全球海表温度在不同时间尺度的主模态对比分析

  • 刘鹏 ,
  • 江志红 ,
  • 于华英 ,
  • 秦怡
展开
  • 1. 南京信息工程大学 气象灾害教育部重点实验室,江苏 南京210044
    2. 南京信息工程大学 遥感学院,江苏 南京210044

作者简介:刘鹏(1980-),男,河北石家庄人,讲师,主要从事气候变化研究.E-mail: liupeng1998@nuist.edu.cn

网络出版日期: 2014-07-10

基金资助

国家重点基础研究发展计划项目“东亚季风区年际—年代际气候变率机理与预测研究”(编号:2012CB955204);江苏省博士后科研资助计划项目“不同温盐环流强度背景下北太平洋海表温度年代际振荡的变率研究”(编号:1301137C)资助

版权

, 2014,

A Comparative Analysis of Main Modes of Global-scale Sea Surface Temperature on Multiple Time Scale

  • Liu Peng ,
  • Jiang Zhihong ,
  • Yu Huaying ,
  • Qin Yi
Expand
  • 1.Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Jiangsu, Nanjing, 210044
    2.Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Jiangsu, Nanjing, 210044

Online published: 2014-07-10

Copyright

Advance in Earth Sciences Editorial, 2014, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

摘要

利用1880—2009年HadISST资料,去掉百年全球变暖的信号,研究发现东太平洋、北太平洋和北大西洋都有较强的年际和年代际振荡信号,特别是赤道东太平洋南侧的年代际振荡是不容忽视的。对全球范围的海表温度资料做EOF分析发现,存在3种主要的全球尺度信号,第一模态为太平洋型、第二模态为北大西洋型以及第三模态为赤道中太平洋型。特别指出,第三模态是CP ENSO在全球模态中的表现。这3种模态在年际和年代际尺度都有显著的信号,在无滤波的情况下,3种模态方差贡献之和为34%。在年代际以上时间尺度范围,3种模态方差贡献之和为61%。在各种时间尺度中,这3种信号与全球平均温度都有一定的联系,尤其第一、二模态的影响最为重要,在年代际尺度中,第一、二模态方差贡献之和达到50%。2005年以后全球并没有明显增温,可能与前2个模态同时下降有关。

本文引用格式

刘鹏 , 江志红 , 于华英 , 秦怡 . 全球海表温度在不同时间尺度的主模态对比分析[J]. 地球科学进展, 2014 , 29(7) : 844 -853 . DOI: 10.11867/j.issn.1001-8166.2014.07.0844

Abstract

Using the HadISST data from 1880 to 2009, removed the signal of global warming in one hundred year. The results show that, there were the significant interannual and interdecadal oscillation signal at the eastern Pacific and north Pacific and north Atlantic, especially the decadal oscillation in the south of eastern equatorial Pacific cannot be ignored. We found there are three major global-scale signals by using the Empirical Orthogonal Function (EOF) analysis on global sea surface temperature, the first mode is (ENSO-like/PDO-like) Pacific pattern, the second mode is (AMO-like) the north Atlantic pattern and the third mode is (ENSO Modoki-like/CP ENSO-like) Center Pacific Ocean pattern. In particular, the third mode is the performance of Center Pacific El Niño-Southern Oscillation in the global mode. There are significant signals in interannual and interdecadal scales, in the unfiltered conditions, the three modes can explain 34% of total variance contribution. Above the interdecadal scale, the sum of three modes variance contribution is 61%. In various time scales, the three signals and the average global temperature has a connection, especially the influence of the first and second mode is the most important, in the decadal scale, the sum of the first and second modal variance contribution is 50%. Since 2005, there is no significant signal of global warming may be associated with the simultaneous decline of the first two modes.

参考文献

[1] Zhang Yuan, Wallace J M, Battisti D S. ENSO-like interdecadal variability: 1900-1993[J].Journal of Climate, 1997, 10(5):1004-1020.
[2] Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069-1079.
[3] Power S, Casey T, Folland C, et al. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 1999, 15(5): 319-324.
[4] Schubert S, Gutzler D, Wang H, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results[J]. Journal of Climate, 2009, 22(19): 5251-5272.
[5] Meehl G A, Goddard L, Murphy J, et al. Decadal prediction: Can it be skilful?[J].Bulletin of the American Meteorological Society, 2009,90:1467-1485.
[6] Kushnir Y. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions[J]. Journal of Climate, 1994, 7(1): 141-157.
[7] Delworth T L, Mann M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics,2000, 16(9): 661-676.
[8] Delworth T L, Zhang R, Mann M E. Decadal to centennial variability of the Atlantic from observations and models[M]∥ Geophysical Monograph Series 173. Washington DC: American Geophysical Union,2007:131-148.
[9] Enfield D B, Mestas Nu ez A M, Trimble P J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US[J]. Geophysical Research Letters, 2001, 28(10): 2077-2080.
[10] Knight J R, Folland C K, Scaife A A. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2006, 33: L17706, doi:10.1029/2006GL026242.
[11] Ma Hao,Wang Zhaomin,Shi Jiuxin. The role of the southern ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.
[11] [马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展,2012,27(4): 398-412.]
[12] Wei Fengying, Song Qiaoyun. Spatial distribution of the global sea surface temperature with interdecadal scale and their potential influence on meiyu in middle and lower reaches of Yangtze River[J].Acta Meteorological Sinica, 2005, 63(4): 477-484.
[12] [魏凤英, 宋巧云.全球海表温度年代际尺度的空间分布及其对长江中下游梅雨的影响[J].气象学报, 2005, 63(4): 477-484.]
[13] Jiang Zhihong, Li Jianping, Tu Qipu, et al. Regional characteristics of the decadal and interdecadal variations for global temperature field during the last century[J].Chinese Journal of Atmospheric Sciences, 2004, 28(4): 545-548.
[13] [江志红, 李建平, 屠其璞,等. 20世纪全球温度年代和年代际变化的区域特征[J]. 大气科学, 2004, 28(4): 545-548.]
[14] Xiao Dong, Li Jianping. Main decadal abrupt changes and decadal modes in global sea surface temperature field[J]. Chinese Journal of Atmospheric Sciences, 2007,31(5): 839-854.
[14] [肖栋,李建平.全球海表温度场中主要的年代际突变及其模态[J].大气科学,2007,31(5): 839-854.]
[15] Sun C, Li J, Jin F F, et al. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation[J]. Environmental Research Letters, 2013, 8, doi:10.1088/1748-9326/8/4/044006.
[16] Zhang W,Li J, Zhao X. Sea surface temperature cooling mode in the Pacific cold tongue[J]. Journal of Geophysical Research, 2010, 115: C12042, doi:10.1029/2010JC006501.
[17] Liu P, Sui C H. An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability[J]. Advances in Atmospheric Sciences, 2014, 31(2): 316-330.
[18] Messié M, Chavez F. Global modes of sea surface temperature variability in relation to regional climate indices[J]. Journal of Climate, 2011, 24(16): 4314-4331.
[19] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14): 4407, doi: 10.1029/2002JD002670.
[20] Wu Z, Huang N E, Wallace J M, et al. On the time-varying trend in global-mean surface temperature[J]. Climate Dynamics, 2011, 37(3/4): 759-773.
[21] Hansen J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change[J]. Journal of Geophysical Research, 1999, 104(D24): 30997-31022.
[22] Xiao Ziniu, Zhong Qi, Yin Zhiqiang, et al. Advances in the research of impact of decadal solar cycle on modern climte[J].Advances in Earth Science, 2013, 28(12):1335-1348.
[22] [肖子牛,钟琦,尹志强,等.太阳活动年代际变化对现代气候影响的研究进展[J]. 地球科学进展,2013,28(12):1335-1348.]
[23] Bretherton C S, Widmann M, Dymnikov V P, et al. The effective number of spatial degrees of freedom of a time-varying field[J]. Journal of Climate, 1999, 12(7): 1990-2009.
[24] Choi J, An S I, Yeh S W, et al. ENSO-Like and ENSO-Induced tropical Pacific decadal variability in CGCMs[J]. Journal of Climate, 2013, 26(5): 1485-1501.
[25] Deser C, Phillips A S, Alexander M A. Twentieth century tropical sea surface temperature trends revisited[J]. Geophysical Research Letters, 2010, 37(10), doi:10.1029/2010GL043321.
[26] Liu Z. Dynamics of interdecadal climate variability: A historical perspective[J]. Journal of Climate, 2012, 25(6): 1963-1995.
[27] Zhang Wenjun, Wang Lei, Xiang Baoqiang, et al. Impacts of two types of La Nia on the NAO during boreal winter[J]. Climate Dynamics, 2014, doi:10.1007/s00382-014-2155-z.
[28] Weng H, Ashok K, Behera S K, et al. Impacts of recent El Nio Modoki on dry/wet conditions in the Pacific rim during boreal summer[J]. Climate Dynamics, 2007, 29(2/3): 113-129.
[29] Ashok K, Yamagata T. Climate change: The El Nio with a difference[J]. Nature, 2009, 461(7263): 481-484.
[30] Kao H Y, Yu J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. Journal of Climate, 2009, 22(3): 615-632.
[31] Yu J Y, Zou Y, Kim S T, et al. The changing impact of El Nio on US winter temperatures[J]. Geophysical Research Letters, 2012, 39(15), doi:10.1029/2012GL052483.
[32] Chung P H, Li T. Interdecadal relationship between the mean state and El Nio types[J]. Journal of Climate, 2013, 26(2): 361-379.
[33] Banholzer S, Donner S. The influence of different El Nio types on global average temperature[J]. Geophysical Research Letters, 2014, 41(6): 2093-2099.
[34] Chen J, Del Genio A D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend[J]. Journal of Climate, 2008, 21(11): 2611-2633.
[35] Chen A, Del Genio D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climatevariations in observations and reanalyses. Part II: Pacific pandecadal variability[J]. Journal of Climate,2008,21: 2634-2649.
[36] Li J, Sun C, Jin F F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 2013, 40(20): 5497-5502.
[37] Ting M, Kushnir Y, Seager R, et al. Forced and internal twentieth-century sst trends in the north atlantic[J]. Journal of Climate,2009, 22(6): 1469-1481.
[38] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7467): 403-407.
文章导航

/