研究论文

孔隙结构参数对地震各类波传播的影响研究

  • 王喜乐 ,
  • 张志禹 ,
  • 樊婷
展开
  • 西安理工大学自动化与信息工程学院,陕西西安710048
张志禹(1966-),男,山西朔州人,教授,主要从事阵列信号处理、图像模式识别研究.E-mail:zhangzhiyu@xaut.edu.cn

网络出版日期: 2015-12-10

基金资助

国家自然科学基金重大项目课题四“非常规油气储层表征理论与甜点识别方法研究”(编号:41390454)资助.

Pore Structure Parameters Influence on Various Types of Seismic Wave Propagation

  • Wang Xile ,
  • Zhang Zhiyu ,
  • Fan Ting
Expand
  • School of Automation and Information Engineering, Xi’an University of Technology, Xi’an710048,China

Online published: 2015-12-10

摘要

针对地震波在较为复杂的孔隙介质结构体系中波场随结构的微变而发生变化的情况,研究孔隙介质中表征介质结构的几个参数对各类地震波传播的影响作用。首先建立了各向同性弹性孔隙介质模型, 并导出了相应的弹性波波动方程,采用高阶交错网格有限差分法进行了正演模拟,同时分析了孔隙度、黏滞性、渗透率3个孔隙结构参数对波场特征的变化影响。该研究有助于加深对地震波在实际复杂介质体系中传播规律的认识。

本文引用格式

王喜乐 , 张志禹 , 樊婷 . 孔隙结构参数对地震各类波传播的影响研究[J]. 地球科学进展, 2015 , 30(12) : 1306 . DOI: 10.11867/j.issn.1001-8166.2015.12.1306

Abstract

For the case of seismic waves in a more complex architecture porous medium wave field occurs slightly changed with changes in the structure, several parameters characteristics of the structure of the media which influence on various types of seismic wave propagation were studied. Firstly, the article establishes the isotropic elastic porous medium model, derive the corresponding elastic wave equation, and uses high-order staggered-grid finite difference method for forward modeling, the article also analyze the pore structure parameters such as porosity, viscosity and penetration influence on the wave field characteristics were also analyzed. At the same time, the study analyze the influence of porosity, permeability and viscosity on phase velocity and attenuation coefficient was analyzed in the stady. The results showed that the influence on attenuation coefficient was more sensitive than that on phase velocity. This study helps to deepen the understanding of seismic wave propagation in the practical system of complex medium.

参考文献

[1]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid.Ⅰ.Low frequency range[J].The Journal of the Acoustical Society of America,1956,28(2):168.

[2]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid.Ⅱ.Higher frequency range [J].The Journal of the Acoustical Society of America, 1956, 28(2):179.

[3]Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,1962,33(4):1 482-1 498.

[4]Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J].Journal of Applied Physics, 1980,36(4):259-261.

[5]Berryman J G .Confirmation of Biot’s theory[J]. Journal of Applied Physics, 1980,37(4):382-384.

[6]Berryman J G,Wang H F. Elastic wave propagation and attenuation in a double porosity dual-permeability medium[J].International Journal of Rock Mechanics and Mining Sciences, 2000,37:63-78.

[7]Denneman A I M, Drijkoningen G G, Smeulders D M J, et al. Reflection and transmission of waves at a fluid/porous-medium interface[J].Geophysics,2002,67:282-291.

[8]Carcione J M, Helle H B. A constitutive equation and generalized Gassmann modulus for multimineral porousmedia[J].Geophysics,2005,70:N17-N26.

[9]Magnus Wangen.Stability of reaction-fronts in porous media[J].Applied Mathematical Modelling,2013,37:4 860-4 873.

[10]Cédric Galusinski, Mazen Saad.Weak solutions for immiscible compressible multifluid flows in porous media[J].Comptes Rendus Mathematique,2009,347:249-254.

[11]Liang M, Yang S, Miao T, et al. Analysis of electroosmotic characters in fractal porous media[J].Chemical Engineering Science,2015, 127:202-209.

[12]Shi L.A solid-fluid mixture theory of porous media[J].International Journal of Engineering Science,2014,84:133-146.

[13]Wyllie M R J,Gregory A R,Gardner L W. Elastic wave velocities in heterogeneous and porous media [J]. Geophysics,1956, 21(1): 41-70.

[14]Gassmann F. Elastic waves through a Packing of spheres[J].Geophysics,1951,16:673-685.

[15]White J E.Underground Sound:Application of Seismic Waves[M]. Amsterdam:Elsevier,1983.

[16]White J E. Biot-Gardner theory of extensional waves in porous rods[J].Geophysics, 1986,51(3):742-745.

[17]Behzad G, Allen G H. Unsaturated hydraulic conductivity in porous media: Percolation theory[J].Geoderma,2012,187/188:77-84.

[18]Rinat R, Fariha I, Jeff T G. A method for measuring in-plane effective diffusivity in thin porous Media[J].International Journal of Heat and Mass Transfer,2015,85:367-374.

[19]Meijuan Y, Boming Y, Jianchao C.Analysis of seepage characters in fractal porous media[J].International Journal of Heat and MassTransfer,2009,52:3 272-3 278.

[20]Edward B, Igor S. Multiscale modeling of fluid permeability of a non-homogeneous porous media[J]. International Journal of Engineering Science,2012,56:99-110.

[21]Murphy W F. Effects of partial water saturation on attenuation in Massilon sandstone and porous glass[J].The Journal of the Acoustical Society of America,1982, 71(6): 1 458-1 468.

[22]Murphy W F .Acoustic measures of partial gas saturation in tight sandstones[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1984, 89(B13): 11 549-11 559.

[23]Murphy W F, Winkler K W, Kleinberg R L. Acoustic relaxation in sedimentary rocks:Dependence on grain contacts and fluid saturation[J]. Geophysics, 1986, 51(3): 757-766.

[24]Xu Zuxin, Guo Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science, 2014,29(5):624-631.[徐祖新,郭少斌.基于NMR和X-CT的页岩储层孔隙结构研究[J].地球科学进展,2014,29(5):624-631.]

文章导航

/