岩石地球化学

东营凹陷生物降解稠油甾烷分子的选择蚀变

  • 陈中红 ,
  • Moldowan J M ,
  • 刘昭茜
展开
  • 1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266555;
    2.Department of Geological and Environmental Sciences, Stanford University, California, USA;
    3.中国地质大学资源学院,湖北 武汉 430074
陈中红(1976-),男,安徽怀宁人,副教授,主要从事石油天然气地质与勘探研究.E-mail:hongczh@163.com

收稿日期: 2012-07-24

  修回日期: 2012-08-23

  网络出版日期: 2012-10-10

基金资助

国家自然科学基金项目“超压湖盆原油裂解成气门限及动力学模型”(编号:40802026);山东省自然科学基金项目“山东东部湖相页岩气形成机制与成藏条件”(编号:ZR2011DM004);中央高校基本科研业务费专项资金资助.

Selective Alteration of Steranes in Heavy Biodegraded Oils from Dongying Sag

  • Chen Zhonghong ,
  • Moldowan J M ,
  • Liu Zhaoqian
Expand
  • 1.School of Geoscience, China University of Petroleum, Qingdao 266555, China;
    2.Department of Geological and Environmental Sciences, Stanford University, California, USA;
    3.School of Resources, China University of Geosciences, Wuhan 430074, China

Received date: 2012-07-24

  Revised date: 2012-08-23

  Online published: 2012-10-10

摘要

为分析生物降解原油中甾烷生物标志物分子发生选择性蚀变的先后顺序及生物降解作用对甾烷分子成熟度参数的影响,在渤海湾盆地东营凹陷广饶潜山油藏选择了发生不同程度生物降解作用的原油,利用色谱质谱(GC-MS)仪对其中甾烷进行了定量测试分析和对比。结果发现在生物降解过程中,不同级别的生物降解作用对甾烷具有不同程度的影响:6级以下的生物降解作用对甾烷的降解能力有限,甾烷及其相关化合物比值没有可以识别的改变;6级以上的严重生物降解作用会对甾烷生物标志物的相关参数产生显著的影响。在严重生物降解原油中(级别≥6):甾烷系列被降解和蚀耗的先后顺序为,ααα 20R>αββ 20R>αββ 20S≥ααα 20S,C27>C29>C28,规则甾烷优先于重排甾烷发生降解,C27,C28,C29甾烷优先于C20,C21甾烷发生降解;甾烷生物标志物分子参数C29 20S/(20S+20R),C29 ββ/(ββ+αα)会发生显著升高,不能真实反映成熟度大小。研究结果为正确评价生物降解原油的成熟度及甾烷生物标志物分子的选择性蚀变提供了新的科学依据。

本文引用格式

陈中红 , Moldowan J M , 刘昭茜 . 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012 , 27(10) : 1108 -1114 . DOI: 10.11867/j.issn.1001-8166.2012.10.1108

Abstract

The alkane and aromatic fraction of eleven biodegraded oils and five non-biodegraded oils from the Dongying Depression, Bohai Bay Basin, Eastern China were analyzed by GC-MS to investigate the effects of biodegradation and thermal maturation on the distributions of steranes. The results indicate that the biodegradation and depletion of steranes emerged in the heavily biodegraded oils (scale≥6). The oil samples show an increase in the C29sterane C2920S/(20S+20R) and C29ββ/(ββ+αα) thermal maturity parameters in the heavily biodegraded oils, indicating this level of biodegradation(scale≥6) can alter the two maturity parameters. The selective depletion of C27-C29steranes follows the order  ααα 20R>αββ 20R>αββ 20S≥ααα 20S and C27>C29>C28, and the diasteranes and C20-C21steranes were much more resistant to biodegradation than regular C27-C29 steranes.

参考文献

[1]Hunt J M. Petroleum Geochemistry and Geology[M].Hu Boliang translated. Beijing: Petroleum Industry Publishing House, 1986.[Hunt J M.石油地球化学和地质[M].

胡伯良译.北京: 石油工业出版社, 1986.]

[2]Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003,426:344-352.

[3]Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry,1991, 17:47-61.

[4]Zhu G Y, Jin Q, Zhang S C, et al. Combination characteristics of lake facies source rock in the Shahejie Formation, Dongying Depression[J]. Acta Geologica Sinica, 2004, 78(3):416-427.

[5]Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. Prentice-Hall, Englewood Cliffs, NJ,1993.

[6]Bao Jianping, Zhu Cuishan. Biodegradation effects on the sterane and terpane maturity parameters of the oils from Liaohe basin[J].Science in China(Series D),2008,38(Suppl.Ⅱ):38-46.[包建平,朱翠山.生物降解作用对辽河盆地原油甾萜烷成熟度参数的影响[J].中国科学:D辑,2008,38(增Ⅱ):38-46]

[7]Peters K E, Walters C C, Moldowan J M. The Biomarker Guide (Volume 2): Biomarkers and Isotopes in Petroleum Exploration and Earth History[M].Cambridge University Press,2005.

[8]Beach F, Peakman T, Abbott G D, et al. Laboratory thermal alteration of triaromatic steroid hydrocarbons[J]. Organic Geochemistry,1989,14(2):109-111.

[9]Seifert W K, Moldowan J M.  Use of biological markers in Volkman J K, Alexander B, Kagi R I, Woodhouse, G W. petroleum exploration[C]∥Johns B R ed. Biological Markers in the Sedimentary Record. Oxford:Elsevier,  1986:261-290.

[10]Volkman J K, Alexander R, Kagi R L, et al.

Demethylated hopanes in crude oils and their application in petroleum geochemistry[J].Geochimica et Cosmochimica Acta,1983, 47:785-794.

[11]Chosson P, Connan J, Dessort D, et al. In vitro biodegradation of steranes and terpanes: A clue to understanding geological situations[C]∥Moldowan J M, Albrecht P, Philp R P, eds. Biological Markers in Sediments and Petroleum. Prentice Hall, Englewood Cliffs, NJ, 1992:320-349.

[12]Seifert W K, Moldowan J M, Demaison G J. Source correlation of biodegraded oils[J].Organic Geochemistry,1984, 6:633-643.

[13]Zhang Qu, Song Xiaoying, Zhang Zhirong. Experiment study on the sterane biodegradation in oils[J].Petroleum Experiment Geology,2007, 29(1):100-102.[张渠, 宋晓莹,张志荣.原油中甾烷的生物降解模拟实验研究[J].石油实验地质, 2007, 29(1):100-102.]

[14]Wang Z, Fingas M F, Sigouin L, et al. Fate and persistence of long-termed spilled Metula oil in the marine salt marsh environment: Degradation of petroleum biomarkers[C]∥Proceedings of the 2001 International Oil Spill Conference, Tempa, Florida, March 26-29, 2001, Washington DC:American Petroleum Institute, 2011: 115-125.

[15]Goodwin N S, Park P J D, Rawlinson A P. Crude oil biodegradation under simulated and natural conditions[C]∥Bjory M, et al. eds. Advances in Organic Geochemistry 1981.New York: John Wiley and Sons, 1983:650-658.

[16]Chosson P, Lanau C, Connan J, et al. Biodegradation of refractory hydrocarbon biomarkers from petroleum under laboratory conditions[J].Nature,1991, 351:640-642.

文章导航

/