新学科·新发展·新技术

智能化学示踪剂技术及其在油藏监测中的应用

  • 高兴军 ,
  • 徐薇薇 ,
  • 余义常 ,
  • 李艳然 ,
  • 李蕾
展开
  • 1.中国石油勘探开发研究院,北京 100083
    2.大庆油田采油一厂,黑龙江 大庆 163000
    3.河南油田研究院,河南 南阳 473132

作者简介:高兴军(1972-),男,黑龙江明水人,高级工程师,主要从事开发地质、开发测井研究.E-mail:gaoxingjun@petrochina.com.cn

收稿日期: 2017-12-23

  修回日期: 2018-04-05

  网络出版日期: 2018-06-13

版权

, 2018,

Intelligent Chemical Tracer Technology and Its Application to Reservoir Surveillance

  • Xingjun Gao ,
  • Weiwei Xu ,
  • Yichang Yu ,
  • Yanran Li ,
  • Lei Li
Expand
  • 1.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    2.No.1 Oil Production Plant, Daqing Oilfield Limited Company, Daqing Heilongjiang 163000, China
    3.Research Institute of He’nan Oilfield, Nanyang He’nan 473132, China;

First author:Gao Xingjun(1972-),male,Mingshui County,Heilongjiang Province,Senior Engineer. Research areas include production geology and production well-logging. E-mail:gaoxingjun@petrochina.com.cn

Received date: 2017-12-23

  Revised date: 2018-04-05

  Online published: 2018-06-13

Copyright

地球科学进展 编辑部, 2018,

摘要

深海油藏开发环境复杂,开采成本非常高,水平井及流入控制装置(ICD)得到了广泛应用,但长水平井及多分支井的产液剖面监测、水突破时间及见水井段的判断等一直是难题。挪威RESMAN公司和英国Tracerco公司研发的智能化学示踪剂技术因其风险低、寿命长,在水平井监测中日益受到重视。由于目前国内在该领域缺乏相关研究,故综述了智能化学示踪剂技术在深海水平井中的应用,系统介绍了智能化学示踪剂技术的原理、设计、装配、放置、取样及解释方法,并结合国外油田的具体实例,一方面阐述了高频瞬态取样方法及应用示踪剂团冲洗模型、到达模型进行产液剖面解释的技术思路,另一方面介绍了低频稳态取样方法及应用示踪剂通量模型进行见水时间及见水位置分析的技术思路。智能化学示踪剂技术实现了对油藏生产的持续监测,不需要改变水平井完井设计,对油井生产干扰小,油藏适用范围广,在碳酸盐岩储层、砂岩储层、页岩储层、含H2S和CO2气体以及温度高达137 ℃的油藏均有成功应用的实例,该技术应用前景十分广阔。

本文引用格式

高兴军 , 徐薇薇 , 余义常 , 李艳然 , 李蕾 . 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018 , 33(5) : 532 -544 . DOI: 10.11867/j.issn.1001-8166.2018.05.0532

Abstract

Deepwater oilfield development is very high cost venture in complex reservoir and production conditions. Reservoir development that relies on long horizontal wells and inflow control devices is common practice. Inflow profile monitoring and identification of the time and location of water breakthrough in long horizontal wells are challenging issues due to well production intervention. Intelligent chemical tracer technology, mainly developed by RESMAN and Tracerco, plays an important role in horizontal well monitoring because of its almost no risk and long duration, which gains increasing attention. Because of the inadequate study on intelligent tracer in China, this paper summarized the application of intelligent chemical tracer technology in deep-sea horizontal wells based on examples from overseas oilfields, and comprehensively introduced its basic principles, tracer system design, assembly, placement, sampling and interpretation of intelligent chemical tracer technology. Interpretation process of liquid production profiles along horizontal wells based on high frequency transient tracer sampling and tracer flushing and tracer reaching model was described. The identification process of the time and location of water breakthrough was explained through the low-frequency steady-state sampling and tracer flux model. The intelligent tracer technology achieves the continuous monitoring of oil and water production without changing the horizontal well completion design and without production intervention during monitoring, which has been proved to be suitable in a large range of reservoir condition, such as carbonate, sandstone, shale reservoirs and reservoirs with H2S/CO2 and temperature up to 137 ℃. More and more successful application cases of intelligent tracer make it to become a very potential and efficient technology.

参考文献

[1] Andrew Montes, Fridtjof Nyhavn, Gaute Oftedal, et al.Application of inflow well tracers for permanent reservoir monitoring in north amethyst subsea tieback ICD Wells in Canada[C]//SPE Middle East Intelligent Energy Conference and Exhibition, Dubai, UAE. Richardson, Texas:Society of Petroleum Engineers,2013:1-15.
[2] Svein Mjaaland, Erlend Gudding, Christian A A.Wireless inflow monitoring in a subsea field development: A case study from the Hyme Field, Offshore Mid-Norway[C]//SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands. Richardson, Texas:Society of Petroleum Engineers,2014:1-13.
[3] Kuck M D, Nofziger L, Gentil P, et al.Production monitoring by intelligent chemical inflow tracers in long horizontal heavy oil wells for the Nikaitchuq Field, Northern Alaska[C]//International Petroleum Technology Conference, Doha, Qatar. 2014:1-10.
[4] Ralf Napalowski, Richard loro, Christian Andresen. Successful application of well inflow tracers for water breakthrough surveillance in the pyrenees development, offshore Western Australia[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia. Richardson, Texas: Society of Petroleum Engineers,2012:1-15.
[5] Henry Edmundson.A revolution in reservoir surveillance for subsea production environments[J]. Scandinavian Oil-Gas Magazine,2013, (7/8):61-63.
[6] Zhang Dekai.ESMAN intelligent tracer technology substitute PLT[J]. Petroleum Knowledge, 2017,(1): 39-39.
[6] [张德凯. ESMAN智能示踪剂替代生产测井[J]. 石油知识,2017,(1):39-39.]
[7] Brock Williams, Brent Brough.Wireless reservoir surveillance in deepwater completions[C]//SPE Deepwater Drilling and Completions Conference, Galveston, Texas, USA. Richardson, Texas, USA:Society of Petroleum Engineers,2012:1-11.
[8] Nutricato G, Repetto C.Application of chemical tracers for clean-up and production inflow monitoring with onshore wells in Italy[C]//International Petroleum Technology Conference, Beijing, China,2013:1-11.
[9] Spencer J, Bucior D, Catlett R, et al.Evaluation of horizontal wells in the eagle ford using oil-based chemical tracer technology to optimize stimulation design[C]//SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA. Richardson, Texas:Society of Petroleum Engineers,2013:1-9.
[10] Nyhavn F, Dyrli A D.Permanent tracers embedded in downhole polymers prove their monitoring capabilities in a hot offshore well[C]//SPE Annual Technical Conference and Exhibition, Florence, Italy. Richardson, Texas: Society of Petroleum Engineers,2010:1-15.
[11] Hailu K A, Gibbons G, Fridtjof N.Monitoring multilateral flow and completion integrity with permanent intelligent well tracers[C]//SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA. Richardson, Texas:Society of Petroleum Engineers,2013:1-15.
[12] Aleks A, Serge H, Tony H.Designing a high resolution chemical surveillance network in a deepwater field off NW Borneo, East Malaysia[C]//Offshore Technology Conference-Asia, Kuala Lumpur, Malaysia, 2014:1-11.
[13] Christian A, Brock W, Mike M.Interventionless surveillance in a multi-lateral horizontal well[C]//ADC/SPE Drilling Conference and Exhibition, San Diego, California, USA. Richardson, Texas:Society of Petroleum Engineers,2012:1-9.
[14] Wang Pinxian.Chinese Earth Science at its turning point[J]. Advances in Earth Science, 2016,31(7):665-667.
[14] [汪品先. 迎接我国地球科学的转型[J]. 地球科学进展,2016,31(7):665-667.]
文章导航

/