观测数据处理与分析

基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布

展开
  • 1. 中国林业科学研究院林业研究所,国家林业局林木培育重点实验室,北京 100091;2. 济源市国有大沟河林场,河南济源 454650
郑宁(1981-),男,安徽芜湖人,博士研究生,主要从事农林气象研究. E-mail:realzheng7@126.com

收稿日期: 2010-03-16

  修回日期: 2010-09-07

  网络出版日期: 2010-11-10

基金资助

公益性行业(气象) 科研专项“大尺度水热通量观测系统的研制与应用研究”(编号:GYHY200706046);“十一五”国家科技支撑计划课题“华北土石山区植被恢复与重建技术试验示范”(编号:2006BAD03A11);黄河小浪底森林生态系统定位研究站基金项目.

Distribution of Flux Source Area and Footprint for the Scintillation Method over a Mixed Plantation in the Hilly Zone of the North China

Expand
  • 1.Research Institute of Forestry, CAF; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091,China;2.Dagouhe National Forest Farm,Jiyuan He′nan 454650, China

Received date: 2010-03-16

  Revised date: 2010-09-07

  Online published: 2010-11-10

摘要

参考Meijninger提出的适用于大孔径闪烁仪(LAS)法的印痕模型,利用位于河南省济源市的华北低丘山地30年生栓皮栎—侧柏—刺槐人工林生态系统的主要生长季2009年5~9月通量等观测数据,计算、分析了该森林生态系统的通量印痕及源区分布。结果表明:①以90%通量贡献区面积为测算对象,不同风向条件下,在大气不稳定时,东南风向时源区面积最小,为1.1547 km2,西南风下最大,为1.5237 km2;在大气层结稳定时,西北风向时源区最小,为1.7271 km2,西南风向时最大,为3.5289 km2。并且在大气不稳定时的源区面积均小于稳定条件下的面积。其中,大气层结稳定时面积最小的西北风向时的源区面积比不稳定时面积最大的西南风向时的源区面积还要大11.8%。②以90%通量贡献区面积为测算对象,晴天条件下,由于湍流交换的逐渐加强,上午源区面积由8:00的1.1483 km2减小到 11:00的0.4518 km2。中午之后,湍流交换逐渐减弱,大气趋向稳定层结,源区面积由14:00的0.4779 km2增加到17:00的0.7137 km2。通量源区面积的日变化趋势与大气稳定状况和湍流交换变化趋势大致一致。③以80%通量贡献区面积为测算对象,受大气状况、风向及下垫面性状的影响,各月通量源区各不相同。2009年5~9月期间,各月源区面积分别为1.834、1.680、2.043、1.671、1.380 km2。

本文引用格式

郑宁,张劲松,孟平,黄辉,高峻,贾长荣,任迎丰 . 基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布[J]. 地球科学进展, 2010 , 25(11) : 1175 -1186 . DOI: 10.11867/j.issn.1001-8166.2010.11.1175

Abstract

Based on the Meijninger(2002) model and the continuous flux measurement over a 31-year aged mixed plantation in the hilly zone of the North China from May to September in 2009,the source area and footprint of the plantation flux for large aperture scintillometer(LAS) method were calculated in the main growing season . The results showed that:①The range of source area under NW that is the smallest in stable stratification conditions is 11.8% bigger then the source area under SW that is the biggest in unstable stratification conditions. ②The range of source area is 1.1483 km2 at 8:00 when stratification conditions become unstable exactly; The range of source area source area is 0.4518 km2 at 11:00 as is the smallest in ae day. The range of source area becomes 0.7137 km2 from 0.4779 km2, when stratification conditions become stable from unstable. The changing trend of source area is consistent with radiation and temperature.③The range of source area is 1.834 km2,1.680 km2,2.043 km2,1.671km2,1.380 km2, in May, June, July, August, September  respectirely.

参考文献

[1] Haenel H D, Grbnhage L. Footprint analysis: A closed analytical solution based on height dependent profiles of wind speed and eddy viscosity[J]. Boundary-Lay Meteorology,1999, 93: 395-409.
[2] Cai Xuhui. Footprint Analysis in micrometeorology and its extended applications[J].Chinese Journal of Atmospheric Sciences,2008,32(1):123-132.[蔡旭辉. 湍流微气象观测的印痕分析方法及其应用拓展[J].大气科学,2008,32(1):123-132.]
[3] Zhao Xiaosong, Guan Dexin, Wu Jiabing, et al. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai mountain[J].Journal of Beijing Forestry University,2005, 27(3):17-23.[赵晓松, 关德新, 吴家兵,等. 长白山阔叶红松林通量观测的footprint及源区分布[J]. 北京林业大学学报, 2005, 27(3): 17-23.]
[4] Mi Na, Yu Guirui, Wen Xuefa, et al. Imrestigation of space reperesentativeness for flux measurements with China[J].Science China (Serise D),2006, 36(suppl.I):22-33.[米娜, 于贵瑞, 温学发,等. 中国通量观测网络通量观测空间代表性初步研究[J]. 中国科学:D辑, 2006, 36(增刊I):22-33.]
[5] Lu Li, Liu Shaomin, Su Minzhang, et al. Advances in the study of areal surface fluxes with large aperture scintillomter[J].Advances in Earth Science, 2005, 20(9): 932-938.[卢俐, 刘绍民, 孙敏章,等. 大孔径闪烁仪研究区域地表通量的进展[J]. 地球科学进展, 2005, 20(9): 932-938.]
[6] Luhar A, Rao K. Lagrangian stochastic dispersion model simulations of tracer data in nocturnal flows over complex terrain[J].Atmospheric  Environment,1994, 28: 3 417-3 431.
[7] Rannik B, Aubinet M, Kurbanmuradov O, et al. Footprint analysis for measurements over a heterogeneous forest[J].Bound-Layer Meteorology, 2000, 97: 137-166.
[8] GÊckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurement s with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127:175-188.
[9] Rebmann C, Gckede M, Foken T, et al. Quality analysis applied on eddy covariance measurement at complex forest sites using footprint modeling[J].Theoretical and Applied Climatology, 2005, 80: 121-141.
[10] Kim J, Guo Q, Baldocchi D D, et al. Upscaling fluxes from tower to landscape: Overlaying flux footprint s on high resolution (IKONOS) images of vegetation cover[J]. Agricultural and Forest Meteorology, 2006, 136: 132-146.
[11] Liu Shaomin, Hu Guang, Lu Li, et al. Estimation of regional evapot ranspiration by TM/ ETM + data over heterogeneous surfaces[J]. Photogrammetric Engineering & Remote Sensing,2007, 10 (73): 1 169-1 178.
[12] Peng Guliang, Cai Xuhui, Liu Shaomin. A flux footprint model for large aperture scintillometer[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2007, 43(6): 822-827.[彭谷亮,蔡旭辉,刘绍民. 大孔径闪烁仪湍流通量印痕模型的建立与应用[J]. 北京大学校报:自然科学版,2007, 43(6): 822-827.]
[13] Beyrich F, De Bruin H R, Meijninger W M L, et al. Results from oneyear continuous operation of a large aperture scintillometer over a heterogeneous land surface[J]. Boundary-Layer Meteorology,2002, 105: 85-97.
[14] Ezzahar J, Chehbouni A, Hoedjes J C B,et al. Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment[J].Journal of Hydrology,2009, 375: 217-226.
[15] Kohsiek W, Meijninger W M L, De Bruin H A R,et al.Saturation of the large aperture scintillometer[J].Boundary-Layer Meteorology,2006, 121: 111-126.
[16] Hemakumara H,Chandrapala L, Moene A F. Evapotranspiration fluxes over mixed vegetion areas measured from large aperature scintillometer[J].Agriculture Water Management,2003,58: 09-122.
[17] Meijninger W M L, Hartogensis O K, Kohsiek W. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment[J].Boundary-Layer Meteorology,2002, 105: 37-62.
[18] Peng Guliang, Liu Shaomin, Cai Xuhui. Footprint analysis of turbulent flux measurement over heterogeneous surface[J].Chinese Journal of Atmospheric Sciences,2008, 32(5): 1 064-1 070.[彭谷亮, 刘绍民, 蔡旭辉. 非均匀下垫面湍流通量观测的印痕分析[J]. 大气科学, 2008, 32(5): 1 064-1 070.]
[19] Gong Lijuan, Liu Shaomin, Shuang Xi. Investigation of spatial representativeness for surface flux measurements with eddy covariance system and large aperture scintillometer[J].Plateau Meteorology,2009, 28(2): 246-257.[宫丽娟, 刘绍民, 双喜. 涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J]. 高原气象, 2009, 28(2): 246-257.]
[20] Ochs G R, Wilson J J. A second-generation large aperture scintillometer. NOAA tech. memor[R]. ERL ETL-232, NOAA Environmental Research Laboratories, Boulder, CO, USA,1993:24.
[21] James M W, Steven P O, Steven A S. Sonic anemometer tilt correction algorithms[J].Boundary-Layer Meteorology, 2001, 99: 127-150.
[22] Webb E K. On the correction of flux measurements for effects of heat and water vapor transfer[J].Boundary-Layer Meteorology,1982, 23: 251-254.
[23] Eva F, Dennis B, Richard O, et al.Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology,2001, 107: 43-69.
[24] Kormann R,Meixner F X. An analytic footprint model for non-neutral stratification[J].Boundary-Layer Meteorology, 2001, 99: 207-224.
[25] Meijninger W M L. Surface Fluxes over Natural Landscapes Using Scintillometry[M]. Wageningen University and Research Centrum,2003,ISBN 90-5808-885-5.
[26] Hill R J, Bohlander R A, Clifford S F, et al. Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements[J].IEEE Transactions on Geoscience and Remote Sensing,1998, 26(3): 330-342.
[27] McAneney K J, Green A E, Astill M S. Large-aperture scintillometry: The homogeneous case[J].Agricultural and Forest Meteorology,1995, 76: 149-162.
[28] Anandakumar K. Sensible heat flux over a wheat canopy: Optical scintillometer measurements and surface renewal analysis estimations[J].Agricultural and Forest Meteorology,1999, 96: 145-156.
[29] Cain J D, Rosier P T W, Meijninger W M L, et al. Spatially averaged sensible heat fluxes measured over barley[J]. Agricultural and Forest Meteorology,2001, 107: 307-322.
[30] Chamberlain A C. Transport of gases to and from grass and grass-like surfaces[J].Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1966, 290: 236-265.
[31] Schuepp H P, Leclerc M Y, McPherson J I, et al. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation[J]. Boundary-Layer Meteorology,1990, 50:355-374.
[32] Rotach M W, Gryning SE, Tassone C. A two dimensional stochastic dispersion model for daytime conditions[J].Quarterly Journal of Royal Meteorological Society, 1996, 122: 367-389.
[33] Hadfield M G. Passive scalar diffusion from surface sources in the convective boundary-layer[J]. Boundary-Layer Meteorology,1994, 69: 417-448.
[34] Leclerc M Y, Shen S H, Lamb B. Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer[J].Journal of Geophysical Research:Atmospheres,1997, 102: 9 323-9 334.
[35] Hill R J, Bohlander R A, Clifford S F, et al. Turbulence-induced millimeter-wavescintillation compared with micrometeorological measurements[J].IEEE Transactions on Geoscience and Remote Sensing,1988, 26(3): 330-342.
[36] Cai Xuhui, Leclerc M Y. Forward-in-time and backward-in-time dispersion in the convective boundary layer: The concentration footprint[J]. Boundary-Layer Meteorology,2007, 123: 201-218.
[37] Schimd H P. Source area for scalar and scalar flux[J]. Boundary-Layer Meteorology,1994, 67: 293-318.
[38] Schimd H P. Footprint modeling for vegetation atmosphere exchang studies:A review and perspective[J].Agriculture and Forest Meteorology,2002,113: 159-183.
[39] Schmid H P. Experimental design for flux measurements: Matching the scales of observations and fluxes[J].Agricultural and Forest Meteorology,1997, 87:179-200.
[40] Schimd H P. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas[J].Agricultural and Forest Meteorology,1999,93:195-209.
[41] Gash J H C. A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements[J]. Boundary-Layer Meteorology,1986, 35: 409-414.
[42] Schmid H P, Oke T R. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain[J].Quarterly Journal of the Royal Meteorology Society,1990, 116: 965-988.
[43] Horst T W, Weil J C. Footprint estimation for scalar flux measurements in the atmospheric surface-layer[J].Boundary-Layer Meteorology,1992, 59: 279-296.
[44] Kljun N, Rotach M W, Schmid H P. A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications[J]. Boundary-Layer Meteorology,2002, 103: 205-226.

文章导航

/