干旱气候变化与可持续发展

海—气间化学物质交换通量的研究

展开
  • 1.青岛海洋大学物理海洋研究所 青岛 266003;2.青岛海洋大学化学化工学院 青岛 266003
盛立芳, 女, 1966 年10 月出生, 讲师, 主要从事海岸气象学与大气环境研究。

收稿日期: 1997-05-08

  修回日期: 1997-12-12

  网络出版日期: 1998-06-01

RESEARCH ADVANCES OF THE FLUX OF CHEMICAL SPECIES EXCHANGE BETWEEN AIR AND SEA

Expand
  • 1.Institute of Physical Oceanography, Ocean University of Qingdao, Qingdao 266003;2.College of Chemistry and Chemical Engineering, Ocean University of Qingdao, Qingdao 266003  

Received date: 1997-05-08

  Revised date: 1997-12-12

  Online published: 1998-06-01

摘要

从以下几个方面简要分析了海—气间化学物质交换通量的参数化研究情况:如果不考虑物质间的化学反应,经典的通量—梯度关系(K理论)可用于估计从大气进入海表面的物质通量。在有化学反应的情形下,应根据化学反应速度与湍流交换速度的相对大小对K理论做修正;已知海表面的物质浓度和物质的沉降速度,可由二者的乘积来估计通量的大小。降水对大气中物质的清除作用是很大的,如何对降水的物理过程进行参数化,直接影响到对湿沉降通量的估计;计算海—气间气体交换通量的一种方法是利用界面两侧的分压差和气体转移系数。这两个参数都可能造成通量估计的不确定性。

本文引用格式

盛立芳,吴增茂,张龙军 . 海—气间化学物质交换通量的研究[J]. 地球科学进展, 1998 , 13(3) : 225 -231 . DOI: 10.11867/j.issn.1001-8166.1998.03.0225

Abstract

Following aspects are considered in this paper in order to outline recent research advances of the flux of chemical species exchange between air and sea:(1) Without chemical reactions, typical flux-gradient relationship(K theory) may be adopted to estimate the flux from air to sea. Otherwise, the K theory should be modified according to the relative speed of reactions and turbulence. (2) In another way, the flux can be represented by the multiplication of concent ration at sea surface and the deposit velocity. Precipitation has much contribution to the removal of chemical species from air. Parameterization of the physical process of precipitation influences directly the magnitude of wet deposition flux. (3) Gas transfer is often expressed with the gas transfer coefficient and the partial pressure difference between air and water. The flux equals the multiplication of these two terms. All the two parameters can influence the accuracy of the flux estimation.

 

参考文献

[1] 詹滨秋. 海洋对大气中CO2的调节与控制作用. 海洋对气候变化的调节与控制作用学术讨论会论文集. 北京: 海洋出版社, 1990. 197~206.
[2] 韩晓鹏, 彭海青, 翟世奎主编. 海洋科学中若干前沿领域发展趋势的分析与探讨.北京: 海洋出版社, 1994. 44~54.
[3] SCOR. The Joint Global Ocean Flux Study: Background, Goals Organization and Next Steps. SCOR-ICSV. Paris,1987. 1~6.
[4] Canadian Committee for JGOFS. Canadian National Program for the Joint Global Ocean Flux Study,1989.
[5] Taylor B F, Kiene R P. Microbial Metablism of DMS, Biogenic sulphur in the environment. Saltzman E S, Cooper W J, ed. Amer Chem Soc, 1989, 393: 201~221.
[6] Kramm G. A numerical method for determining the dry deposition of atmospheric trace gases. Boundary-Layer Meteorology, 1989, 48: 157~175.
[7] McInnes L M,Covert D S,Quinn P K,et al.M easurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research, 1994, 99(D4): 8 257~8 268.
[8] Schumann U. Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmospheric Environment, 1989, 23: 1 713~1 727.
[9] Gao W, Wesely M L, Lee I Y. A numerical of the effects of air chemistry on fluxes of NO, NO2 and O3 near the surface. Journal of Geophysical Research, 1991, 96: 18 761~18 769.
[10] Jordi Vila-Guerau. Influence of chemistry on the flux-gradient relationships for the NO-O3-NO2 system. Boundary-Layer Meteorology, 1992, 61: 375~387.
[11] Fujihiro Hamba. A modified K model for chemically reactive species in the planetary boundary layer. Journal of Geophysical Research, 1993, 98: 5173~5182.
[12] Harrison R M, Msibi M I, Kit to A M N, et al. Atmospheric chemical transformations of nitrogen compounds measured in the North Sea experiment, September 1991. Atmospheric Environment, 1994, 28(9): 1 593~1 599.
[13] Pielke R A. 中尺度气象模拟. 北京: 气象出版社, 1984.
[14] Harrison R M, Zahari Zlatev, Ottley C J. A comparison of the pridictions of an eulerian atmospheric transport-chemistry model with experimental measurements over the North Sea. Atmospheric Environment, 1994, 28: 497~516.
[15] Ganzeveld L, Lelieveld J. Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. Journal of Geophysical Research, 1995, 100: 20 999~21 012.
[16] 贾新媛. 区域酸沉降模式. 大气科学, 1993, 17: 732~739.
[17] Roelofs G J, Lelieveld J. Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. Journal of Geophysical Research, 1995, 100: 20 983~20 998.
[18] Crawford T L,Mcmitten R T,Meyers T P,et al.Spatial and temporal variability of heat,water vapor,carbon dioxide,and momentum air-sea exchange in a coastal environment.Journal of Geophysical Research, 1993, 98: 12 869~12 880.
[19] Poisson A, Metzt N, Brunet C, et al. Variability of sources and sinks of CO2 in the Western Indian and Southern Oceans during the year 1991. Journal of Geophysical Research, 1993, 98: 22 759~22 778.
[20] Nevison C D, Weiss R F, Erickson III D J. Global oceanic emissions of nitrous oxide. Journal of Geophysical Research, 1995, 100: 15 809~15 820.
[21] Erickson Ⅲ D J. A stability dependent theory for air-sea gas exchange. Journal of Geophysical Research, 1993, 98:8 471~8 488.
[22] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research,1992, 97: 7 373~7 382.
[23] Thompson A M, Zafiriou O. Air-sea fluxes of transient atmospheric species. Journal of Geophysical Research,1983, 88: 6 696~6 708.
[24] Lee Yin-Nan, Zhou Xianliang. Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications. Journal of Geophysical Research, 1994, 99: 3 597~3 605.
[25] Masahiko Yamato,Hiroshi Tanaka.Aircraft observations of aerosols in the free marine troposphere over the North Pacific Ocean:Particle chemistry in relation to air mass origin. Journal of Geophysical Research, 1994, 99: 5 353~5 377.
[26] 张宾, 马黎明, 乔然. 海水中总溶解CO2的测量方法和计算. 海洋预报, 1996, (1): 76~79.

文章导航

/