研究论文

长江下游夏季低频温度和高温天气的延伸期预报研究

  • 杨秋明
展开
  • 江苏省气象科学研究所,江苏 南京 210009

作者简介:杨秋明(1963-),男,江苏常州人,研究员,主要从事天气气候预测研究.E-mail:yqm0305@263.net

收稿日期: 2017-05-17

  修回日期: 2018-02-28

  网络出版日期: 2018-05-24

基金资助

*国家自然科学基金项目“SCGT与夏季东亚ISO相互作用研究及其在长江下游强降水延伸期预报中的应用”(编号:41175082);江苏省气象科研基金面上项目“夏季长江下游地区低频降水和温度实时延伸期预报方法研究”(编号:KM201805)资助.

版权

, 2018,

A Study of the Extended-range Forecast for the Low Frequency Temperature and High Temperature Weather over the Lower Reaches of Yangtze River Valley in Summer

  • Qiuming Yang
Expand
  • Jiangsu Meteorological Institute, Nanjing 210009, China

First author:Yang Qiuming(1963-), male, Changzhou City, Jiangsu Province, Professor. Research areas include weather and climate prediction.E-mail:yqm0305@263.net

Received date: 2017-05-17

  Revised date: 2018-02-28

  Online published: 2018-05-24

Supported by

Project supported by the National Natural Science Foundation of China “Study on interaction between SCGT and ISO over East Asia in summer and its application to extended-range prediction of heavy precipitation over the lower reaches of Yangtze River valley” (No.41175082);The Scientific Research Foundation of Jiangsu Meteorological Bureau “Study on the real-time extended-range forecast method of low-frequency rainfall and temperature over the lower reaches of Yangtze River Valley in summer”(No.KM201805).

Copyright

地球科学进展 编辑部, 2018,

摘要

用1979—2011年逐日长江下游气温资料研究长江下游夏季高温日数与温度低频振荡的联系和变化特征。结果表明,长江下游夏季逐日气温主要有1525, 3060 和6070 d 的周期振荡,其中长江下游气温的3060 d 振荡强度年际变化和78月高温日数之间有显著的正相关。采用1979—2000年逐日长江下游气温3060 d低频分量和东亚850 hPa 低频温度主成分,构建了长江下游温度低频分量的延伸期预测的扩展复数自回归模型(ECAR)。对2001—2011年58月长江下游温度低频分量进行独立的实时延伸期逐日预报试验结果表明, 这种数据驱动的预测模型对3060 d时间尺度的长江下游低频温度分量的预测时效可达23 d左右, 对于提前2025 d预报长江下游地区夏季持续高温过程很有帮助,预报能力明显优于自回归模型(AR)。

本文引用格式

杨秋明 . 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018 , 33(4) : 385 -395 . DOI: 10.11867/j.issn.1001-8166.2018.04.0385

Abstract

Based on the observational data, the variations of Intraseasonal Oscillation (ISO) of the daily temperatures and its relationships to the high temperature in summer over the lower reaches of the Yangtze River Valley (LYRV) were studied for the period of 1979-2011. It is found that the daily temperatures over LYRV in May-August was mainly of periodic oscillations of 1525, 3060 and 6070 days, and the interannual variation of the intensity of its 3060-day oscillation had a strongly positive correlation with the number of days with daily highest temperature over 35 ℃ in July-August. Low frequency components of daily temperature in the LYRV, and the principal components of the Eastern Asian 850 hPa low frequency temperature, over a time period ranging from 1979 to 2000, were used to establish the Extended Complex Autoregressive model (ECAR) on an extended-range forecast of the 3060-day low frequency temperature over the LYRV. A 11-year independent real-time extended-range forecast was conducted on the extended-range forecast of low frequency component of the temperature over the LYRV in May-August, for the period ranging from 2001 to 2011. These experimental results show that this ECAR model, which is based on a data-driven model, has a good forecast skill at the lead time of approximately 23 days, with a forecast ability superior to the traditional autoregressive (AR) model. Hence, the development and variation of the leading 3060-day modes for the Eastern Asian 850 hPa low frequency temperatures and temporal evolutions of their relationships to low frequency components of the temperature over the LYRV in summer are very helpful in predicting the persistent high temperature over the LYRV at a 20 to 25 days lead.

参考文献

[1] Hoskins B.The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science[J]. Quarterly Journal of the Royal Meteorological Society,2013,139: 573-584.
[2] Chou Jifan, Zheng Zhihai, Sun Shupeng.The think about 10-30 days extended range numerical weather prediction strategy facing the atmosphere chaos[J]. Scientia Meteorologica Sinica, 2010, 30(5):569-573.
[2] [丑纪范,郑志海,孙树鹏.10-30 d延伸期数值天气预报的策略思考——直面混沌[J].气象科学,2010,30(5):569-573.]
[3] Ding Yihui, Liang Ping.Extended range forecast based on MJO[J]. Meteorological Monthly, 2010,36(7):111-122.
[3] [丁一汇,梁萍. 基于MJO的延伸预报[J].气象, 2010,36(7):111-122.]
[4] He Jinhai, Liang Ping, Sun Guowu.Consideration on extended-range forecast and its application study[J]. Advances in Meteorological Science and Technology,2013,3(1):11-17.
[4] [何金海,梁萍,孙国武.延伸期预报的思考及其应用研究进展[J].气象科技进展,2013,3(1):11-17.]
[5] Kondrashov D, Chekroun M D, Robertson A W, et al. Low-order stochastic model and “past-noise forecasting” of the Madden-Julian Oscillation[J]. Geophysical Research Letters, 2013,40(19): 5 305-5 310.
[6] Chen N, Majda A J, Giannakis D.Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model[J]. Geophysical Research Letters, 2014,41(15):5 612-5 619.
[7] Chen N, Majda A J.Predicting the Real-Time Multivariate Madden-Julian Oscillation Index through a Low-Order Nonlinear Stochastic Model[J]. Monthly Weather Review, 2015,143:2 148-2 169.
[8] Wang L, Ting Mingfang, Chapman David, et al. Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model[J]. Climate Dynamics, 2016, 46: 693-709.DOI:10.1007/s00382-015-2607-0.
[9] Zhu Z, Li T.The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China[J]. Climate Dynamics, 2016, 48(1/2): 209-224.
[10] Zhu Z, Li T.Statistical extended-range forecast of winter surface air temperature and extremely cold days over China[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(704): 1 528-1 538.DOI: 10.1002/qj.3023.
[11] Zhu Z, Li T.Extended-range forecasting of Chinese summer surface air temperature and heat waves[J]. Climate Dynamics, 2018, 50(516):2 007-2 021.
[12] Xia Z Y, Chen H B, Xu L S, et al. Extended range (1030 days) heavy rain forecasting study based on a nonlinear cross-prediction error model[J]. Advances in Atmospheric Science, 2015, 32(12): 1 583-1 591.
[13] Sze’kely E, Giannakis D, Majda A J.Extraction and predictability of coherent intraseasonal signals in infrared brightness temperature data[J]. Climate Dynamics,2016, 46(5):1 473-1 502.
[14] Sabeerali C T, Ajayamohan R S, Giannakis D, et al. Extraction and prediction of indices for monsoon intraseasonal oscillations: An approach based on nonlinear Laplacian spectral analysis[J]. Climate Dynamics,2017,49(9/10):3 031-3 050.
[15] Zheng Zhihai, Feng Guolin, Huang Jianping, et al. Predictability-based extended-range ensemble prediction method and numerical experiments[J]. Acta Physica Sinica, 2012,61(19),199-203.
[15] [郑志海,封国林,黄建平,等.基于延伸期可预报性的集合预报方法和数值试验[J]. 物理学报,2012,61(19): 199-203.]
[16] Yu H, Huang J, Li W, et al. Development of the analogue-dynamical method for error correction of numerical forecasts[J]. Journal of Meteorological Research, 2014, 28(5): 934-947. DOI: 10.1007/s13351-014-4077-4.
[17] Yu H, Huang J, Chou J.Improvement of medium-range forecasts using the analogue-dynamical method[J]. Monthly Weather Review, 2014, 142(4): 1 570-1 587.
[18] Hu S, Qiu C, Zhang L, et al. An approach to estimating and extrapolating model error based on inverse problem methods: Towards accurate numerical weather prediction[J]. Chinese Physics B, 2014, 23(8). DOI: 10.1088/1674-1056/23/8/089201.
[19] Huang Qican, Hu Shujuan, Qiu Chunyu, et al. Numerical model error estiamtion by derivative-free optimization method[J]. Acta Physical Sinica, 2014, 63(14): 149203.
[19] [黄启灿,胡淑娟,邱春雨,等.基于无导数优化方法的数值模式误差估计[J]. 物理学报, 2014, 63(14): 149203.]
[20] Wang Xujia, Zheng Zhihai, Feng Guolin, et al. The role of boundary and initial conditions for extended range forecast[J]. Acta Meteorologica Sinica,2017, 75(1):111-122.
[20] [汪栩加,郑志海,封国林,等.延伸期预报中的大气初值与海温边值相对作用[J].气象学报,2017, 75(1):111-122.]
[21] Chen Guanjun, Wei Fengying, Yao Wenqing, et al. Extended range forecast experiments of persistent winter low temperature indexes based on intra-seasonal oscillation over southern China[J]. Acta Meteorologica Sinica, 2017,75(3): 400-414.
[21] [陈官军, 魏凤英, 姚文清, 等. 基于低频振荡信号的中国南方冬半年持续性低温指数延伸期预报试验[J]. 气象学报,2017, 75(3): 400-414.]
[22] Neena J M, Lee J Y, Waliser D E, et al. Predictability of the Madden-Julian Oscillation in the intraseasonal variability hindcast experiment (ISVHE)[J]. Journal of Climate, 2014,27:4 531-4 543.
[23] Lee S S, Wang Bin, Waliser D E, et al. Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment[J]. Climate Dynamics, 2015,45(7/8): 2 123-2 135.
[24] Yang Qiuming.Prospects and progresses in the research of the methods for 10-30 days extended-range weather forecast[J]. Advances Earth Science, 2015, 30(9): 970-984.
[24] [杨秋明. 10-30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展,2015,30(9):970-984.]
[25] Yang Qiuming.Study of the method of the extended-range forecast for the low frequency rainfall over the lower reaches of the Yangtze River in summer based on the 20-30 day oscillation[J]. Acta Meteorologica Sinica, 2014, 72(3): 494-507.
[25] [杨秋明. 基于20-30d振荡的长江下游地区夏季低频降水延伸期预报方法研究[J].气象学报, 2014, 72(3): 494-507.]
[26] Yang Qiuming.Extended complex autoregressive model of low frequency rainfalls over the lower reaches of Yangtze River Valley for extended-range forecast in 2013[J]. Acta Physica Sinica,2014, 63(19):199202. DOI: 10.7498/aps.63.199202.
[26] [杨秋明. 2013年长江下游降水低频分量延伸期预报的扩展复数自回归模型[J].物理学报,2014,63(19):199202. DOI: 10.7498/aps.63.199202.]
[27] Yang Qiuming.Predictability and prediction of low frequency rainfall over the lower reaches of the Yangtze River valley on the time scale of 2030 days[J]. Journal of Geophysical Research, 2018,123:211-233. DOI:10.1002/2017JD027281.
[28] Mo K C.Adaptive filtering and prediction of intraseasonal oscillations[J]. Monthly Weather Review, 2001,129: 802-817.
[29] Yang Qiuming.The 20-30-day oscillation of the global circulation and heavy precipitation over the lower reaches of the Yangtze River Valley[J]. Science in China (Series D), 2009, 52(10):1 485-1 501.
[29] [杨秋明. 全球环流20-30 d 振荡与长江下游强降水[J].中国科学:D辑,2009,39(11):1 515-1 529.]
[30] Yang Qiuming, Song Juan, Li Yi, et al. Review of impacts of the global atmospheric intraseasonal oscillation on the continuous heavy rainfall over the Yangtze River Valley[J]. Advance in Earth Science, 2012, 27(8):876-884.
[30] [杨秋明,宋娟,李熠,等.全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J].地球科学进展,2012,27(8):876-884.]
文章导航

/