收稿日期: 2003-01-28
修回日期: 2003-04-29
网络出版日期: 2004-02-01
基金资助
国家自然科学基金项目“基于‘3S’检测中国北方典型草原植被盖度及其尺度转换研究”(编号:30370265);国家重点基础研究发展规划项目“草地与农牧交错带生态系统重建机理及优化生态—生产范式”(编号:G2000018604);北京师范大学青年科学基金项目(理科)联合资助
GLOBAL AND REGIONAL COVER MAPPING FROM REMOTE SENSING DATA: STATUS QUO, STRATEGIES AND TRENDS
Received date: 2003-01-28
Revised date: 2003-04-29
Online published: 2004-02-01
土地利用/土地覆盖变化研究是近年来全球变化研究的焦点之一。全球和区域尺度的土地覆盖特征对全球环境状况的评估、模拟未来全球环境的情景有重要的作用。2000年在Internat ionalJournalofRemoteSensing杂志上出版了题为"GlobalandRegionalLandCoverCharacterizat ion from Remotely Sensed Data"的专辑。在此基础上,介绍、总结了国际上利用遥感影像进行全球和区域等大尺度土地覆盖研究的新进展。分别从数据源与制图的时空尺度、制图方法(数据预处理、分类、精度评估)等方面进行了介绍,并对现今的两个全球土地覆盖数据库进行了比较分析。
喻锋 , 李晓兵 , 陈云浩 . 基于遥感数据的全球及区域土地覆盖制图———现状、战略和趋势[J]. 地球科学进展, 2004 , 19(1) : 71 -080 . DOI: 10.11867/j.issn.1001-8166.2004.01.0071
Land use and land cover change is one of the focuses in the study of global change in recent years. Land cover characteristics, at the global and regional scale, are very important for evaluating global environment status and simulating global environment scenario in the future. A special issue named "Global and regional land cover characterization from remotely sensed data" was published in 2000 in International Journal of Remote Sensing. Based on this, international advance of land cover characterization from remotely sensed data at global and regional scale was summarized and introduced in this paper, including data sources, dimension and land cover mapping methods (pre-processing, classification and accuracy assessment), etc. Two global land cover databases-IGBP DISover and University of Maryland 1 km products were introduced as examples.
The domain of land cover mapping spans the range between two extremes: "coarse" resolution at frequent time intervals, and "fine" resolution at long intervals. Major steps in extracting land cover information by using satellite data at fine and coarse resolutions include: geometric corrections, compositing, radiometric corrections, classification and accuracy assessment. Land cover information that can be gleaned from satellite images is the spectral and spatial attributes of individual cover types. Two types of numerical classification approaches for satellite image classification have been evolved for more than 30 years, which are unsupervised algorithm and supervised algorithm. In recent years, numerous variants of these two basic classification methods have been developed, including decision trees, neural networks, fuzzy classification and mixture modeling for supervised classification, and classification by progressive generalization, classification through enhancement and post-processing adjustment for unsupervised techniques. "No land cover classification project would be complete without an accuracy assessment". In addition to purely methodological considerations, accuracy assessment tends to be strongly constrained by the resources available. Thus, in practice, accuracy assessment is "A balance between what is statistically sound and what is practically attainable must be found".
On board of EOS-AM-1 satellite, MODIS sensor acquires data with 250 m,500 m,1000 m spatial resolution and 36 bands spanning 0.4~14 μm. MODIS data, free for users all over the world, is up to date and is becoming the most important data source for land cover classification at the global and regional scale.
Key words: Remote sensing data; Large scale; Land cover; Mapping.
[1]Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP discover from 1km AVHRR data [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 303-1 330.
[2]Lambin E F, Baulies X, Bockstael N, et al. Landuse and Landcover Change: Implementation Strategy[A]. In: IGBP Report 48 and IHDP Report 10[C]. Sweden: Stockholm, 1999.
[3]Pielke R, Lee T J, Copeland J H, et al. The use of USGSprovided data to improve weather and climate simulations[J]. Ecological Applications, 1997, 7: 3-21.
[4]Colwell R N ed. Manual for Photographic Interpretation [M]. Washington DC: The American Society of Photogrammetry, 1960.
[5]Townshend J R G, Justices C O, Skole D, et al. The 1 km resolution global data set: Needs of the International GeosphereBiosphere Programme[J]. International Journal of Remote Sensing, 1994, 15: 3 417-3 441.
[6]Eidenshink J C, Faundeen J L. The 1 km AVHRR global land data set: First stages in implementation [J]. International Journal of Remote Sensing, 1994, 15: 3 443-3 462.
[7]DeFries K L, Townshend J R G. NDVIderived land cover classification at global scales [J]. International Journal of Remote Sensing, 1994, 15: 3 567-3 586.
[8]Landland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21: 1 303-1 330.
[9]IGBP. The International GeosphereBiosphere Programme: A study of global change[A].In: The initial core projects. IGBP Report 12[C]. Sweden: Stockholm, 1990.
[10]GCOS. GCOS/GTOS plan for terrestrial climaterelated observation[A]. In: Report GCOS32, WMO/TDNo. 796[C]. World Meteorological Organization, 1997.
[11]Saint G. VEGETATION onboard SPOT 4: Mission specifications[R]. Report No. 92102, Laboratoire d'etudes et de recherches en teledetection spatiale, Toulouse, France, 1992.
[12]Cihlar J. Land cover mapping of large areas form satellites: Status and research priorities[J]. International Journal of Remote Sensing, 2000, 21: 1 093-1 114.
[13]Holben B. Characteristics of maximumvalue composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7: 1 417-1 434.
[14]Cihlar J, Beaubien J. Land Cover of Canada 1995 Version 1.1[M]. Digital data set docimentation, Natural Resources Canada, Ottawa, Ontario, 1998.
[15]Laporte N T, Goetz S J, Justice C O, et al. A new land cover map of central Africa derived from multiresolution, multitemporal AVHRR data [J]. International Journal of Remote Sensing, 1998, 19: 3 537-3 550.
[16]Loveland T R, Merchant J W, Ohlen D O, et al. Development of a landcover characteristics database for the conterminous U.S[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57: 1 453-1 463.
[17]Eidenshink J C, Faundeen J L. The 1 km AVHRR global land data set: First stages in implementation[J].International Journal of Remote Sensing, 1994, 15: 3 443-3 462.
[18]Loveland T R, Belward A S. The IGBPDIS global 1 km land cover dataset, DISCover: First results[J].International Journal of Remote Sensing, 1997, 18: 3 289-3 295.
[19]Jennings M D. Gap analysis today: A confluence of biology, ecology, and geography for management of biological resources[J]. Wildlife Society Bulletin, 1995, 23: 658-662.
[20]Vogelmann J E, Sohl T, Howard S M. Regional characterization of land cover using multiple sources of data [J]. Photogrammetric Engineering and Remote Sensing, 1998, 64: 45-57.
[21]Moody A, Woodcock C E. Calibrationbased models for correction of area estimates derived from coarse resolution landcover data[J]. Remote Sensing of Environment, 1996, 58: 225-241.
[22]Cihlar J, Latifovic R, Chen J, et al. Selecting high resolution sample in land cover studies, Part 2: Application to estimating land cover composition [J]. Remote Sensing of Environment, 1998, 63: 84-95.
[23]Justice C, Vermote E, Townshend J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1 228-1 249.
[24]DeFries R, Belward A S. Global and regional land cover characterization from satellite data: An introduction to the special issue [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 083-1 092.
[25]Cracknell A P, Paithoonwattanakij K. Pixel and subpixel accuracy in geometrical image correction of AVHRR imagery [J]. International Journal of Remote Sensing, 1989, 10: 661-667.
[26]Friedmann D E. Operational resampling for correcting images to a geocoded format[A]. In: Proceedings of the Fifteenth International Symposium on Remote Sensing of Environment[C]. Ann Arbor, MI (Environmental Research Institute of Michigan), 1981.195-199.
[27]Pokrant H. Land cover map of Canada derived from AVHRR images[M]. Winnipeg, MB, Canada: Manitoba Remote Sensing Centre, 1991.
[28]Cihlar J, Manak D, D' Iorio M. Evaluation of compositing algorithms for AVHRR data over land[J]. IEEE Transactions for Geoscience and Remote Sensing, 1994, 32: 427-437.
[29]Cihlar J, Manak D, Voisin N. AVHRR bidirectional reflectance effects and compositing[J]. Remote Sensing of Environment, 1994, 48: 77-88.
[30]Cihlar J, Ly H, Li Z,et al. Multitemporal, multichannel AVHRR data sets for land biosphere studies: Artifacts and corrections[J]. Remote Sensing of Environment, 1997, 60: 35-57.
[31]Sellers P J, Los S O, Tucker C J, et al. A global 1° by 1° NDVI data set for climate studies, Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI [J]. International Journal of Remote Sensing, 1994, 15: 3 519-3 545.
[32]Cihlar J, Ly H, Xiao Q. Land cover classiffication with AVHRR multichannel composites in northern environments[J]. Remote Sensing of Environment, 1996, 58: 36-51.
[33]Barnsley M J, Strahler A H, Morris K P, et al. Sampling the surface bidirectional reflectance distributionfunction (BRDF): 1. Evaluation of current and future sensors [J]. Remote Sensing Reviews, 1994, 8: 271-311.
[34]Cihlar J, Ly H, Li Z, et al. Multitemporal, multichannel AVHRR data sets for land biosphere studies: Artifacts and corrections[J]. Remote Sensing of Environment, 1997, 60: 35-57.
[35]Driese K L, Reiners W A, Merrill E H, et al. A digital land cover map of Wyoming, USA: A tool for vegetation analysis [J]. Journal of Vegetation Science, 1997, 8: 133-146.
[36]Beaubien J, Cihlar J, Simard G, et al. Land cover from multiple Thematic Mapper scenes using a new enhancementclassfication methodology[J]. Journal of Geophysical Research, 1999, 104(D22): 27 909-27 920.
[37]Guindon B. Assessing the radiometric fidelity of highresolution image mosaics[J].ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52: 229-243.
[38]Li Z, Leighton H G. Narrowband to broadband conversion with spatially autocorrelated reflectance measurements [J].Journal of Applied Meteorology, 1992, 31: 421-432.
[39]Hansen M, Dubayah R, DeFries R. Classification trees: An alternative to traditional land cover classifiers [J]. International Journal of Remote Sensing, 1996, 17: 1 075-1 081.
[40]Carpenter G A, Gjaja M N, Gopal S, et al. ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 308-325.
[41]Foody G M. Sharpening fuzzy classification output to refine the representation of subpixel land cover distribution [J]. International Journal of Remote Sensing, 1998, 19: 2 593-2 599.
[42]Van der Meer F. Spectral unmixing of landsat thematic mapper data[J]. International Journal of Remote Sensing, 1995, 16: 3 189-3 194.
[43]Cihlar J, Xiao Q, Beaubien J, et al. Classification by Progressive Generalization: A new automated methodology for remote sensing multichannel data[J].International Journal of Remote Sensing, 1998, 19: 2 685-2 704.
[44]Lark R M. A reappraisal of unsupervised classification, II: Optimal adjustment of the map legend and a neighbourhoodapproach for mapping legend units[J].International Journal of Remote Sensing, 1995, 16: 1 445-1 460.
[45]Achard F, Estreguil C. Forest classification of southeast Asia using NOAAAVHRR data [J]. Remote Sensing of Environment, 1995, 54: 198-208.
[46]Driese K L, Reiners W A, Merrill E H, et al. A digital land cover map of Wyoming, USA: A tool for vegetation analysis[J]. Journal of Vegetation Science, 1997, 8: 133-146.
[47]Gong P, Marceau D J, Howarth P J. A comparison of spatial feature extraction algorithms for landuse classification with SPOT HRV data[J].Remote Sensing of Environment, 1992, 40: 137-151.
[48]Kartikeyan B, Sarkar A, Majumder K L. A segmentation approach to classification of remote sensing imagery[J].International Journal of Remote Sensing, 1998, 19: 1 695-1 709.
[49]Hord R M, Brooner W. Landuse map accuracy criteria[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42: 671-677.
[50]Edwards T C Jr, Moisen G G, Cutler D R. Assessing map accuracy in a remotely sensed, ecoregionscale cover map[J]. Remote Sensing of Environment, 1998, 63: 73-83.
[51]Magnussen S. Calibrating photointerpreted forest cover types and relative species compositions to their ground expectations[J]. Canadian Journal of Forest Research, 1997, 27: 491-500.
[52]Kalkhan M A, Reich R M, Stohlgren T J. Assessing the accuracy of Landsat ThematicMapper classification using double sampling[J]. International Journal of Remote Sensing, 1998, 19: 2 049-2 060.
[53]Congalton R G. Accuracy assessment: A critical component of land cover mapping[A]. In: Scott J M, Tear T H, Davis F,eds. Gap Analysis: A Landscape Approach to Biodiversity Planning[C]. Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing, 1996. 119-131.
[54]Shi Peijun(史培军), Gong Peng(宫鹏), Li Xiaobing(李晓兵), et al. Methodology and Practice of Land Use/Cover Change Study[M]. Beijing: Science Press, 2000(in Chinese).
[55]Dwyer E, Pinnock S, Gregoire J M, et al. Global spatial and temporal distribution of vegetation fire as determined from satellite observations [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 289-1 302.
[56]Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 331-1 364.
[57]DeFires R S, Hansen M C, Townshend J R G. Global continuous fields of vegetation characteristics: A linear mixture model applied to multiyear 8km AVHRR data [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 389-1 414.
[58]Hansen M C, Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 365-1 373.
[59]Loveland R, Zhu Z, Ohlen D O. An analysis of the IGBP global landcover characterization process[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(9): 1 021-1 032.
[60]Scepan J. Thematic validation of highresolution global landcover data set[J].Photogrammetric Engineering and Remote Sensing,1999, 65(9): 1 051-1 060.
[61]Defries R S, Los S O. Implications of landcover misclassification for parameter estimates in global landsurface models: An example from the Simple Biosphere Model (SiB2) [J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(9): 1 083-1 098.
[62]Muchoney D, Borak J, Chi H. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1 115-1 138.
/
〈 |
|
〉 |