中国2020—2030年石油资源需求情景预测
收稿日期: 2019-10-24
修回日期: 2020-02-09
网络出版日期: 2020-04-10
基金资助
国家社会科学基金重点项目“中国战略性矿产资源国家安全评估与预警系统研究”(2020-2050┫┣18AGL002);国家自然科学基金重点项目“大数据环境下的评价理论、方法和应用”(71631006)
Scenario Prediction of China’s Oil Resource Demand in 2020-2030
Received date: 2019-10-24
Revised date: 2020-02-09
Online published: 2020-04-10
Supported by
the National Social Science Foundation of China “Research on national security evaluation and early warning system of China’s strategic mineral resources(2020-2050┫” ┣18AGL002);“Evaluation theory, method and application in big data environment”(71631006)
石油对保障国家能源安全发挥着重要作用,科学预测未来中国石油需求量,对中国能源政策制定具有重要意义。结合灰色关联分析与ARIMA-BP神经网络组合模型,选取1999—2018年中国GDP、国际石油价格、单位GDP能耗、产业结构、城镇化率和石油生产量等6个驱动变量数据,对中国2020—2030年石油需求进行情景预测。结果表明:选取的驱动变量与中国石油需求具有较高的关联性,且组合模型较单一模型预测精度高。2020—2030年中国石油需求量和进口量不断增加,但增长幅度逐渐减缓。3种情景下2020年、2025年和2030年预测的石油需求量均值分别为67 577.03万t、73 227.25万t和76 081.55万t;2020—2030年预测的平均对外依存度为76.19%,远超过50%的国际警戒线。中国石油供需矛盾将更加尖锐,据此提出针对性的政策建议。
关键词: 石油需求; 对外依存度; 情景预测; ARIMA-BP模型
郑明贵 , 李期 . 中国2020—2030年石油资源需求情景预测[J]. 地球科学进展, 2020 , 35(3) : 286 -296 . DOI: 10.11867/j.issn.1001-8166.2020.024
Oil plays an important role in ensuring national energy security. It is of great significance for China’s energy policy-making to predict the future oil demand scientifically. Combined with the grey correlation analysis and combination model of ARIMA-BP neural network, data on six driving variables of China’s GDP, international oil price, energy consumption per unit GDP, industrial structure, urbanization rate and oil production in 1999-2018 were selected to predict China’s oil demand under different scenarios in 2020-2030. The results show that the selected driving variables are highly correlated with China’s oil demand, and the combined model is more accurate than the single model. From 2020 to 2030, China’s oil demand and import will continue to increase, but the growth rate will gradually slow down. Under the three scenarios, the predicted average oil demand in 2020, 2025 and 2030 will be 675.7703 million tons, 732.2725 million tons and 760.8155 million tons, respectively; the predicted average external dependence in 2020-2030 will be 76.19%, far exceeding the international warning line of 50%. The contradiction between China’s oil supply and demand will be more acute, and accordingly, some policy suggestions were put forward.
Key words: Oil demand; External dependence; Scenario prediction; ARIMA-BP model
1 | Liang Haifeng,Li Ying.Countermeasures to risks of Chinese energy security under major changes of world petroleum pattern caused by uprising of the petroleum industry of USA[J].China Mining Magazine,2019,28(7):7-12. |
1 | 梁海峰,李颖.美国石油崛起推动世界石油格局重大变化下中国能源安全的风险及对策[J].中国矿业,2019,28(7):7-12. |
2 | Chai Jian,Liang Ting,Zhou Youhong,et al.Analysis of oil consumption under different regional industrialization—An empirical study based on Path-STR model[J].Chinese Journal of Management Science,2017,25(11):47-57. |
2 | 柴建,梁婷,周友洪,等.不同区制工业化水平下的石油消费分析——基于Path-STR模型的实证研究[J].中国管理科学,2017,25(11):47-57. |
3 | Shi Jun,Liu Xiantao.Empirical test on the relationship between industrial structure, oil demand and economic growth[J].Statistics & Decision,2017, (1):135-138. |
3 | 石俊,刘先涛.产业结构、石油需求及经济增长间关联的实证检验[J].统计与决策,2017,(1):135-138. |
4 | Lin Feng,Yu Wentao.Analysis of the trend of international oil price and China’s oil demand[J].Macroeconomic Management,2008, (4):31-32. |
4 | 林峰,于文涛.国际油价变动趋势与我国石油需求的探析[J].宏观经济管理,2008,(4):31-32. |
5 | Liu Guwang,Yan Qiang,Yang Jianbo.World oil demand based on S-Curve model of the transport sector[J].Resources Science,2018,40(3):547-557. |
5 | 刘固望,闫强,羊建波.基于交通部门“S”形模型的全球石油需求展望[J].资源科学,2018,40(3):547-557. |
6 | Jiao Jianling,Han Xiaofei,Li Lanlan,et al.Prediction of China oil demand with the constraints of CO2 abatement[J].Journal of Beijing Institute of Technology(Social Science Edition),2015,17(1):48-52. |
6 | 焦建玲,韩晓飞,李兰兰,等.减排约束下的中国石油需求预测[J].北京理工大学学报:社会科学版,2015,17(1):48-52. |
7 | Lü Kui.Empirical test of oil demand forecast based on vector error correction model[J].Statistics & Decision,2009, (10):66-68. |
7 | 吕魁.基于向量误差修正模型的石油需求预测实证检验[J].统计与决策,2009,(10):66-68. |
8 | Li Zhenyu,Lu Hong,Ren Wenpo,et al.China’s oil consumption and its future development trend analysis[J].Chemical Industry and Engineering Progress,2016,35(6):1 739-1 747. |
8 | 李振宇,卢红,任文坡,等.我国未来石油消费发展趋势分析[J].化工进展,2016,35(6):1 739-1 747. |
9 | Xuan Weiqi,Liu Xue,Jing Yuejun,et al.Analysis of future trend prediction of China’s petroleum consumption[J].Operations Research and Management Science,2009,18(3):1-7. |
9 | 禤伟旗,刘学,景跃军,等.中国石油消费发展趋势的预测分析[J].运筹与管理,2009,18(3):1-7. |
10 | Chen Haitao.Model and forecast of China’s petroleum demand system based on system dynamics[J].Statistics & Decision,2010, (20):98-101. |
10 | 陈海涛.基于系统动力学的中国石油需求系统模型及预测[J].统计与决策,2010,(20):98-101. |
11 | Chen Haitao.GM(1,1) model predicts China’s oil demand[J].Ecological Economy,2014,30(2):127-131. |
11 | 陈海涛.GM(1,1)模型预测我国石油需求量[J].生态经济,2014,30(2):127-131. |
12 | Wu Ya.Impact of energy technology progress on oil dem and energy savings and emission reduction potential—Based on the multiple factors[J].Science and Technology Management Research,2016,36(5):199-203. |
12 | 伍亚.能源技术进步对石油需求及节油减排潜力的影响——基于多因素视角的研究[J].科技管理研究,2016,36(5):199-203. |
13 | Li Hongxun,Li Yuanqing,Wang Haijun.Research on China’s oil demand based on BP neural network model[J].Journal of China University of Petroleum (Edition of Social Sciences),2015,31(3):8-11. |
13 | 李宏勋,李元庆,王海军.基于BP神经网络模型的中国石油需求预测研究[J].中国石油大学学报:社会科学版,2015,31(3):8-11. |
14 | Shen Lei,Liu Litao,Wang Limao,et al.2050 energy consumption projection for China[J].Journal of Natural Resources,2015,30(3):361-373. |
14 | 沈镭,刘立涛,王礼茂,等.2050年中国能源消费的情景预测[J].自然资源学报,2015,30(3):361-373. |
15 | Sun Mei,Deng Xing,Dong Tongming.Application of neural network and Kalman algorithm in oil demand prediction[J].Journal of Beijing Institute of Technology(Social Science Edition),2013,15(6):10-15. |
15 | 孙梅,邓星,董同明.神经网络和卡尔曼算法在石油需求预测中的应用[J].北京理工大学学报:社会科学版,2013,15(6):10-15. |
16 | Tang Lifang,Tang Wei.Prediction of petroleum demand based on CPSO-SVM[J].Computer Simulation,2012,29(6):206-209. |
16 | 唐丽芳,唐伟.基于CPSO-SVM的石油需求预测[J].计算机仿真,2012,29(6):206-209. |
17 | Zhao Chengbo,Mao Chunmei.Forecast of intensity of carbon emission to China based on BP neural network and ARIMA combined model[J].Resources and Environment in the Yangtze River Basin,2012,21(6):665-671. |
17 | 赵成柏,毛春梅.基于ARIMA和BP神经网络组合模型的我国碳排放强度预测[J].长江流域资源与环境,2012,21(6):665-671. |
18 | Zheng Xinwang,Peng Hao.An improved gray multivariable model for predicting industrial energy consumption in China[J].Math Model,2016,40(11/12):5 745-5 758. |
19 | Li Shuyu,Li Rongrong.Comparison of forecasting energy consumption in Shandong, China using the ARIMA model, GM model, and ARIMA-GM model[J].Sustainability,2017,9(7):1-19. |
20 | Wu Xiaofeng,Yang Yingmei,Chen Yaotong.ARIMA combined forecasting model based on BP neural network error correction[J].Statistics & Decision,2019, (15):65-68. |
20 | 吴晓峰,杨颖梅,陈垚彤.基于BP神经网络误差校正的ARIMA组合预测模型[J].统计与决策,2019,(15):65-68. |
21 | Zheng Minggui,Yuan Xuemei.Demand forecasting of China’s chrome ore from 2020 to 2030 based on grey neural network[J].Resources Development & Market,2018,34(6):747-752. |
21 | 郑明贵,袁雪梅.基于灰色神经网络的中国2020—2030年铬矿需求预测[J].资源开发与市场,2018,34(6):747-752. |
22 | Xie Xiaojun,Qiu Yunlan,Shi Ling.Prediction of energy consumption based on ARIMA and BP neural network combined model[J].Mathematics in Practice and Theory,2019,49(10):292-298. |
22 | 谢小军,邱云兰,时凌.基于ARIMA和BP神经网络组合模型的能源消费预测[J].数学的实践与认识,2019,49(10):292-298. |
23 | Liu Chunhong,Yang Liang,Deng He,et al.Prediction of ammonia concentration in piggery based on ARIMA and BP neural network[J].China Environmental Science,2019,39(6):2 320-2 327. |
23 | 刘春红,杨亮,邓河,等.基于ARIMA和BP神经网络的猪舍氨气浓度预测[J].中国环境科学,2019,39(6):2 320-2 327. |
24 | Chen Kegui,Li Jin,Huang Changbing,et al.Application research of BP neural network in Potassium-Rich brine[J].Advances in Earth Science,2018,33(6):614-622. |
24 | 陈科贵,李进,黄长兵,等.BP神经网络在富钾卤水中的应用研究[J].地球科学进展,2018,33(6):614-622. |
25 | Bank World,Development and Research Center of the State Council.China in 2030 [M].Beijing:China Financial and Economic Publishing House,2013. |
25 | 世界银行,国务院发展研究中心.2030年的中国[M].北京:中国财经经济出版社,2013. |
26 | National Development and Reform Commission Macroeconomic Research Institute.During the 13th Five-Year Plan Period,China’s Economic Growth Rate will Remain around7% [N].China Economic Times,2015-01-08(5) |
26 | [国家发改委宏观经济研究院.“十三五”时期我国经济增速将保持7%左右[N].中国经济时报,2015-01-08(5).] |
27 | IEA.World Energy Outlook 2017[M].Paris:International Energy Agency,2017:93-94. |
28 | Hu An'gang,Zhou Shaojie.The “New Normal” can be extended at least to 2030—How to cultivate new growth points in China’s economy [J].People’s Tribune,2015, (18):24-27. |
28 | 胡鞍钢,周绍杰.“新常态”至少可延伸至2030年——如何培养中国经济新增长点[J].人民论坛,2015,(18):24-27. |
29 | Wu Qinglong,Wang Jianming,Guo Peibin.Peaks regional carbon emission based on open STIRPAT modeling an energy-producing region of Shanxi[J].Resources Science,2018,40(5):1 051-1 062. |
29 | 吴青龙,王建明,郭丕斌.开放STIRPAT模型的区域碳排放峰值研究——以能源生产区域山西省为例[J].资源科学,2018,40(5):1 051-1 062. |
30 | China Petroleum Institute of Petroleum Economics and Technology (China Petroleum Institute of Stone and Stone).2050World and China Energy Outlook [EB/OL]. (2016-07-12)[2018-09-18].. |
30 | 中石油石油经济技术研究院(中石油石经院).2050年世界与中国能源展望[EB/OL].(2016-07-12)[2018-09-18].. |
31 | Zhang Yuqing,Yi Zhongyi,Zhou Yingheng.Forecasting of grain output using a method nonlinear BP neural network based on linear ARIMA modified[J].Mathematics in Practice and Theory,2013,43(22):135-142. |
31 | 张宇青,易中懿,周应恒.一种线性ARIMA基础上的非线性BP神经网络修正组合方法在粮食产量预测中的运用[J].数学的实践与认识,2013,43(22):135-142. |
32 | Chen Wei.Forecast of import and export trade based on combined model of linear ARIMA and nonlinear BP neural network[J].Statistics & Decision,2015, (22):47-49. |
32 | 陈蔚.基于线性ARIMA与非线性BP神经网络组合模型的进出口贸易预测[J].统计与决策,2015,(22):47-49. |
/
〈 |
|
〉 |