研究论文

GF-1 WFV2传感器数据的缨帽变换系数反演

  • 王帅 ,
  • 徐涵秋 ,
  • 施婷婷
展开
  • 1.福州大学环境与资源学院,福建 福州 350116
    2.福州大学遥感信息工程研究所,福建 福州 350116
    3.福州大学福建省水土流失遥感监测评估重点实验室,福建 福州 350116

作者简介:王帅(1992-),男,安徽阜阳人,硕士研究生,主要从事资源环境遥感研究.E-mail:wswin8@hotmail.com

*通信作者:徐涵秋(1955-),男,江苏射阳人,教授,主要从事资源环境遥感研究.E-mail:hxu@fzu.edu.cn

收稿日期: 2017-10-27

  修回日期: 2018-05-16

  网络出版日期: 2018-07-23

基金资助

*国家自然科学基金项目“星—地协同多源遥感数据不透水面辨识机理与反演模型研究”(编号:41501469);福建省测绘地理信息局项目“国产高分辨率卫星数据的交互比较研究”(编号:2017JX02)资助.

版权

, 2018,

Retrieval of Tasseled Cap Transformation Coefficients for GF-1 WFV2 Sensor Data

  • Shuai Wang ,
  • Hanqiu Xu ,
  • Tingting Shi
Expand
  • 1.College of Environment and Resources, Fuzhou University, Fuzhou 350116, China
    2.Institute of Remote Sensing Information Engineering, Fuzhou University, Fuzhou 350116, China
    3.Fujian Provinicial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University,Fuzhou 350116, China

First author:Wang Shuai (1992-), male, Fuyang City, Anhui Province, Master student. Research areas include remote sensing of resources and environment. E-mail:wswin8@hotmail.com

*Corresponding author:Xu Hanqiu (1955-), male, Sheyang County, Jiangsu Province, Professor. Research areas include remote sensing of resources and environment. E-mail:hxu@fzu.edu.cn

Received date: 2017-10-27

  Revised date: 2018-05-16

  Online published: 2018-07-23

Supported by

Project supported by the National Natural Science Foundation of China “Study on identification mechanism and inversion model of impervious surface for satellite ground collaborative multi-source remote sensing data”(No.41501469);The Science and Technology Development Fund of Fujian Provincial Administration of Surveying, Mapping and Geoinformation “Study on the cross comparison of domestic high-resolution satellite images” (No.2017JX02).

Copyright

地球科学进展 编辑部, 2018,

摘要

针对国产GF-1 WFV2传感器,提出一种缨帽变换系数的推导方法。利用全国范围内不同地区的18幅GF-1影像和5幅同步的Landsat 8影像,选择了大量覆盖不同地物类型的典型样本并分析光谱变化特征。在此基础上,用3幅Landsat 8同步影像对湿度分量回归,然后再用施密特正交化方法依次推导出两两正交的亮度分量和绿度分量。结果显示,推导的前2个分量能解释缨帽变换总变化量的97%以上,前3个分量能解释总变化量的99%以上。针对不同区域影像的实验结果表明,各分量都具有很好的稳定性,而不同分量之间的散点图也都有相似的分布特征,说明该系数有很好的适用性。与验证用的Landsat 8同步影像对比后发现,推导的缨帽变换结果与Landsat 8相应的分量之间都有很好的相关性和一致性,尽管2种传感器波段设置及光谱响应能力不同,但相关性仍高达0.9。对GF-1 WFV1,WFV3和WFV4传感器影像的实验结果表明,针对GF-1 WFV2传感器提出的缨帽变换系数,也可以很好地应用在WFV3和WFV1传感器上,但不建议在WFV4传感器上使用。

关键词: GF-1; 缨帽变换; 亮度; 绿度; 湿度

本文引用格式

王帅 , 徐涵秋 , 施婷婷 . GF-1 WFV2传感器数据的缨帽变换系数反演[J]. 地球科学进展, 2018 , 33(6) : 641 -652 . DOI: 10.11867/j.issn.1001-8166.2018.06.0641

Abstract

Aiming at GF-1 WFV2 sensor, a method for deriving Tasseled Cap Transformation (TCT) coefficients was proposed in this paper. Based on 18 GF-1 images and 5 synchronous Landsat 8 images of different regions throughout the country, a large number of typical samples covering different ground types were selected, and the spectral characteristics of these samples were then analyzed. On this basis, the wetness component of the TCT was retrieved by the regression using three Landsat 8 and WFV2 synchronous images. The orthogonal brightness and greenness components were then derived with the Gram-Schmidt orthogonalization method. The results showed that the derived first two components can explain more than 97% of total variation, and the first three components can explain more than 99% of the total variation. The experimental results from different regions showed that each component had good stability, and the scatter-plots of different components also exhibited similar distribution patterns. This indicates that the derived coefficients have good applicability. Compared with the validation images, the results of TCT are well correlated with corresponding Landsat 8 components. Although these two sensors have different band settings and different spectral responses, their correlation coefficient is still as high as 0.9. The application results for GF-1 WFV1, WFV3 and WFV4 showed that the coefficients derived from WFV2 sensor can also be used for WFV3 and WFV1 sensors, but they are not recommended for WFV4 sensor.

参考文献

[1] Kauth R J, Thomas G S.The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]//LARS Symposia, 1976: 159.
[2] Zanchetta A, Bitelli G, Karnieli A.Monitoring desertification by remote sensing using the Tasselled Cap transform for long-term change detection[J]. Natural Hazards, 2016, 83(1):1-15.
[3] Zanchetta A, Bitelli G, Karnieli A.Tasselled Cap transform for change detection in the drylands: Findings for SPOT and Landsat satellites with FOSS tools[C]//International Conference on Remote Sensing and Geoinformation of the Environment. International Society for Optics and Photonics, 2015:1 287-1 291.
[4] Santra A, Mitra S S.A comparative study of tasselled cap transformation of DMC and ETM+ images and their application in forest classification[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(2):373-381.
[5] Xu Hanqiu.A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5): 889-897.
[5] [徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.]
[6] Jong S M D. Derivation of vegetative variables from a landsat TM image for modelling soil erosion[J]. Earth Surface Processes & Landforms, 2010, 19(2):165-178.
[7] Han T, Wulder M A, White J C, et al. An efficient protocol to process landsat images for change detection with tasselled cap transformation[J]. IEEE Geoscience & Remote Sensing Letters, 2007, 4(1):147-151.
[8] Lobser S E, Cohen W B.MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data[J]. International Journal of Remote Sensing, 2007, 28(22): 5 079-5 101.
[9] Song C, Ren H, Huang C.Estimating soil salinity in the Yellow River Delta, Eastern China—An integrated approach using spectral and terrain indices with the generalized additive model[J]. Pedosphere, 2016, 26(5):626-635.
[10] Karl J W, Maurer B A.Multivariate correlations between imagery and field measurements across scales: Comparing pixel aggregation and image segmentation[J]. Landscape Ecology, 2010, 25(4): 591-605.
[11] Chen Chao, Qin Qiming, Wang Jinliang, et al. Comparison of quality evaluation methods for image fusion of farmland remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10):95-100.
[11] [陈超, 秦其明, 王金梁,等. 农地遥感图像融合质量评价方法比较[J]. 农业工程学报, 2011, 27(10):95-100.]
[12] Crist E P, Cicone R C.A physically-based transformation of thematic mapper data—The TM tasseled cap[J]. IEEE Transactions on Geoscience & Remote Sensing, 1984, 22(3):256-263.
[13] Crist E P, Cicone R C.Application of the Tasseled Cap concept to simulated thematic mapper data[J]. Photogrammetric Engineering & Remote Sensing, 1984, 50(3):343-352.
[14] Huang C, Wylie B, Yang L, et al. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance[J]. International Journal of Remote Sensing, 2002, 23(8): 1 741-1 748.
[15] Baig M H A, Zhang L, Tong S,et al.Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431.
[16] Liu Q, Liu G, Huang C, et al. A tasseled cap transformation for Landsat 8 OLI TOA reflectance images[C]//Geoscience and Remote Sensing Symposium. IEEE, 2014:541-544.
[17] Liu Q, Liu G, Huang C, et al. Comparison of tasselled cap transformations based on the selective bands of Landsat 8 OLI TOA reflectance images[J]. International Journal of Remote Sensing, 2015, 36(2):417-441.
[18] Li Bolun, Wei Chaopu, Yan Xiaoyuan.Study of derivation of tasseled cap transformation for Landsat 8 OLI images[J]. Science of Surveying and Mapping, 2016, 41(4):102-107.
[18] [李博伦, 违超普, 颜晓元. Landsat8陆地成像仪影像的缨帽变换推导[J]. 测绘科学, 2016, 41(4):102-107.]
[19] Yarbrough L D, Easson G, Kuszmaul J S.Using at-sensor radiance and reflectance tasseled cap transforms applied to change detection for the ASTER sensor[J]. Aster, 2005, 2: 141-145.
[20] Horne J H.A tasseled cap transformation for IKONOS images[C]//ASPRS 2003 Annual Conference Proceedings. 2003.
[21] Yarbrough L D, Easson G, Kuszmaul J S.QuickBird 2 tasseled cap transform coefficients: A comparison of derivation methods[C]//Pecora 16 Global Priorites in Land Remote Sensing, Sioux Falls, South Pakota, 2005, 16: 23-27.
[22] Verdin J, Eckhardt D, Lyford G.Evaluation of SPOT imagery for monitoring irrigated lands[C]//Proceedings International Conference on SPOT 1 Image Utilization, Assessment, Results p 81-91(SEE N 88-28346 22-43), Paris,1987.
[23] Silva D A.Determination of 'tasseled cap' transformation parameters for images obtained by the SPOT satellite[C]//International Symposium on Remote Sensing of Environment, 24th, Rio de Janeiro, Brazil, 1992: 291-300.
[24] Ivits E, Lamb A, Langar F,et al. Orthogonal transformation of segmented SPOT5 images[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(11): 1 351-1 364.
[25] Sheng L, Huang J, Tang X.A tasseled cap transformation for CBERS-02B CCD data[J]. Journal of Zhejiang University (Science B), 2011, 12(9): 780-786.
[26] Chen C, Tang P, Bian Z. Tasseled cap transformation for HJ-1A/B charge coupled device images[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063575-1-063575-11.
[27] Chander G, Markham B L, Helder D L.Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
[28] Hanqiu X.Image-based normalization technique used for Landsat TM/ETM+ imagery[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 62-66.
[29] Xu H.Retrieval of reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3):741-747.
[30] Jackson R D.Spectral indices in n-space[J]. Remote Sensing of Environment, 1983, 13(5): 409-421.
文章导航

/