生态学研究

不同类型生物土壤结皮固氮活性及对环境因子的响应研究

展开
  • 1.中国科学院干旱区生物地理与生物资源重点实验室,中国科学院新疆生态与地理研究所, 新疆乌鲁木齐830011;
    2.中国科学院寒区旱区环境与工程研究所沙坡头沙漠研究试验站,甘肃兰州730000;
    3.河南科技大学林学院,河南洛阳471003
苏延桂(1980-),女,甘肃兰州人,助理研究员,主要从事干旱区恢复生态学研究. E-mail:guiruian@163.com

收稿日期: 2009-10-15

  修回日期: 2010-09-16

  网络出版日期: 2011-03-10

基金资助

国家自然科学基金项目“温带荒漠区生物土壤结皮对土壤碳通量的影响”(编号:41001067)和“蚁类对固沙植被生态系统的影响”(编号:40971156);国家自然科学杰出青年基金项目“干旱沙区土壤—植被系统修复的生态水文学机理”(编号:40825001)资助.

The Nitrogenase Activity of Biological Soil Crusts and Their Responses to Environmental Factors

Expand
  • 1.Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi830011, China;
    2.Shapotou Desert Research and Experiment Station, Cold and Arid Regions and Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou730000,China;
    3.Forestry Colleague of Henan University of Science and Technology, Luoyang471003, China

Received date: 2009-10-15

  Revised date: 2010-09-16

  Online published: 2011-03-10

摘要

利用乙炔还原法对腾格里沙漠东南缘沙坡头地区3种生物土壤结皮(藻结皮、地衣结皮和苔藓结皮)的固氮活性及生物结皮固氮活性对模拟不同降雨量(1、3和5 mm)、温度(13、24和28 ℃)和光强(0、400和1 000 μmol/(m2·s))的响应进行研究。结果表明:不同类型生物结皮的固氮活性差异显著,依次为:藻结皮(16.6 mmol/(m2·h))>地衣结皮(6.9 mmol/(m2·h))>苔藓结皮(2.6 mmol/(m2·h));水分和温度对生物结皮的固氮活性具有显著影响,光强无显著影响。生物结皮的固氮活性在3和5 mm降雨显著高于1 mm降雨;在24 ℃下显著高于13 ℃;并且,3种生物结皮的固氮活性对环境因子变化的敏感性不同。生物结皮具有固氮能力,特别是结皮演替早期的藻结皮,它们对荒漠生态系统土壤氮素输入具有重要贡献,而降雨量和温度是控制生物结皮固氮活性的2个关键因素。

本文引用格式

苏延桂,李新荣,赵昕,李爱霞,陈应武 . 不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J]. 地球科学进展, 2011 , 26(3) : 332 -338 . DOI: 10.11867/j.issn.1001-8166.2011.03.0332

Abstract

Acetylene reduction was employed to study the nitrogenase activity (NA) of three types of biological soil crusts (algal, moss and lichen crusts) and the responses of NA to precipitation (1 , 3 and 5 mm), light intensity (0, 400 and 1 000 μmol/(m2·s)) and air temperature (13, 24 and 28 ℃) were also investigated under the laboratory condition. Results showed that NA differed significantly among crusts, with highest value occurring for algal crusts (16.6 mmol/(m2·h)), followed by lichen (6.9 mmol/(m2·h)) and moss crusts(2.6 mmol/(m2·h)). Precipitation and temperature significantly affected the NA, while light intensity had no effect on NA. The 3 and 5 mm precipitations significantly activated NA compared with 1 mm precipitation. NA was profoundly enhanced under the air temperature of 24 ℃ compared with 13 ℃. Therefore, firstly, this study indicated that biological soil crusts have the capability of nitrogen fixation, especially the algal crusts, which contributed profoundly to the soil nitrogen input in the desert ecosystems; secondly, the precipitation and temperature are the regulating factors for NA.

参考文献

[1]Wang Tao. Research progress on interaction between development of land surface system and climate change and human activity [J]. Journal of Desert Research, 2007, 27(5): 711-718.[王涛. 干旱区主要陆表过程与人类活动和气候变化研究进展[J]. 中国沙漠, 2007, 27(5): 711-718.]
[2]Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management[M]. Berlin: Springer, 2003.
[3]West N E.Structure and function of soil microphytic crusts in wildland ecosystems of arid and semiarid regions[J]. Advances in Ecological Research, 1990, 20: 179-223.
[4]Belnap J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts[C]∥Belnap J, Lange O L, eds. Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, 2003: 241-261.
[5]Hartley A E, Schlesinger W H. Potential environmental controls on nitrogenase activity in biological crusts of the northern Chihuahuan Desert [J].Journal of Arid Environments, 2002, 52: 293-304.
[6]Zaady E, Groffman P, Shachak M. Nitrogen fixation in macroand microphytic patches in the Negev Desert[J]. Soil Biology and Biochemistry,1998, 30: 449-454.
[7]Belnap J. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacteriallichen soil crusts [J]. Biology and Fertility of Soils,1996, 23: 362-367.
[8] Aranibar J N, Andersonw I C, Ringrosez S, et al. Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: Acetylene reduction and stable isotope studies[J]. Journal of Arid Environments,2003, 54: 345-358.
[9]Li X R, Zhou H Y, Wang X P, et al. The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China[J]. Plant and Soil,2003, 251: 237-245.
[10]Li Xinrong, Zhang Jingguang, Shi Qinghui. Plant diversity in the process of succession of artificial vegetation types and environment in an arid desert region of China[J]. Acta Phytoecologica Sinica,2000, 24(3): 257-261.[李新荣, 张景光, 石庆辉. 我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究[J]. 植物生态学报, 2000, 24(3): 257-261.]
[11]Li X R, Zhang Z S, Zhang J G. Association between vegetation patterns and soil properties in the southeastern Tengger Desert, China [J].Arid Land Research and Management,2004, 18: 269-383.
[12]Belnap J.Nitrogen fixation in biological soil crusts from southeast Utah, USA[J].Biology and Fertility of Soils,2002,35:128-135.
[13]Skarpe C, Henriksson E. Nitrogen fixation by cyanobacterial crusts and by associativesymbiotic bacteria in western Kalahari, Botswana[J].Arid Soil Research and Rehabilitation,1986, 1: 55-59.
[14]Wu N, Zhang Y M, Downing A. Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, northwestern China[J]. Journal of Arid Environments,2009, 73: 828-833.
[15]Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J].Journal of Arid Environments,2006, 66: 620-634.
[16]MacGregor A N, Johnson D E. Capacity of desert algal crusts to fix atmospheric nitrogen[J].Soil Science Society of America Journal,1971,35:843-844.
[17]Lange O L, Belnap J, Reichenberger H. Photosynthesis of the cyanobacterial soilcrust lichen Collema tenax from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange[J]. Functional Ecology, 1998, 12: 195-202.
[18]Hu C X,Liu Y D.Primary succession of algal community structure in desert soil[J].Acta Botanic Sinica,2003,45:917-924.
[19]Kershaw R C. Physiological Ecology of Lichen[M]. Cambridge: Cambridge University Press, 1985.
[20] Davey A, MaRchant H J. Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vestfold Hills, Antarctica[J]. Phycologia,1983, 22: 377-385.
[21] FritzSheridan R P. Physiological ecology of nitrogen fixing bluegreen algal crusts in the uppersubalpine life zone [J].Journal of Phycology,1988, 32: 774-782.
[22]Lennihan R, Chapin D M, Dickson L G. Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commume[J]. Canadian Journal of Botany,1994, 72: 940-945.
[23]Su Y G, Li X R, Chen Y W, et al. Effects of biological soil crusts on emergence of desert vascular plants in North China[J]. Plant Ecology,2007, 191: 11-19.
[24]John K. Acetylene reduction in the dark by mats of blue green algae mats in subtropical grassland[J]. Annals of Botany,1977, 41: 807-812.

文章导航

/