[J]. Permafrost and Periglacial Processes,2003,14(2):141-150.
39 WANG Yongping, JIN Huijun, LI Guoyu. Investigation of the freeze-thaw states of foundation soils in permafrost areas along the China-Russia Crude Oil Pipeline (CRCOP) route using the ground penetrating radar[J]. Cold Regions Science and Technology, 2016, 126: 10-21.
40 LI Guoyu, WANG Fei, MA Wei, et al. Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline[J]. Applied Thermal Engineering, 2018, 141: 688-696.
41 BONACINA C, COMINI G. Numerical solution of phase-change problems[J]. International Journal of Heat and Mass Transfer, 1973, 16(6): 1 852-1 832.
42 JORGENSON T, YOSHIKAWA K, KANEVSKIY M, et al. Permafrost characteristics of Alaska[C]. Ninth International Conference on Permafrost, Fairbanks, AK, 2008.
43 TAO Jingle, REICHLE R H, KOSTER R D, et al. Evaluation and enhancement of permafrost modeling with the nasa catchment land surface model[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(7): 2 771-2 795.
文章导航

/