收稿日期: 1999-09-06
修回日期: 2000-01-02
网络出版日期: 2000-08-01
基金资助
国家教育部博士点学科基金项目“逆冲构造中力学—化学耦合作用与硫化物的改造成矿”(编号:98053302)资助。
NATURE AND STATE OF INTERGRAIN FLUID IN NONHYDR-OSTATICALLY SRESSED SOLID ROCKS UNDER LOW TEMPERATURE AND ITS ROLE FOR MASS TRANSFER
Received date: 1999-09-06
Revised date: 2000-01-02
Online published: 2000-08-01
刘亮明,彭省临 . 低温非静水应力作用下固体岩石颗粒间流体的性状及传质作用[J]. 地球科学进展, 2000 , 15(4) : 395 -399 . DOI: 10.11867/j.issn.1001-8166.2000.04.0395
Intergrain fluids within the nonhydrostatically stressed solids under low temperature play a very important role in deformation and syntectonic geochemical processes for the intergrain fluid-mineral reactions and the mass-transfer by intergrain fluids. The state and nature of inter-grain fluids, the reactions of inter-grain fluids with minerals, and the mass transfer by intergrain fluids are all closely related to stress of solid grains. Through theoretical analysis, the water film is thought of being the main state of intergrain fluids in the nonhydrostatically stressed solids. Whether hydration force, double-layer repulsive force or osmotic pressure due to double-layer is the main mechanism for transmitting stress mainly depends on thickness and composition of the fluid film. The contribution of stress to solid-fluid interface reaction
and mass transfer by fluids is that stress can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the stress induced processes are deduced in this paper.
[1]Fyfe W S, Price N J, Thompson A B. Fluid in the Earth' s Crust[M]. Amsterdam: Elsevier, 1978. 383.
[2]Walther J V. Fluid-rock interactions during metamorphism at mid-crustal conditions[J]. J Geol, 1994, 102: 559~570.
[3]Ethereidge M A, Wall V J, Cox S F. High fluid pressures during metamorphism and deformation: Implications for mass transport and deformation mechanisms[J]. J Geophys Res,1984, 89:4 344~4 358.
[4]Wheeler J. Importance of pressure solution and Coble creep in the deformation of polymineralic rocks[J]. J Geophys Res,1992, 97: 4 579~4 586.
[5]Lasaga A C, Richarddson S W, Holland HD. The mathematics of cation diffusion and exchange under metamorphic conditions [A]. In: Saxena S K, Bhattachani S, eds. Energetics of Geological Processes[C]. New York: Springer-Verlag, 1970.535~588.
[6]Joeston R. Grain growth and grain-boundary diffusion in quartz from the Chistmas Mountains (Texas) contact aureole[J]. Am J Sci, 1983, 283-A: 233~254.
[7]Nigrini A. Diffusion in rock alternation systems I: Predictions of limiting equivalent ionic conductances at elevated temperatures[J]. Am J Sci, 1970, 269: 65~91.
[8]Renard F, Ortoleva P. Water films at grain-grain contacts:Debye-Hu¨cke, osmotic model of stress, salinity, and mineralogy dependence[J]. Geochimica et Cosmochimica Acta, 1997,61: 1 963~1 970.
[9]Barthurst R G C. Diagenetic fabrics in some Britsh Dinantian limestones[J]. Liverpool Manchester Geol, 1959, 2: 11~36.
[10]Paterson M S. Nonhydrostatic thermodynamics and its geologic applications[J]. Rev Geophys Space Phys, 1973, 11:355~389.
[11]Raj R. Creep in polycrystaline aggregates by matter transport through a liquid phase[J]. J Geophys Res, 1982, 87:4 731~4 739.
[12]Weyl P K. Pressure solution and the force of crystallization-a phenomenological theory[J]. J Geophys Res, 1959, 69:2 001~2 025.
[13]Rutter E H. The kinetics of rock deformation by pressure solution[J]. Phil Trans R Soc London, 1976, 283: 203~209.
[14]Gratier J P, Guiguet R. Experimental pressure solution-deposition on quartz grains: the crucial effect of the nature of the fluid[J]. J Structural Geol, 1986, 8:845~856.
[15]Heidug W K. Intergranular solid-fluid phase transformations under stress: the effect of surface forces[J]. J Geophys Res,1995, 100:5 931~5 940.
[16]Israelachvili J. Intermolecular and Surface Forces.2nd ed[M]. San Diego: Academic, 1991.
[17]Tada R, Maliva R,Siever R. A new mechanism for pressure solution in porous quartzose sandstone[J]. Geochimica et Cosochimica Acta, 1987, 51: 2 295~2 301.
[18]Lasaga A C, Kirkpatrick R J.地球化学过程动力学[M].朱金初,周会群,徐士进译.北京:科学出版社, 1989. 86~87.
[19]Gibbs J W. On the equilibriium of heterogeneous substances[A]. In: The Scientific Papers of J Willard Gibbs, Vol 1[C]. New York: Dover, 1876.57~371.
[20]Kamb W B. The thermodynamic theory of nonhydrostatically stressed solids[J]. J Geophys Res, 1961, 66: 259~271.
[21]Paterson M S. Nonhydrostatic thermodynamics and its geologic applications[J]. Rev Geophys, 1973, 11: 355~386.
[22]Kumazawa M. A fundamental thermodynamics theory on nonhydrostatic field and on the stablity of mineral orentation and phase equilibrium[J].J Earth Sci Nagoya Univ, 1963,11:145~217.
[23]Truskinovsky L M. The chemical potential tensor[J]. Geo chem Int, 1982, 21: 22~36.
[24]Lehner F K, Bataille J. Nonequilibrium thermodynamics of pressure solution[J]. Pure and Applied Geophysics, 1985,122: 53~85.
[25]Bayly B. Nonhydrostatic thermodynamics in deforming rocks[J]. Can J Earth Sci, 1987, 24: 572~579.
[26]Shimizu I. Nonhydrostatic and nonequilibrium thermodynamics of deformable materials[J]. J Geophys Res, 1992, 97(B4): 4 587-4 597.
[27]Truskinoskiy L M, Kuskov O L. Chemical equilibrium in a nonhydrostatic system[J]. Geochem Int, 1982, 18(6): 170~185.
[28]Wheeler J. The significance of grain-scale stresses in the kinetics of metamorphism[J]. Contrib Mineral Petrol, 1987,97: 397~404.
[29]Dubrovinskaya N A, Dubrovinsky L S, Saxena S K. Systematics of thermodynatic data on solids: thermodynamical and pressure-volume-temperature properties of some minerals[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4 151~4 158.
[30]Nicolas A, Poirier J P.变质岩的晶质塑性和固态流变[M].林传勇,史兰斌译.北京:科学出版社,1985.169~186.
[31]Wintsch R P, Dunning J. The effects of dislocation density on the aqueous solubility of quartz and some geologic implications: a theoretical approach[J]. J Geophys Res, 1985,90: 3 649~3 657.
/
〈 |
|
〉 |