综述与评述

CaCO3生物矿化的研究进展——有机质的控制作用

展开
  • 中国科学院广州地球化学研究所,广东 广州 510640
张刚生,男,1966年9月生于湖南怀化,高级工程师,主要从事矿物材料学研究。

收稿日期: 1999-04-13

  修回日期: 1999-07-09

  网络出版日期: 2000-04-01

ADVANCES IN BIOMINERALIZATION STUDY OF BIOGENIC CALCIUM CARBONATES:CONTROL OF CRYSTALLIZATION BY ORGANIC MATRIX

Expand
  • Guangzhou Institute of Geochemistry,CAS,Guangzhou 510640,China

Received date: 1999-04-13

  Revised date: 1999-07-09

  Online published: 2000-04-01

摘要

生物CaCO3是自然界分布最广泛的一类生物矿物,其组成除了无机相的CaCO3外,还含有少量的有机质,包括水可溶(SM)和水不可溶有机质(IM),SM富含阴离子基团,是控制CaCO3结晶的重要因素之一。通过有机—无机界面分子识别,有机质选择性地与CaCO3晶体特定方向的面网相互作用,从而对CaCO3的生长、形貌、多型及结晶学定向等产生明显的控制作用。有机—无机界面的分子识别机制包括静电、晶格几何匹配和立体化学互补等。仿生矿化的研究为进一步深入了解生物矿化的机理及制造高级复合材料提供了新的方法。

本文引用格式

张刚生,谢先德 . CaCO3生物矿化的研究进展——有机质的控制作用[J]. 地球科学进展, 2000 , 15(2) : 204 -209 . DOI: 10.11867/j.issn.1001-8166.2000.02.0204

Abstract

Among biominerals, calcium carbonates are most widespread in nature, the compositions of which include minor organic matrix in addition to inorganic materials. The organic matrix can be divided into two classes: water-soluble(SM) and water-insoluble(IM) matrix. SM is often rich in anionic groups such as carboxylate, phosphonate and sulphate groups and plays important role in regulating the crystallization of calcium carbonates. The mineralization experiments, when using the organic matrix directly extracted from organisms to induce carbonates crystallization , show that: (1) with respect to morphology and orientation control, SM from mollusk bivalve shells is susceptible to interacting with (001) face of calcite, whereas SM from echinoderm or sponge spicules tends to interact with (01l)(l=1~1.5) face of calcite; (2) with respect to polymorphism modification, SM from biogenic calcite can always induce calcite nucleation, but SM from biogenic aragonite is not always inducing aragonite nucleation.In addition, the synthetic micromolecules are also used to study biomineralization. The results show that: (1) with respect to morphology and orientation control, the monolayers of n-eicosyl sulphate and n-eicosyl phosphonate tend to interact with (001) face of calcite, the monolayer of n-octadecanoic acid to interact with of (110) face calcite, and film of 10,12-pentacosadiynoic acid to interact with (012) face of calcite; (2) with respect to polymorphism modification, up to date, monolayers of micromolecules generally induce calcite nucleation except for film of 5-hexadecyloxyisophthalic(C16ISA) which promotes aragonite formation.
It is generally accepted that the control of organic matrix over CaCO3 morphology and polymorphism is due to the molecular recognition between organic-inorganic interface such as electrostatic attraction, lattice geometry matching and stereochemical complimentary. At the negative charged interface between organic monolayer and inorganic phase, the electrostatic attraction results in the composition departure from lattice ion stoichiometry and pH lowering which are considered as the main factors to promote inorganic mineral nucleation. Lattice geometry matching and stereochemical complimentary between organic matrix and calcium carbonate effectively reduce the activation energy of nucleation of minerals along such matching faces to result in the oriented nucleation and growth of minerals. Though there is little understanding of detailed control mechanism of biogenic calcium carbonate by matrix, the research will shed lights on material science and provide new pathways to fabricate advanced organic-inorganic composite materials.

参考文献

〔1〕Krampitz G, Graser G . Molecular mechanism of biomineralization in the formation of calcified shells〔J〕.Angew Chem, 1988, 27: 1 145~1 156.
〔2〕Watabe N. Crystal growth of calcium carbonate in the inveterbrates〔J〕. Prog Crystal Growth Charact, 1981, 4:99~147.
〔3〕Zaremba C M, Belcher A M, Fritz M,et al. Critical transition in the biofabrication of abalone shells and flat pearls〔J〕. Chem Mater, 1996, 8:679~690.
〔4〕Curry J D. Mechanical properties of mother of pearl in tension〔J〕. Proc R Soc Lond B, 1977, 196: 443~463.
〔5〕Berman A, Addadi L, Weiner S. Interaction of sea-urchin skeleton macromolecules with growing crystals-a study of intracrystalline proteins〔J〕. Nature, 1988, 311(11): 546~548.
〔6〕毛传斌,李垣德,崔福斋,等.无机材料的仿生合成〔J〕.化学进展, 1988, 10(3): 246~254.
〔7〕Aksay I A, Trau M, Manne S,et al. Biominetic pathways for assembling inorganic thin films〔J〕. Science, 1996, 273(16):892~898.
〔8〕Stupp S I, Braun P V. Molecular manipulation ofmicrostructures: biomaterials, ceramics and semiconductors〔J〕. Science, 1997, 277(29): 1 242~1248.
〔9〕Weiner S, Addadi L. Design strategies in mineralized biological materials〔J〕. J Mater Chem, 1997,7(5): 689~702.
〔10〕Crenshaw M A. The soluble matrix from Mercenaria mercenaria shells〔J〕. Biomineralization, 1972, 6: 6~11.
〔11〕Weiner S, Addadi L. Acidic macromolecules of mineralized tissues: the controllers of crystal formation〔J〕. TIBS,1991, 16: 252~256.
〔12〕Keith J, Stockwell S, Ball D,et al. Comparative analysis of macromolecules in mollusc shells〔J〕. Comp Biochem Physiol, 1993, 105B(3~4): 487~496.
〔13〕Sikes S T, Wheeler A P. Regulators of biomineralization〔J〕.Chemtech, 1988, 10:620~626.
〔14〕Marxen J C, Hammer M, Gehrke T,et al. Carbohydrates of organic shell matrix and the shell-forming tissue of snail biomphalaria glabrate(Say)〔J〕. Biol Bull, 1998, 194: 231~240.
〔15〕Leeuw N H de, Parker S C. Surface structure and morphology of calcium carbonate polymorphs calcite,aragonite and vaterite: an atomistic approach〔J〕. J Phys Chem B, 1998, 102: 2 914~2 922.
〔16〕Addadi L, Weiner S. Interaction between acidic proteins and crystals: stereochemical requirements in biominerallization〔J〕. Proc Natl Acad Sci USA, 1985, 82: 4 110~4 114.
〔17〕Albeck S, Aizenberg J, Addadi L,et al. Interaction of various skeletal intracrystalline components with calcite crystals〔J〕. J Am Chem Soc , 1993, 115: 11 691~11 697.
〔18〕Aizenberg J, Albeck S, Weiner S,et al. Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements〔J〕. J Crystal Growth, 1994, 142: 156~164.
〔19〕Albeck S, Weiner S, Addadi L. Polysaccharides of intracystalline glycoproteins modulated crystal growth in vitro〔J〕. Chem Eur J, 1996, 2(3): 278~284.
〔20〕Kitano Y. The influence of organic material on the polymorphic crystallization of calcium carbonate〔J〕.Geochim Cosmochim Acta, 1965, 29: 29~41.
〔21〕Belcher A M, Wu X H, Christensen R J,et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins〔J〕. Nature, 1996, 381(2): 56~58.
〔22〕Falini G, Albeck S, Weiner S,et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules〔J〕.Science, 1996, 271(5): 67~69.
〔23〕Litvin A L, David S V, Mann S. Templated-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers〔J〕. Adv Mater, 1997, 9(2):124~127.
〔24〕Levi Y, Albeck S, Brack A,et al. Control over aragonite crystal nucleation and growth: an in vitro study of biominerallization〔J〕. Chem Eur J, 1998, 4(3): 389~396.
〔25〕Weiner S, Traub W. Macromolecules in mollusc shells and their function in biominerallization〔J〕. Phil Trans R Soc Lond B, 1984, 304: 425~434.
〔26〕Archibald D D, Qadri S B, Gaber B P. Modified calcite deposition due to ultrathin films on silicon substrates〔J〕.Langmuir, 1996, 12:538~546.
〔27〕Rajam S, Heywood B R, Walker J B A,et al. Oriented crystallization of CaCO3 under compressed monolayers, partⅠ: morphological studies of mature crystals〔J〕. J Chem Soc Farady Trans, 1991, 87(5): 727~734.
〔28〕Heywood B R, Rajam S, Mann S. Oriented crystallization of CaCO3 under compressed monolayers, partⅡ: morphology,structure and growth of immature crystal〔J〕. J Chem Soc Farady Trans, 1991, 87(5): 735~743.
〔29〕Heywood B R, Mann S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed langmuir monolayers〔J〕. Chem Mater , 1994, 6: 313~318.
〔30〕Berman A, Ahn D J, Lio A,et al. Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface〔J〕. Science, 1995, 269(28): 515~518.
〔31〕Mann S. Molecular recognition in biominerallization〔J〕.Nature, 1988, 332(10): 119~124.
〔32〕Lochhead M J, Letellier S R, Vogel V. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers〔J〕. J Phys Chem, 1997, 101B: 10 821~10 827.
〔33〕Weiner S, Hood L. Soluble protein of organic matrix of mollusk shells: a potential template for shell formation〔J〕.Science, 1975, 190(5):987~988.
〔34〕Reeves N J, Evans J S. Polypeptide interaction at ice and biomineral interfaces are defined by secondary structure-dependent chain orientation〔J〕. J Phys Chem, 1997, 101B:6 665~6 669.
〔35〕Addadi L, Moradian J, Shay S,et al. A chemical model for the cooperation of sulphates and carboxylates in calcite crystal nucleation: relevance to biominerallization〔J〕. Proc Natl Acad Sci USA, 1987, 84: 2 732~2 736.

文章导航

/