FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化

  • 陈晓龙 ,
  • 吴波 ,
  • 周天军
展开
  • 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2.中国科学院大学,北京 100049

作者简介:陈晓龙(1988-),男,陕西蒲城人,博士后,主要从事季风变率和气候变化研究.E-mail:chenxl@lasg.iap.ac.cn

收稿日期: 2016-11-09

  修回日期: 2017-01-02

  网络出版日期: 2017-04-20

基金资助

公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);中国博士后科学基金项目“温室气体强迫下亚洲夏季风响应的不确定性研究”(编号:2015M581152)资助

版权

, 2017,

Interdecadal Change of Relation between East Asian Summer Monsoon and ENSO in Previous Winter in An Ocean Assimilation System Based on FGOALS-s2

  • Xiaolong Chen ,
  • Bo Wu ,
  • Tianjun Zhou
Expand
  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2. University of Chinese Academy of Sciences, Beijing 100049,China

First author:Chen Xiaolong (1988-), male, Pucheng County, Shaanxi Province, Post Doctor. Research areas include monsoon variability and climate change.E-mail:chenxl@lasg.iap.ac.cn

Received date: 2016-11-09

  Revised date: 2017-01-02

  Online published: 2017-04-20

Supported by

Foundation item:Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CMA and CESM” (No.GYHY201506012);The China Postdoctoral Science Foundation “A study on uncertainties in the response of the Asian monsoon to Green-house gas forcing” (No.2015M581152)

Copyright

地球科学进展 编辑部, 2017,

摘要

海洋同化系统为年代际预测试验提供初值,其性能可能会影响年代际预测技巧,因此评估其对重要年代际变化现象的模拟能力非常必要。观测发现,东亚夏季风(EASM)和前冬厄尔尼诺—南方涛动(ENSO)的关系在1970s末加强,随后在1990s中期后减弱。基于FGOALS-s2耦合气候模式的海洋同化系统评估了其对这2次年代际变化的模拟能力。结果表明,决定模式能否再现EASM和前冬ENSO关系的年代际变化有2个重要因素:①与前冬ENSO有关的夏季印度洋—太平洋海温型的年代际变化;②模式西北太平洋反气旋对热带海温的响应偏差。模式中西北太平洋反气旋与东北印度洋的暖海温关系稳定,当1970s末前冬ENSO对夏季印度洋海温影响显著增强时,模式能够模拟出北印度洋降水以及赤道东印度洋至海洋大陆上空Kelvin波的增强,从而可再现EASM与前冬ENSO关系的增强;而1990s中期后模式中与前冬ENSO有关的东北印度洋海温异常进一步增强,与观测相反,使得模式未能再现观测中EASM与前冬ENSO关系的减弱。此外,1990s中期后模式对夏季中太平洋冷海温异常的Rossby波响应存在较大偏差,是其未能再现此次年代际变化的另一个原因。研究表明,与ENSO有关的热带印太海温的年代际变化预测水平和模式对海温的响应偏差将在一定程度上制约模式对EASM与ENSO关系的年代际预测能力。

本文引用格式

陈晓龙 , 吴波 , 周天军 . FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017 , 32(4) : 362 -372 . DOI: 10.11867/j. issn. 1001-8166.2017.04.0362

Abstract

Ocean Assimilation System (OAS) is an important component for decadal prediction experiment, providing initial conditions. Evaluating the atmosphere response in OAS can provide reference for analyzing results from decadal prediction. We analyzed the interdecadal change in relation between the East Asian Summer Monsoon (EASM) and El Niño/Southern Oscillation (ENSO) in the previous winter based on an OAS on the coupled climate model FGOALS-s2. It shows that two factors impact the performance: ① interdecadal change of Ssea Surface Temperature (SST) pattern in the summer Indo-Pacific Basin related with ENSO in previous winter and ② bias in model response of the western North Pacific anticyclone to tropical SST anomalies. The anticyclone shows steady relation with the warm eastern Indian Ocean. When ENSO’s impact on the summer Indian Ocean is strengthened around the end of 1970s, the OAS can reproduce the strengthened EASM-ENSO relation. However, the trend of intensified EASM-ENSO relation in the OAS is still significant after the mid-1990s due to the stronger link between the anticyclone and the northeastern Indian Ocean, differing with the observation which shows a weakened effect of the Indian Ocean on the anticyclone. In addition, the bias in response to the SST anomalies in the central Pacific also partly contributes to the failure in reproducing the weakening EASM-ENSO relation after the mid-1990s. It implies that prediction skill of interdecadal ENSO impact on the tropical Indo-Pacific SST and response bias of model to SST anomalies may to some extent limit the capability to predict the interdecadal change in the EASM-ENSO relation.

参考文献

[1] Nitta T.Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. Journal of the Meteorological Society of Japan, 1987, 65(3): 373-390.
[2] Huang Ronghui, Sun Fengying.Interannual variation of the summer teleconnection pattern over the Northern Hemisphere and its numerical simulation[J].Chinese Journal of Atmospheric Sciences, 1994, 18(4):456-465,doi:10.3878/j.issn.1006-9895.1994.04.10.
[2] [黄荣辉,孙凤英. 热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响[J].大气科学,1994,18(4):456-465,doi:10.3878/j.issn.1006-9895.1994.04.10.]
[3] Lu R, Dong B.Westward extension of North Pacific Subtropical High in summer[J].Journal of the Meteorological Society of Japan, 2001, 79(6):1 229-1 241, doi:10.2151/jmsj.79.1229.
[4] Wu B, Zhou T, Li T.Seasonally evolving dominant interannual variability modes of East Asian climate[J]. Journal of Climate, 2009, 22(11): 2 992-3 005.
[5] Huang R, Wu Y.The influence of ENSO on the summer climate change in China and its mechanism[J].Advances in Atmospheric Sciences, 1989, 6(1): 21-32.
[6] Wang B, Wu R, Fu X.Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1 517-1 536.
[7] Wang B,Wu R,Lau K M.Interannual variability of the Asian summer monsoon:Contrasts between the Indian and the western North Pacific-East Asian monsoon[J].Journal of Climate, 2001, 14(20): 4 073-4 090.
[8] Wu B, Li T, Zhou T.Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. Journal of Climate, 2010, 23(11): 2 974-2 986.
[9] Ding H, Greatbatch R J, Park W, et al.The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model[J]. Climate Dynamics, 2014, 42(1): 367-379.
[10] Du Y, Xie S P, Huang G, et al.Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming[J].Journal of Climate, 2009, 22(8): 2 023-2 038.
[11] Xie S P, Hu K, Hafner J, et al.Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J].Journal of Climate, 2009, 22(3): 730-747.
[12] Wang B, Yang J, Zhou T, et al.Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s[J].Journal of Climate, 2008, 21(8): 1 771-1 789.
[13] Xie S P, Du Y, Huang G, et al.Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s[J].Journal of Climate, 2010, 23(12): 3 352-3 368.
[14] Chen X, Zhou T.Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability[J].Journal of Geophysical Research: Atmosphere, 2014, 119(23): 13 043-13 066.
[15] Song F, Zhou T.The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the 20th century[J].Journal of Climate, 2015, 28(18): 7 093-7 107.
[16] Feng J, Wang L, Chen W.How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases?[J]. Journal of Climate, 2014, 27(7): 2 682-2 698.
[17] Yim S Y, Wang B, Kwon M H.Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s[J]. Climate Dynamics, 2013, 42(5): 1 325-1 333.
[18] Wang B, Ding Q, Fu X, et al.Fundamental challenge in simulation and prediction of summer monsoon rainfall[J]. Geophysical Research Letters, 2005, 32(15): L15711.
[19] Wu R, Kirtman B P.Roles of Indian and Pacific ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dynamics, 2005, 25(2): 155-170.
[20] Zhou T, Wu B, Wang B.How well do Atmospheric General Circulation Models capture the leading modes of the interannual variability of the Asian-Australian Monsoon?[J]. Journal of Climate, 2009, 22(5): 1 159-1 173.
[21] Wu B,Chen X,Song F,et al.Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2:Evaluations of strengths and weaknesses[J]. Advances in Meteorology,2015,doi:10.1155/2015/904826.
[22] Bao Q, Lin P, Zhou T, et al.The flexible global Ocean-Atmosphere-Land System model Version: FGOALS-s2[J].Advances in Atmospheric Sciences, 2013, 30(3): 561-576.
[23] Good S A, Martin M J, Rayner N A.EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J].Journal of Geophysical Research: Oceans, 2013, 118(12): 6 704-6 716.
[24] Rayner N A, Parker D E, Horton E B, et al.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14): 4 407.
[25] Compo G P, Whitaker J S, Sardeshmukh P D,et al.The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1-28.
[26] Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-470.
[27] Poli P, Hersbach H, Dee D P.ERA-20C: An atmospheric reanalysis of the twentieth century[J]. Journal of Climate, 2016, 29(11): 4 083-4 097.
[28] Onogi K, Tsutsui J, Koide H, et al.The JRA-25 reanalysis[J].Journal of the Meteorological Society of Japan, 2007, 85(3): 369-432.
[29] Huang B, Banzon V F, Freeman E, et al.Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons[J]. Journal of Climate, 2015, 28(3): 911-930.
[30] Reynolds R W, Smith T M.Improved global sea surface temperature analysis using optimum interpolation[J]. Journal of Climate, 1994, 7(6): 929-948.
[31] Wang B, Wu R, Lau K M.Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoon[J]. Journal of Climate, 2001,14(20): 4 073-4 090.
文章导航

/