探索与争鸣

湖泊蓝藻水华生态灾害形成机理及防治的基础研究

  • 朱本占 ,
  • 潘纲 ,
  • 杨柳燕 ,
  • 谢平 ,
  • 刘正文 ,
  • 吴庆龙 ,
  • 高光
展开
  • (1.中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,江苏 南京 210008;2.中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,湖北 武汉 430072;3.南京大学,污染控制与资源化研究国家重点实验室,江苏 南京 210092;4.中国科学院生态环境研究中心,环境水质学国家重点实验室, 北京 100085;5.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京 100085)
吴庆龙(1967-),男,江苏南京人,研究员,项目首席科学家,主要从事微生物生态学、淡水生态学和恢复生态学等研究.E-mail: qlwu@niglas.ac.cn

收稿日期: 2008-08-21

  修回日期: 2008-09-18

  网络出版日期: 2008-11-10

基金资助

国家重点基础研究发展计划项目“湖泊蓝藻水华生态灾害形成机理及防治的基础研究”(编号:2008CB418100)资助

Ecological Consequences of Cyanobacetrial Blooms in Lakes and Their Countermeasures

  • Zhu Benzhan ,
  • Pan Gang ,
  • Yang Liuyan ,
  • Xie Ping ,
  • Liu Zhengwen ,
  • Wu Qinglong ,
  • Gao Guang
Expand
  • 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography andLimnology, Chinese Academy of Sciences, Nanjing 210008, China; 2.State Key Laboratory ofFreshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,Wuhan 430072, China; 3.State Key Laboratory of Pollution Control and Resources Reuse, Collegeof Environmental Sciences and Engineering, Nanjing University, Nanjing 210092, China;4.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China;5.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China)

Received date: 2008-08-21

  Revised date: 2008-09-18

  Online published: 2008-11-10

Supported by

null

摘要

湖泊具有供水、渔业、旅游、维持区域生态系统平衡等功能,是支撑我国经济和社会发展的重要资源之一。但是近30年来,湖泊富营养化所导致的蓝藻水华频繁暴发,生态灾害事件频发,严重影响湖泊功能的发挥, 制约区域经济可持续发展。针对国家在保障区域水安全和生态安全、保护人民健康及建设和谐社会等方面的重大需求,国家重点基础研究发展计划项目“湖泊蓝藻水华生态灾害形成机理及防治的基础研究”于2008年7月正式立项。项目拟解决的关键科学问题包括:①湖泊蓝藻水华主要衍生污染物的形成机理、迁移转化规律和毒理效应;②蓝藻水华导致湖泊生态系统结构变化和功能退化的机理;③蓝藻水华生态灾害评估及调控机理。针对上述科学问题,项目以蓝藻水华污染物的产生、湖泊生态系统结构与功能的响应以及生态灾害的评估与调控为研究主线,重点开展以下几个方面的研究:①蓝藻水华衍生污染物的产生及其环境过程;②蓝藻水华衍生污染物的毒理效应与生态和健康风险;③蓝藻水华导致湖泊生态系统结构变化与功能退化的关键过程和机制;④蓝藻水华灾害治理和调控的的技术原理和途径。项目的实施和完成将为我国湖泊蓝藻水华生态灾害的预防与控制提供理论和技术原理支撑。

本文引用格式

朱本占 , 潘纲 , 杨柳燕 , 谢平 , 刘正文 , 吴庆龙 , 高光 . 湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J]. 地球科学进展, 2008 , 23(11) : 1115 -1123 . DOI: 10.11867/j.issn.1001-8166.2008.11.1115

Abstract

In the recent 30 years, cyanobacterial blooming has occurred frequently in lakes of the Yangtze river basin, especially in Lake Taihu, Chaohu, and Dianchi, which has severely affected the functioning of these lake ecosystems. Cyanobacterial blooming in lakes has certainly become a major challenge to the sustainable development of regional economy in China, which needs urgent solutions. Although the environmental problems generated by cyanobacterial blooming has got more and more attention, the mechanism of ecological catastrophe driven by the blooming is unclear until now. Most studies have been focusing on the occurrence of cyanobacterial blooms in the last decades. The current project aims to reveal the mechanism of ecological catastrophe induced from cyanobacterial blooms and to find practical means to control the negative impacts. Three key questions will be addressed in this project, which include: ①development, environmental process, fate, and toxicological effects of pollutants derived from cyanobacterial blooms; ②regime shift and functional change of lake ecosystems induced by cyanobacterial blooms; ③evaluation and control mechanism of ecological catastrophe caused by the blooms. Lake Taihu, Chaohu, and Dianchi will be chosen for a comprehensive and comparative study. The project will focus on the pollution mechanisms of cyanobacterial blooms, subsequent response of lake ecosystems, and thus the corresponding means reducing these negative impacts. Major research contents include the formation, environmental process, and fate of derivate pollutants from cyanobacterial blooms, ecotoxicological effect of major pollutants and safety of water quality, key process and change of lake ecosystems in response to cyanobacterial blooming. Based on these studies, new methods and principles for reducing the negative impacts will be studied and promoted. This study will finally have implications for ensuring the safety of regional ecology and sustainable development of regional economy. This study may also have contributions to the knowledge about ecology of keynote species, ecological resilience and catastrophic ecology.

参考文献

[1] Horne A J,Goldman C R. Limonology2nd[M]. New York:McGraw Hill Inc.,1994.

[2] Scheffer M,Hosper H,Meijer M L,et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology and Evolution,1993,8:275-279.

[3] Scheffer M,Carpenter S,Foley J A,et al. Catastrophic shifts in ecosystems[J]. Nature, 2001,413:591-596.

[4] Capone D G,Zehr J P,Paerl H W,et al. Trichodesmium,a globally significant marine cyanobacterium[J]. Science, 1997,276:1 221-1 229.

[5] Codd G A,Morrison L F,Metcalf J S. Cyanobacterial toxins:Risk management for health protection[J]. Toxicology and Applied Pharmacy,2005,203:264-272.

[6] Xie L,Xie P,Guo L,et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu,China[J]. Environmental Toxicology,2005,20:293-300.

[7] Chen J,Xie P,Guo L G,et al. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in a freshwater snailBellamya aeruginosa from a large shallow, eutrophic lake of the subtropical China[J]. Environmental Pollution,2005,134:423-430.

[8] Hu Q. Chapter 5:Environmental effects on cell composition[C]Richmond A,ed. Handbook of Microalgal Culture. Oxford:Blackwell Science Ltd.,2004:83-93.

[9] Li L,Wan N,Gan N,et al. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi,China[J]. Water Science and Technology,2007,55:43-50.

[10] Petersen H G,Hrudey S E,Cantin I A,et al. Physiological toxicity,cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon Flos-aquae after exposure to water treatment chemicals[J]. Water Research,1995,29:1 515-1 523.

[11] Valavanidis A,Vlahogianni T,Dassenakis M,et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicology and Environmental Safety,2006,642:178-189.

[12] Solmp C P,Thomson J,De Lange G J. Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropelS1[J]. Geochimica Cosmochimica Acta,2002,66:1 171-1 184.

[13] Fan C,Zhang L,Qu W. Lake sediment resuspension and caused phosphate release—A simulation study[J]. Journal of Environmental Science,2001,134:406-410.

[14] Blackburn N,Fenchel T,Mitchell J G. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria[J]. Science,1998,282:2 254-2 256.

[15] Hens M,Merckx R. The role of colloidal particles in the speciation and analysis of “dissolved” phosphorus[J]. Water Research,2002,36:1 483-1 492.

[16] Herndl G J. Ecology of amorphous aggregationsmarine snow in the Northern Adriatic Sea. . Microbial density and activity in marine snow and its implication to overall pelagic processes[J]. Marine Ecology Progress Seriers,1998,48:265-275.

[17] Mitchell J G,Pearson L,Dillon S,et al. Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations[J]. Appled and Environmental Microbiology,1995,61:4 436-4 440.

[18] Worm J,S ø ndergaard M. Dynamics of heterotrophic bacteria attached to Microcystis spp.Cyanobacteria[J]. Aquatic Microbial Ecology,1998,14:19-28.

[19] Xie L,Xie P,Tang H,et al. The low TN:TP ratio,a cause or a result of Microcystis blooms?[J]. Water Research,2003,37:2 073-2 080.

[20] Wu Q L,Chen Y W,Xu K D,et al. Intra-habitat heterogeneity of the microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu[J]. Hydrobiologia,2007,581:241-254.

[21] Yin L,Huang J,Li D,et al. Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natanslour. hara[J]. Environmental Toxicology,2005,203:308-313.

[22] Hargeby A,Andersson G,Blindow I,et al. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes[J]. Hydrobiologia,1994,279/280:83-90.

[23] Chen F,Xie P. The toxicities of single-celled Microcystis aeruginosa PCC7820 and liberated-M. aeruginosa to-Daphnia carinata-in the absence and present of the green alga Scenedesmus obliquus[J]. Journal of Freshwater Ecology,2004,19:539-545.

[24] Ferrão-filho A S,Fileto C,Lopes N P,et al. Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans[J]. Freshwater Biology,2003,48:759-767.

[25] Gilbert J J. Susceptibility of planktonic rotifers to a toxic strain of Anabaena flos-aquae[J]. Limnology and Oceanography,1994,39:1 286-1 297.

[26] Guo N,Xie P. Development of tolerance against toxic Microcystis eruginosa in three cladocerans and the ecological implications[J]. Environmental Pollution,2006,143:513-518.

[27] Lürling M. Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with green alga Scenedesmus obliquus[J]. Limnology and Oceanography,2003,48:2 214-2 220.

[28] Lemke A M,Lemke M J,Benke A C. Importance of detrital algae, bacteria, and organic matter to littoral microcrustacean growth and reproduction[J]. Limnology and Oceanography,2007,52:2 164-2 176.

[29] Vadeboncoeur Y,Jeppesen E,Zanden M J V,et al. From green land to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes[J]. Limnology and Oceanography,2003,484:1 408-1 418.

[30] White S H,Duivenvoorden L J,Fabbro L D. Impacts of a toxic Microcystic bloom on the macroinvertebrate fauna of Lake Elphinstone,central Queensland, Australia[J]. Hydrobiologia,2005,548:117-126.

[31] Tammi J,Lappalainen A,Mannio J,et al. Effects of eutrophication on fish and fisheries in Finnish lakes:A survey based on random sampling[J]. Fishery Management and Ecology,1999,6:173-186.

[32] Anderson D M. Turning back the harmful red tide[J]. Nature,1997,388:513-514.

[33] Pan G,Zhang M,Chen H,et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution,2006,141:195-200.

[34] Pan G,Zou H,Chen H,et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils[J]. Environmental Pollution,2006,141:206-212.

[35] Chen Q,Mynett A E,Minns A W. Application of cellular automata to modeling competitive growth of two underwater species C. aspera and P. pectinatus-in Lake Veluwe[J]. Ecological Modeling,2002,147:253-265.

[36] Giusti E,Marsili-Libelli S. An integrated model for the Orbetello lagoon ecosystem[J]. Ecological Modeling,2006,196:379-394.

[37] Hu W P,J rgensen S E,Zhang F B. A vertical-compressed three-dimensional ecological model in Lake Taihu,China[J]. Ecological Modeling,2006,190:367-398.

文章导航

/