收稿日期: 2010-09-09
修回日期: 2011-02-20
网络出版日期: 2011-05-10
基金资助
国家海洋局第二海洋研究所基本科研业务专项“末次冰期以来北太平洋深层水团古温度及其流通性”(编号:JG1001)和“南海北部冷泉自生硫酸盐岩和沉积物指示的甲烷渗漏信息”(编号:JG1002)资助.
Advances in Climatic Effects Study of Gas Hydrates
Received date: 2010-09-09
Revised date: 2011-02-20
Online published: 2011-05-10
天然气水合物富含温室气体甲烷,且资源量巨大,对气候变化又十分敏感,在全球变暖的背景下其气候效应倍受关注,近年来的研究工作又取得了一些新进展。首先,天然气水合物资源量的估算进一步精确,海洋中天然气水合物资源量的最新估算值仅为原先的1/5,从根本上限制了其气候效应的显著性;其次,大气中来自天然气水合物的甲烷通量被重新评估,发现甲烷气体在海水中的搬运方式对其通量有决定性影响,“气泡方式”和“水合物包壳”都可以减少甲烷在海水中的氧化作用,从而增加了进入大气的甲烷通量;此外,与天然气水合物释放相关的气候变化驱动机制被进一步完善,不再片面地强调天然气水合物的绝对驱动,而是引入了湿地等其他因素作为驱动气候变化的共同因子。简而言之,天然气水合物与气候变化之间的因果关系仍然存在争议,但是其对气候变化所产生的反馈作用不容质疑。
叶黎明,罗鹏,杨克红 . 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011 , 26(5) : 565 -574 . DOI: 10.11867/j.issn.1001-8166.2011.05.0565
It has been strongly discussed that gas hydrates play a key role in global climate changing, in terms of huge inventory, sensitivity to the climate change and the greenhouse effect. The recent advances in climatic effects study of gas hydrates could be generalized as follows. Firstly, the inventory was accurately constrained by the new data, one fifth of the previous estimate, which basically restricted the possibility of gas hydrates effect on the climate. Secondly, the flux of methane escaped from gas hydrates to the atmosphere was estimated based on different transporting mechanisms. It is found that both “gas bubble” and “hydrates shell” could efficiently prevent methane from dissolving and oxidizing, hence largely increasing the flux. Last but not least, gas hydrates dissociating was rethought as one of climate driving factors, closely together with other processes, such as marsh activating, to drive the climate change. In short, whether gas hydrates is the cause of the climate change will continually be debated, and should be traced deeply, but its huge feedback has been proved.
Key words: Global warming; Gas hydrates; Greenhouse effect; Feedback; Permafrost.
[1]Krey V, Canadell J G, Nakicenovic N, et al. Gas hydrates: Entrance to a methane age or climate threat?[J].Environmental Research Letters,2009, 4, doi: 10.1088/ 1748-9326/ 4/ 3/ 034007.
[2]Max M D, Johnson A H, Dillon W P,et al. Economic Geology of Natural Gas Hydrate[M]. Netherlands: Springer, 2006:105-130.
[3]Buffett B, Archer D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean[J].Earth and Planetary Science Letters,2004, 227: 185-199.
[4]Westbrook G K, Thatcher K E, Rohling E J,et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J].Geophysics Research Letters, 2009,36(L15608), doi: 10.1029/2009GL039191.
[5]Chen Hanzong, Zhou Di. The study of gas hydrates and its relation with global changes[J].Advances in Earth Science, 1997, 12(1): 37-41.[陈汉宗, 周蒂. 天然气水合物与全球变化研究[J]. 地球科学进展, 1997, 12(1): 37-41.]
[6]Wang Shuhong, Song Haibin, Yan Wen. Environmental effects of nature gas hydrate[J].Bulletin of Mineralogy, Petrology and Geochemistry,2004, 23(2): 160-165.[王淑红, 宋海斌, 颜文. 天然气水合物的环境效应[J]. 矿物岩石地球化学通报, 2004, 23(2): 160-165.]
[7]Sowers T. Late quaternary atmospheric CH4 isotope record suggests marine clatherates are stable[J].Science,2006, 311: 838-840.
[8]Bock M, Schmitt J, Moller L. Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaardoeschger events
[J].Science,2010,328: 1 686-1 691.
[9]NSF. Methane releases from arctic shelf May Be Much Larger and Faster Than Anticipated, 2010[R/OL].http:∥www.eurekalert.org/pub_releases/2010-03/nsf-mrf030410.php,2010.
[10]Brook E, Archer D, Dlugokencky E, et al. US Climate Change Science ProgramSynthesis and Assessment Report 3.4: Abrupt Climate Change
[R]. US Geological Survey, 2008.
[11]Schiermeier Q. Fears surface over methane leaks[J].Nature,2008, 455: 572-573.
[12]Wang P X, Clemens S, Beaufort L, et al. Evolution and variability of the asian monsoon system: State of the art and outstanding issues[J].Quaternary Science Reviews,2005, 24: 595-629.
[13]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core Antarcitica[J].Nature, 1999, 399: 429-436.
[14]Lisiecki L, Raymo M. A PliocenePleistocene stack of 57 globally distributed bentic δ18O records[J].Paleoceanography,2005,20(PA1003), doi: 10.1029/2004PA001071.
[15]Raymo M E. The timing of major climate terminations[J].Paleoceanography,1997,12(4): 577-585.
[16]Berger A. An exceptionally long interglacial ahead?[J].Science,2002, 297: 1 287-1 288.
[17]EPICA Community Members. Eight glacial cycles from an Antarctic ice core[J].Nature,2004, 429: 623-628.
[18]Lüthi D, Le Floch M, Bereiter B, et al. Highresolution carbon dioxide concentration record 650 000-800 000 years before present[J].Nature,2008, 453: 379-382.
[19]Loulergue L, Schilt A, Spahni R,et al. Orbital and millennialscale features of atmospheric CH4 over the past 800 000 years[J].Nature,2008,453: 383-386.
[20]Shackleton N. The 100 000Year IceAge cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity[J].Science,2000,289: 1 897-1 902.
[21]Caillon N, Severinghaus J P, Jouzel J. Timing of atmospheric CO2 and antarctic temperature changes across termination Ⅲ[J].Science,2003,199: 1 728-1 732.
[22]Albert G J.An Inconvenient Truth. Produced by Paramount Classics[Z].US,2006.
[23]Mann M E, Bradley R S, Hughes M K. Globalscale temperature patterns and climate forcing over the past six centuries[J].Nature,1998, 392: 779-787.
[24]Crutzen P J. Geology of mankind[J].Nature,2002, 415(23),doi: 10.1038/415023a.
[25]Wahl E R, Anderson D M, Bauer B A,et al. An archive of highresolution temperature reconstructions over the past 2+ millennia[J].Geochemistry Geophysics Geosystems,2010, 11(1), doi: 10.1029/2009GC002817.
[26]IPCC. Fourth Assessment Report: Climate Change 2007: The Physical Science Basis[R/OL].http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3.html,2010.
[27]Royer D L, Berner R A, Park J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years[J].Nature,2007, 446: 530-532.
[28]Shindell D T, Faluvegi G, Koch D M, et al. Improved attribution of climate forcing to emissions[J].Science,2009, 326: 716-718.
[29]USEPA. Global Anthropogenic NonGreenhouse Gas Emissions: 1990-2020. U.S. Environmetnal Protection Agency, Office of Atmospheric Programs, Climate Change Division[R]. Washington DC,2006.
[30]Dichens G R. Rethinking the global carbon cycle with a large, dynamic and amicrobially mediated gas hydrate capacitor[J].Earth and Planetary Science Letters,2003, 213: 169-183.
[31]Kemfert C, Schill W P. An Analysis of Methane Mitigation as a Response to Climate Change[C]∥Copenhagen Consensus Center. Copenhagen Consensus on Climate. Copenhagen, 2010.
[32]Lowe D C, Kanayathu K, Tony B, et al. Seasonal cycles of mixing ratio and 13C in atmospheric methane at Suva, Fiji[J].Journal of Geophysics Research,2004, 109(D23308), doi: 10.1029/2004JD005166.
[33]Cunnold D M, Steele L P, Fraser P J, et al. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 19852000 and resulting source inferences[J].Journal of Geophysics Research,2002, 107(D14), doi: 10.1029/2001JD001226.
[34]Houweling S,Rockmann T, Aben I,et al. Atmospheric constraints on global emissions of methane from plants[J].Geophysics Research Letters,2006(33), doi: 10.1029/ 2006GL026162.
[35]Reeburgh W S. Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107: 486-513.
[36]Pohlman J W, Bauer J E, Canuel E A,et al. Methane sources in gas hydratebearing cold seeps: Evidence from radiocarbon and stable isotopes
[J].Marine Chemistry,2009,115: 102-109.
[37]Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation,Eel River Basin
[J].Geochimca et Cosmochimca Acta,2001, 65: 2 633-2 640.
[38]McGinnis D F, Greinert J, Artemov Y, et al. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?
[J].Journal of Geophysics Research,2006, 111:C09007.
[39]Solomon E A, Kastner M, MacDonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexic
[J].Nature Geoscience, 2009, doi: 10.1038/NGE0574.
[40]Lamarque J F. Estimating the potential for methane clathrate instability in the 1% CO2 IPCC AR 4 simulations[J].Geophysics Research Letters,2008, 35(L19806)dio:10.1029/2008GL035291.
[41]Rehder G, Keir R S, Suess E,et al. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history[J].Geophysics Research Letters,1999, 26: 587-590.
[42]Zhang Y X. Methane escape from gas hydrate systems in marine environment, and methanedriven oceanic eruptions[J].Geophysical Research Letters,2003, 30(7), doi: 10.1029/2002GL016658.
[43]Naudts L, Greinert J, Poort J, et al. Active venting sites on the gashydratebearing Hikurangi Margin, off New Zealand: Diffusiveversus bubblereleased methane[J].Marine Geology,2010, 272: 233-250.
[44]Hiruta A,Snyder G T, Tomaru H, et al. Geochemical constraints for the formation and dissociation of gas hydrate in an area of high methane flux, eastern margin of the Japan Sea[J].Earth and Planetary Science Letters,2009, 279:326-339.
[45]Greinert J, McGinnis D F, Naudts L,et al. Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area[J].Journal of Geophysics Research,2010, 115(C01002), doi:10.1029/2009JC005381.
[46]Shakhova N, Semiletov I, Salyuk A, et al. Anomalies of methane in the atmosphere over the East Siberian Shelf: Is there any sign of methane leakage from shallow shelf hydrates?[J].Geophysical Research Abstracts,2008, 10:A01526.
[47]Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrates[M]∥Paull C K, Dillon W P,eds. Natural Gas Hydrates: Occurrence, Distribution and Detection, AGU Geophysics. Monologue Series, 2001, 124: 3-18.
[48]Milkov A. Global estimates of hydratebound gas in marine sediments: How much is really out there?
[J].Earth Science Reviews,2004,66: 183-197.
[49]Ge Qian,Wang Jiasheng, Xiang Hua, et al. Computation of thickness of gas hydrate stability zone and potential volume of gas hydrate in South China Sea[J].Earth Science—Journal of China University of Geoscience,2006, 31(2): 245-249.[葛倩, 王家生, 向华,等.南海天然水合物稳定带厚度及资源量估算
[J]. 地球科学——中国地质大学学报, 2006, 31(2): 245-249.]
[50]Su Xin. Gas hydrates distribution and “gaswatersediments” dynamical systems in the ocean[J].Science in China (Series D),2004, 34(12): 1 091-1 099.[苏新. 海洋天然气水合物分布与“气—水—沉积物”动态体系[J].中国科学:D辑, 2004, 34(12):1 091-1 099.]
[51]Chen Zhong, Yan Wen, Cheng Muhong,et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J].Chinese Science Bulletin,2006, 51(9):1 065-1 072.[陈忠, 颜文, 陈木宏,等.南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据[J]. 科学通报, 2006, 51(9):1 065-1 072.]
[52]Yang Tao, Jiang Shaoyong, Ge Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J].Chinese Science Bulletin,2009,54(20):3 231-3 240.[杨涛, 蒋少涌, 葛璐,等.南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义[J].科学通报, 2009, 54(20): 3 231-3 240.]
[53]Yakushev V S, Chvilin E M. Natural gas and gas hydrate accumulations within permafrost in Russia[J]. Cold Regions Science and Technology,2000,31:189-197.
[54]Chen Duofu, Wang Maochun, Xia Bin. Formation condition and distribution prediction of gas hydrate in QinghaiTibet Plateau permafrost
[J].Chinese Journal of Geophysics, 2005, 48(1): 165-172.[陈多福, 王茂春, 夏斌. 青藏高原冻土带天然气水合物的形成条件与分布预测方[J].地球物理学报, 2005, 48(1): 165-172.]
[55]Maslin M, Owen M, Betts R, et al. Gas Hydrates: Past and future geohazard?[J].Philosophical Transactions of The Royal Society A, 2010, 368: 2 369-2 393.
[56]Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106(49): 20 596-20 601.
[57]Yao Bochu. The gas hydrate in the South China Sea[J].Journal of Tropical Oceanography,2001, 20(2): 20-28.[姚伯初. 南海的天然气水合物矿藏
[J]. 热带海洋学报, 2001, 20(2): 20-28.]
[58]MacDonald G J. Role of methane clathrates in past and future climates[J].Climatic Change,1990,16: 247-281.
[59]Archer D. Methane hydrate stability and anthropogenic climate change[J].Biogeosciences,2007, 4: 521-544.
[60]Jiang Ganqing, Shi Xiaoying, Zhang Shihong. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates
[J].Chines Science Bulletin,2006, 51(10): 1 121-1 138.[蒋干清, 史晓颖, 张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩
[J]. 科学通报, 2006, 51(10): 1 121-1 138.]
[61]Paull C K, Brewer P G, UsslerⅢ W,et al. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gashydrate deposits into the upper ocean and atmosphere[J]. GeoMarine Letters,2003, 22: 198-203.
[62]Kvenvolden K A, Lilley M D, Lorenson T D. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane[J].Geophysical Research Letters,1993, 20: 2 459-2 462.
[63]Levitus S J, Antonov J I, Boyer T P,et al. Warming of the world ocean[J].Science,2000, 287: 2 225-2 229.
[64]Skinner L C, Shackleton N J. Deconstructing Terminations Ⅰand Ⅱ: Revisiting the glacioeustatic paradigm based on deepwater temperature estimates[J].Quaternary Science Reviews,2006, 25: 3 312-3 321.
[65]Elderfield H, Greaves M, Barker S,et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Ma/Ca of benthic foraminiferal Uvigerina spp[J].Quaternary Science Reviews,2009,308:1-10.
[66]Shakhova N, Semiletov I, Salyuk A, et al. Methane release on the Arctic East Siberian shelf[J].Geophysical Research Abstracts,2007, 9 (01071).
[67]Hesselbo S P, Grocke D R, Jenkyns H C,et al. Massive dissociation of gas hydrates during a Jurassic oceanic anoxic event[J].Nature,2000, 406: 392-395.
[68]Krull E S, Retallack G J. δ13C depth profiles from paleosols across the PermianTriassic boundary: Evidence for methane release[J].GSA bulletin,2000, 112: 1 459-1 472.
[69]Zachos J C, Rohl U, Schellenberg S A, et al. Rapid acifification of the ocean during the PaleoceneEocene thermal maximum[J].Science,2005, 308: 1 611-1 615.
[70]Katz M E, Pak D K, Dickens G R, et al. The source and fate of massive carbon input during the latest Paleocene thermal maximum
[J].Science,1999, 286: 1 531-1 533.
[71]Kennett J P, Stott L D. Abrupt deepsea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J].Nature,1991, 353: 225-229.
[72]Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J].Science,2000, 288: 128133.
[73]Marcos V V, Hollis C J, Dickens G R, et al. Rock magnetic properties across the PaleoceneEocene Thermal Maimum in Marlborough, New Zealand
[J].Geologica Acta,2009,7: 229-242.
[74]Zeebe R E, Zachos J C, Dickens G R. Carbon dioxide forcing alone insufficient to explain PalaeoceneEocene thermal maximum warming
[J].Nature Geoscience,2009, 2: 576-580.
[75]Alley R B. The Younger Dryas cold interval as viewed from central Greenland[J].Quaternary Science Reviews,2000,19: 213-226.
[76]Steffensen J P, Andersen K K, Bigler M, et al. HighResolution greenland ice core data show abrupt climate change happens in few years
[J].Science,2008,321: 680-684.
[77]Wolff E W, Fischer H, Rothlisberger R. Glacial terminations as southern warmings without northern control[J].Nature Geoscience,2009, doi: 10.1038/NGE0442.
[78]Nisbet E. Climate change and methane[J].Nature,1990,347: 23.
[79]Fischer H, Behrens M, Bock M,et al. Changing boreal methane sources and constant biomass burning during the last termination[J].Nature,2008, 452: 864-867.
[80]Petrenko V V, Smith A M, Brook E J, et al. 14CH4 measurements in Greenland Ice: Investigating last glacial Termination CH4 sources[J].Science,2009, 324: 506-508.
[81]Nisbet E G, Chappellaz J.Shifting gear, quickly[J].Science,2009, 324: 477-478.
/
〈 |
|
〉 |