学术论文

新亚欧大陆桥新疆段环境灾害时空分维特征研究

展开
  • ①中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011;②西北大学,陕西 西安 710069
陈亚宁,男,1958年出生于新疆乌鲁木齐,研究员,主要从事环境与灾害研究。

收稿日期: 1999-04-05

  修回日期: 1999-09-13

  网络出版日期: 2000-04-01

基金资助

国家重点基础研究发展规划项目(编号:G1999043504)、新疆重点科研项目“新亚欧大陆桥新疆段主要环境灾害防治技术与对策研究”
(编号:98013010)与中国科学院“西部之光”人才培养计划资助。

STUDY ON SPACE-TIME FRACTAL DIMENSION CHARACTERISTICS OF ENVIRONMENTAL HAZARDS IN XINJIANG LINE OF NEW EURASIAN CONTINENTAL BRIDGE

Expand
  • ①Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011;②Northwest University,Xi’an710069

Received date: 1999-04-05

  Revised date: 1999-09-13

  Online published: 2000-04-01

摘要

基于区域自然灾害发生的随机性和不确定性,运用分形、混沌理论,对新亚欧大陆桥新疆段近38年的环境灾害受损次数进行了时空分维特征研究。结果表明陆桥新疆段受损状况不仅在时间序列上具有自相似性,其容量维Df在0.8302~1.437之间,而且在空间序列上也具有自相似性,存在明显分维结构,其信息维D1在0.0997~0.1272之间。灾害严重区段的容量维值较大,并且容量维值越大,灾害事件中等级的复杂程度就越高,这一特征将有助于认识灾害发生规律和动力学特征。

本文引用格式

陈亚宁,杨思全 . 新亚欧大陆桥新疆段环境灾害时空分维特征研究[J]. 地球科学进展, 2000 , 15(2) : 143 -146 . DOI: 10.11867/j.issn.1001-8166.2000.02.0143

Abstract

Fractal and chaos theory is a subject on entering a kind of special disordered state in the process of system evolution. In this paper, based on the random and indefinite of regional natural disasters, the space-time fractal dimension characteristic of the environmental hazards in Xinjiang line of New Eurasian Continental Bridge is studied by using the fractal and chaos theory. The analysis of 38 years hazard data shows: the environmental hazards in Xinjiang line have self-similarity not only in the time alignment (volume fractal dimensionDfvaried from 0. 8302 to 1. 437), but in the space alignment (informative fractal dimensionDIvaried from 0.0997 to 0.1272). Moreover, except for showing the grades of environmental hazards as time alignment by the relationship that volume fractal dimensionDfis in inverse proportion to the complicity of hazards, and the space alignment can reveal the irregularity of environmental hazards distribution. Results from this is useful for us to recognize the inner regularity and dynamic characteristic of the hazards.

参考文献

〔1〕Mandelbrot B B. The Fractal Geometry of Nature〔M〕. San Francisco: Freeman, 1982.
〔2〕Hao Bailin. Elementary symbolic dynamics and Chaos in Dissipative System〔M〕. Singapore: World Scientific, 1989.
〔3〕Roossler O E. The chaotic hierarchy〔J〕.Z Natureforsch,1983,38a: 788~801.
〔4〕Wolf A, Swift J B, Swinney H L,et al. Determing lyapunov exponents from a time series〔J〕. Physica, 1985, 16D(3):285~317.
〔5〕Fedr J, Jossang T. Fractals〔M〕. New York: Plenum, 1987.
〔6〕Malinverno A. Experimental linear model of sea-floor〔J〕.Topography,1989, 131(1/2):96.
〔7〕Mandelbrot B B. Fractals: Fram, Chance and Dimension〔M〕.San Francisco:Freeman, 1977.
〔8〕林鸿溢.分形论——奇异性探索〔M〕.北京:北京理工大学出版社,1992.
〔9〕辛原文.分形理论及其应用〔M〕.合肥:中国科技大学出版社,1993.
〔10〕李后强.陈光钺.分形与分维〔M〕.成都:四川教育出版社,1990.
〔11〕王兴宝.分形理论及其应用〔M〕.武汉:华中理工大学编印,1991.

文章导航

/