综述与评述

海洋浮游细菌的生态学研究

展开
  • 中国科学院海洋研究所,山东 青岛  266071
肖天(1957-),男,山东青岛人,副研究员,主要从事海洋微生物生态学研究. E-mail:txiao@ms.qdio.ac.cn

收稿日期: 2000-05-08

  修回日期: 2000-07-11

  网络出版日期: 2001-02-01

基金资助

国家重点基础研究发展规划项目“东黄海生态系统动力学与生物资源可持续利用”(编号:G19990437)和国家自然科学基金重大项目“渤海生态系统动力学与生物资源持续利用”(编号:49790010)联合资助.

THE STUDY ON MARINE BACTERIOPLNAKTON ECOLOGY

Expand
  • Institute of Oceanology,CAS,Qingdao  266071,China

Received date: 2000-05-08

  Revised date: 2000-07-11

  Online published: 2001-02-01

摘要

海洋浮游细菌在海洋生态系统中的重要作用随着对其生物量和生产力的深入研究而得到了充分肯定。以浮游细菌为核心的微食物环研究的开展,也显示出微食物环在海洋生态系统动力学过程中有不可替代的作用,是主食物链的重要补充,特别是在贫营养的大洋生态系统中。在不同水层和特殊环境中对海洋浮游细菌的研究结果表明其研究潜力巨大。就国内在这方面的研究现状和需进一步研究的内容进行了阐述。

本文引用格式

肖天 . 海洋浮游细菌的生态学研究[J]. 地球科学进展, 2001 , 16(1) : 60 -64 . DOI: 10.11867/j.issn.1001-8166.2001.01.0060

Abstract

The important role of marine bacterioplankton in the marine ecosystem is certainly definite with the thorough study of bacterioplankton biomass and production. The study of microbial food loop based on bacterioplankton has shown its effect which cannot be replaced in the processes of ecosystem dynamics. It is an important supplement to marine food chain, especially in oligotrophic pelagic marine ecosystem. In different water layers and special environment, the study of bacterioplankton has great potentialities and therefore is greatly concerned by many scientists. In this paper, there are also some information on its domestic study and further study needed in the near future.

参考文献

[1] Kphcc A E. Marine Microbiology(Deep Sea)[M]. Translate by Sun G Y, Li S Z. Beijing: Science Press, 1964.
[2] Xuo T Y. Marine Bacteriology[M]. Beijing: Science Press, 1962.
[3] Hobbie J E. Use of nuclepore filters for counting bacteria by fluoresence microscopy[J] . Appl Environ Microbial, 1977, 33:1 225~1 228.
[4] Fuhrman J A. Bacterioplankton secondary production estimates for coastal waters of British Columbia, and California[J]. Appl Environ Microbial, 1980,39(6):1 085~1 095.
[5] Ning X R. Marine nanoplankton and picoplankton [J]. Dong-hai Marine Science,1997b, 15(3): 60~64.
[6] Cole J J. Bacterial production in fresh and saltwater ecosystems: a cross-system overview[J]. Mar Ecol Prog Ser, 1988,43:1~10.
[7] Sherr B F, Sherr E B, Hopkinson C S. Trophic interactions within pelagic microbial communities: Indications of feedoacs regulation of carbon flow[J]. Hydrobiology, 1988,159:19.
[8] Azam F, Fenchel T, Gray J G,et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser, 1983,10:257.
[9] Steward G F , Wikner J ,William P C ,et al. Estimation of virus production in the sea II. Field results[J]. Mar Microbe Food Webs, 1992,6(2):79~90.
[10] Kirchman. D L, Keil R G, Simon,et al. Biomass and production of heterotrophic bacterioplankton in the oceanic sub-arctic pacific[J]. Deep-Sea Research I,1993,40: 967~988.
[11] Shiah Fuh-kwo. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay[J]. Linmlo Oceanogr, 1994,39(6): 1 243~1 258.
[12] Kirchman D L, Rich J H, Barber R T. Biomass and biomass production of hetero trophic bacteria along 140°W in the equatorial Pacific: Effect of temperature on the microbial loop[J]. Deep-Sea Research, 1995,42: 603~619.
[13] Li C W, Ge Y G, Lu Y H. Advance in the Developing of Marine Technology (1991~1992)[M]. Beijing: China Ocean Press, 1993.
[14] Johnson P W, Sieburth J M. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass[J].Limnol Oceanogr, 1979,24:928~935.
[15] Murphy L S, Haugen E M. The distribution and abundance of phototrophic ultrapankton in the North Atlantic[J]. Limnol Oceanogr, 1985,30: 47~58.
[16] Caron D A, Lim E L, Miceli G,et al. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community[J]. Mar Ecol Prog Ser, 1991,76:205~217.
[17] Iturrlaga R, Mttchell B G. Chroococcoid cyanobacteria: A significant component in the food web dynamics of the open ocean[J]. Mar Ecol Prog Ser, 1986,28:291~297.
[18] Cho B, Azam F. Biogeochemical significance of bacterial biomass in the oceans euphotic zone[J]. Mar Ecol Prog Ser, 1990, 63:253.
[19] Del Giorgie P A, Cole J J, Cimbleris A. Respiration rates in bacterial exceed phytoplankton production in unproductive aquatic systems[J]. Nature, 1997, 385:148~151.
[20] Scaria D. On the role of bacteria in secondary production[J]. Limnol Oceanogr, 1988,33: 1 220~1 224.
[21] Sherr E B, Sherr B F. Role of microbes in pelagic food webs: A revised concept[J]. Limnol Oceanogr, 1988,33: 1 225~1 227.
[22] Pomeroy L R. The microbial food web[J]. Oceanus, 1992.28~35.
[23]Hoproft R R, Roff J C. Phytoplankton size fractions in a tropical neritic ecosystem near Kingstion. Jamaica [J]. J Plankton Res, 1990,12:1 069~1 088.
[24] Davis P G, Sieburth J M. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria[J]. Mar Ecol Prog Ser, 1984,19:237~246.
[25] McManus G B. Flow analysis of a planktonic microbial food web model[J]. Marine Microbial Food Webs,1991,5:145~160.
[26] Hagstrom A, Azam F, Andersson A,et al. Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes[J]. Mar Ecol Prog Ser, 1988,49:171.
[27] Burkill P H, Owens R J G, Mantoura R F C, et al. Syne-chococcus and its importance to the microbial food web of the northwestem Indian Ocean[J]. Deep-Sea Res,1993, 40:773~782.
[28] Landry M R, Kirshtein J, Constantinou J. Abundances and distributions of picoplankton populations in the central equatorial pacific from 12°N to 12°S, 140°W[J]. Deep-Sea Res(Ⅱ), 1996,43: 871~890.
[29] Xiao T, Zhang W C, Wang R. Elementary studies on the roles of cyanobacteria in marine microbial food loop [J].Marine Science,1999,5:5~8.
[30] Harada S. Variations in the transfer efficiency from photo-synthetic and bacterial carbon production into zooplankton during a shift of zooplankton dominance from copepoda to doliolida[A]. In: PICES Fourth Annual Meeting Abstracts[C]. 1995.23.
[31] Michael J R F, Philip W B, Graham S. Modeling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: the importance of DOC[J]. Limnol Oceanogr, 1999, 44(1):80~94.
[32] Chen D,Qian Z Y,Wang Z M,et al. Ecological distribution of heterotrophic bacteria in the Continental Shelf of East China Sea [J].Studia Marine Sinica,1982, 19:3~9.
[33] Ning X R. Biological and ecological characterization of the marine unicellular cyanobacterium and its environmental factors in the estuary of Changjiang River and the adjacent East China Sea [J].Acta Oceanologica Sinica,1991,15(4): 552~559.
[34] Shen H Q.Quantitative distribution and species composition on marine microorganism and their relationship to environments in Daya Bay, Collections of papers on marine ecology in the Daya Bay(I)[M].Beijing: China Ocean Press, 1989.115~126.
[35] Zheng T L, Cai L Z, Jiang X Q. Bacterial biomass in the upwelling regions of Minnan Taiwan Bank Fishing Ground[M]. Beijing: Science Press,1991.356~365.
[36] Chen Q H,Qian S B. Study of nanophytoplankton and picophytoplankton in the coastal water of Qingdao [J]. Acta Oceanologica Sinica,1992,14(3):105~113.
[37] Xiao T, Jiao N Z, Wang R. Quantitative distribution of cyanobacteria and bacteria in Jiaozhou Bay[M]. Beijing: Science Press,1995.118~124.
[38] Jiao N Z, Xiao T. Bacterial secondary production in Jiaozhou Bay [J]. Chinese Science Bulletin,1995,40(9):829~832.
[39] Zheng T L,Mohammed E B,Li W Q,et al. Study on bacterial production and bacterial heterotrophic activity in Taiwan Strait[A].In: Oceanography in China[C].Beijing: China Ocean Press,1997.153~161.
[40] Zheng T L, Mohammed E B, Chen J C,e t al. Study on bacterial biomass in Taiwan Strait and its environmental factors[A].In: Oceanography in China[C].Beijing: China Ocean Press,1997.146~152.

Options
文章导航

/