地球科学进展 >
2017 , Vol. 32 >Issue 4: 396 - 408
DOI: https://doi.org/10.11867/j. issn. 1001-8166.2017.04.0396
BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估
作者简介:韩振宇(1987-),男,山西原平人,副研究员,主要从事气候模拟和季风变率研究.E-mail:hanzy@cma.gov.cn
收稿日期: 2016-10-17
修回日期: 2016-12-29
网络出版日期: 2017-04-20
基金资助
公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);中国气象局LCS气候研究开放课题青年基金2016年度资助项目“BCC_CSM1.1模式对中国近期气候的预测能力研究”资助
版权
Decadal Prediction Skill of the Global Sea Surface Temperature in the BCC_CSM1.1 Climate Model
First author:Han Zhenyu(1987-),male,Yuanping City,Shanxi Province,Associate professor. Research areas include climate modelling, East Asian climate change and climate variability.E-mail:hanzy@cma.gov.cn
Received date: 2016-10-17
Revised date: 2016-12-29
Online published: 2017-04-20
Supported by
Foundation item:Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CAMS and CESM”(No.GYHY201506012);The LCS Open Funds for Young Scholars (2016) “Study on near-term climate prediction in China by BCC_CSM1.1 model”
Copyright
通过与观测资料和20世纪历史气候模拟试验结果(NoINT)的对比分析,评估了BCC_CSM1.1年代际预测试验(INT)中对全球海表温度(SST)年代际变化的回报能力。分析结果显示:①INT试验模拟的全球平均SST增暖趋势比NoINT的更加接近观测;②其在热带大西洋、热带西太平洋和热带印度洋有较高的预测技巧;③对于太平洋年代际振荡2个关键区——北太平洋和热带中东太平洋,模式的预测技巧较低,且海洋初始化的作用也很小;④在热带南印度洋,INT的预测技巧普遍高于NoINT,在提前3~6年和4~7年时技巧最高。这些结论与基于其他模式得到的已有研究结果类似,但是BCC模式对北大西洋,特别是其副极地区域的预测技巧明显低于其他模式。BCC模式无法合理模拟出北大西洋SST与热盐环流间的交替变化规律,可能是其预测技巧偏低的原因。
关键词: 年代际预测; BCC_CSM1.1; 全球海表温度; 热盐环流
韩振宇 , 吴波 , 辛晓歌 . BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017 , 32(4) : 396 -408 . DOI: 10.11867/j. issn. 1001-8166.2017.04.0396
This study assesses retrospective decadal prediction skill of Sea Surface Temperature (SST) variability in initialized climate prediction experiments (INT) with the Beijing Climate Center Climate System Model (BCC_CSM1.1). Ensemble forecasts were evaluated using observations, and compared to an ensemble of uninitialized simulations (NoINT). The results show as follows: ①The warming trend of global mean SST simulated by the INT runs is closer to the observation than that in the NoINT runs.②The INT runs show high SST prediction skills over broad regions of tropical Atlantic, western tropical Pacific and tropical Indian Oceans. ③ In the North Pacific and the east-central tropical Pacific Ocean, the prediction skills are very weak, and there are few improvements coming from the initialization in the INT runs. ④ In the southern Indian Ocean, the prediction skills of the INT runs are significantly larger than that of the NoINT runs, with the maximum skill at the 3~6 and 4~7 years lead time. The above-mentioned conclusions are similar to the results of other climate models. However, the prediction skill in the North Atlantic Ocean is much lower than that of other models, especially in the subpolar region. The low skills in the Atlantic Ocean may be attributed to the misrepresentation of the lead-lag relationship between the Atlantic meridional heat transport and the SST in the BCC_CSM1.1.
[1] | Xiong Wei, Feng Lingzhi, Ju Hui, et al.Possible impacts of high temperatures on China’s rice yield under climate change[J] . Advances in Earth Science, 2016, 31(5): 515-528. |
[1] | [熊伟, 冯灵芝, 居辉, 等. 未来气候变化背景下高温热害对中国水稻产量的可能影响分析[J]. 地球科学进展, 2016, 31(5): 515-528.] |
[2] | Shi Peijun, Wang Aihui, Sun Fubao, et al.A study of global change population and economic system risk forming mechanism and assessment[J]. Advances in Earth Science, 2016, 31(8): 775-781. |
[2] | [史培军, 王爱慧, 孙福宝, 等. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.] |
[3] | Taylor K E, Stouffer R J, Meehl G A.An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498. |
[4] | Gao Feng, Xin Xiaoge, Wu Tongwen.A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1. 1 model[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6): 1 165-1 179. |
[4] | [高峰, 辛晓歌, 吴统文. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 2012, 36(6): 1 165-1 179.] |
[5] | Wang Bin, Liu Mimi, Yu Yongqiang, et al.Preliminary evaluations of FGOALS-g2 for decadal predictions[J]. Advances in Atmospheric Sciences, 2013, 30(3): 674-683. |
[6] | Wu Bo, Zhou Tianjun.Prediction of decadal variability of sea surface temperature by a coupled global climate model FGOALS_gl developed in LASG/IAP[J]. Chinese Science Bulletin, 2012, 57(19): 2 453-2 459. |
[7] | Wu Bo, Chen Xiaolong, Song Fengfei, et al.Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses[J]. Advances in Meteorology, 2015, doi:10.1155/2015/904826. |
[8] | Kim H, Webster P J, Curry J A.Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts[J]. Geophysical Research Letters, 2012, 39(10): L10701, doi:10.1029/2012GL051644. |
[9] | Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y, et al. Initialized near-term regional climate change prediction[J]. Nature communications, 2013, 4: 1 715, doi: 10.1038/ncomms2704. |
[10] | Guemas V, Corti S, García-Serrano J, et al.The Indian Ocean: The region of highest skill worldwide in decadal climate prediction[J]. Journal of Climate, 2013, 26(3): 726-739. |
[11] | Karspeck A, Yeager S, Danabasoglu G, et al.An evaluation of experimental decadal predictions using CCSM4[J]. Climate Dynamics, 2015, 44(3/4): 907-923. |
[12] | Mignot J, García-Serrano J, Swingedouw D, et al.Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model[J]. Climate Dynamics, 2016, 47(3):1 225-1 246. |
[13] | Shaffrey L C, Hodson D, Robson J, et al.Decadal predictions with the HiGEM high resolution global coupled climate model: Description and basic evaluation[J]. Climate Dynamics, 2016,doi: 10.1007/s00382-016-3075-x. |
[14] | Chen Weilin, Jiang Zhihong.Evaluation of the decadal prediction skill over China based on four global atmosphere-ocean coupled climate models[J]. Climatic and Environmental Research, 2012, 17(1): 81-91. |
[14] | [陈威霖, 江志红. 全球海气耦合模式对中国区域年代际气候变化预测能力的评估[J]. 气候与环境研究, 2012, 17(1): 81-91.] |
[15] | Zhou Xin, Li Qingquan, Sun Xiubo, et al.Simulation and projection of temperature in China with BCC_CSM1. 1 model[J]. Journal of Applied Meterological Science, 2014, 25(1): 95-106. |
[15] | [周鑫,李清泉,孙秀博,等. BCC_CSM1.1模式对我国气温的模拟和预估[J].应用气象学报, 2014, 25(1): 95-106.] |
[16] | Wei Linxiao, Xin Xiaoge, Cheng Bingyan, et al.Hindcast of China climate with decadal experiment by BCC_CSM1.1 climate model[J]. Advances in Climate Change Research, 2016, 12(4): 294-302. |
[16] | [魏麟骁,辛晓歌,程炳岩,等. BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J]. 气候变化研究进展, 2016, 12(4): 294-302.] |
[17] | Luo Feifei, Li Shuanglin.Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature[J]. Science in China(Series D), 2014, 57(12): 3 062-3 072, doi: 10.1007/s11430-014-4984-3. |
[17] | [罗菲菲, 李双林. 动力统计相结合的未来30年东亚气温年代际预测[J]. 中国科学: D辑, 2015, 45(4):402-413.] |
[18] | Xin Xiaoge, Wu Tongwen, Zhang Jie.Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research, 2013, 4(1): 41-49. |
[18] | [辛晓歌, 吴统文, 张洁. BCC气候系统模式开展的CMIP5试验介绍[J]. 气候变化研究进展, 2012, 8(5): 378-382.] |
[19] | Carton J A, Giese B S.A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2 999-3 017. |
[20] | Rayner N A, Parker D E, Horton E B, et al.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4 407, doi:10.1029/2002JD002670. |
[21] | lato G, Marotzke J, Abiodun B, et al. Evaluation of climate models[M]∥Stocker T F, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 741-866. |
[22] | Goddard L, Kumar A, Solomon A, et al.A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013, 40(1/2): 245-272. |
[23] | ICPO (International CLIVAR Project Office).Decadal and Bias Correction for Decadal Climate Predictions[R/OL]. International CLIVAR Project Office, 2011, CLIVAR Publication Series No.150.[2016-12-20].. |
[24] | Knight J R, Allan R J, Folland C K, et al.A signature of persistent natural thermohaline circulation cycles in observed climate[J]. Geophysical Research Letters, 2005, 32(20): L20708, doi:10.1029/2005GL024233. |
[25] | Msadek R, Frankignoul C.Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model[J]. Climate Dynamics, 2009, 33(1): 45-62. |
[26] | Cheng Wei, Chiang J C H, Zhang Dongxiao. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations[J]. Journal of Climate, 2013, 26(18): 7 187-7 197. |
[27] | Zhang Liping, Wang Chunzai.Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations[J]. Journal of Geophysical Research: Oceans, 2013,118(10): 5 772-5 791. |
[28] | Zhang Rong.Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations[J]. Geophysical Research Letters, 2010, 37(16): L16703, doi:10.1029/2010GL044474. |
[29] | Zhou Tianjun, Chen Xiaolong, Dong Lu, et al.Chinese contribution to CMIP5: An overview of five Chinese models’ performances[J]. Journal of Meteorological Research, 2014, 28(4): 481-509. |
[30] | Han W, Vialard J, McPhaden M J, et al. Indian Ocean decadal variability: A review[J]. Bulletin of the American Meteorological Society, 2014, 95(11): 1 679-1 703. |
[31] | Dong Lu, Zhou Tianjun, Dai Aiguo, et al.The footprint of the inter-decadal pacific oscillation in Indian Ocean sea surface temperatures[J]. Scientific Reports, 2016, 6: 21 251, doi:10.1038/srep21251. |
/
〈 |
|
〉 |