研究简报

合成孔径雷达对地观测应用中目标感兴趣区域的自动获取

  • 高贵 ,
  • 周蝶飞 ,
  • 李德仁 ,
  • 蒋咏梅 ,
  • 张军
展开
  • 1.国防科技大学电子科学与工程学院,湖南 长沙 410073; 2.湖南师范大学,湖南 长沙 410081;3.国防科技大学信息系统与管理学院,湖南 长沙 410073;武汉大学,湖北 武汉 430079
高贵(1981-),男,内蒙古集宁人,讲师,主要从事遥感信息处理等.E-mail:ggsarxh@sina.com.cn

收稿日期: 2007-07-04

  修回日期: 2007-12-12

  网络出版日期: 2008-01-10

基金资助

国家自然科学基金项目“SAR图像目标ROI自动获取技术研究”(编号:60772045);国防预研项目“二炮巡航导弹飞行数据控制链图像压缩编码技术研究”(编号:203010203);国防科技大学博士创新资助项目“高分辨SAR图像对地观测目标ROI的获取和分析”共同资助.

The Automatic Acquirement of Target's Region-of-Interest from SAR for the Application of Earth Observation

Expand
  • 1.School of Electronic Science and Engineering, NUDT, Changsha, Hunan 410073, China;2. Hunan Normal University, Changsha, Hunan 410081, China; 3.School of Information  System and Management, NUDT, Changsha, Hunan 410073, China; 4.Wuhan University, Wuhan, Hubei 430079, China

Received date: 2007-07-04

  Revised date: 2007-12-12

  Online published: 2008-01-10

摘要

在简要评述国内外对地观测应用中,利用SAR图像进行目标ROI的自动获取方面的研究成果及存在问题的基础上,提出了一种SAR图像目标ROI自动获取新方案,包括SAR图像自动目标检测方案和SAR图像自动目标鉴别方案并解决其中的关键技术。实测数据的实验结果证明了新方案具有稳健性强、适用性广、自动化程度高、计算量小、工程实现易等特点,说明了该方案对于空间对地观测具有广泛的应用前景。

本文引用格式

高贵 , 周蝶飞 , 李德仁 , 蒋咏梅 , 张军 . 合成孔径雷达对地观测应用中目标感兴趣区域的自动获取[J]. 地球科学进展, 2008 , 23(1) : 39 -46 . DOI: 10.11867/j.issn.1001-8166.2008.01.0039

Abstract

A new scheme of the automatic acquirement of target's region-of-interest (ROI) by utilizing SAR images on the study of earth observation is proposed based on a simple review on the progress and the analysis of existing problems. The new scheme consists of a scheme of target detection and that of target discrimination. The key techniques of the new scheme are also developed. The experiment results of real SAR scenes show that the presented scheme has the characteristics of strong robustness, extensive practicability, high automatic on low computation and easy realization. Therefore, the presented scheme has the extensive prospect for spatial earth observation.

参考文献

[1] Adriano UBottauscio OZucca M. Special issue on advances in synthetic aperture radar [J]. IEE Proceedings RadarSonar & Navigation20031503:360-367.

[2] Novak L MOwirka G JNetishen C M. Performance of a high-resolution polarimetric SAR automatic target recognition system [J]. The Lincoln Laboratory Journal199361: 11-24. 

[3] Novak L MOwirka G JBrower W S. The automatic target-recognition system in SAIP [J]. The Lincoln Laboratory Journal1997102: 187-202.

[4] Greenspan MTardella Net al. Development and Evaluation of A Real Time SAR ATR System [C]Radar ConferenceRADARCON 98. Proceedings of the 1998 IEEE1998: 38-43.

[5] English R Aet al. Development of an ATR Workbench for SAR Imagery [R]. Technical ReportDRDCOttawa2005.

[6] Oliver C J.httpwww.infosar.co.uk/misc/demo.html1998.

[7] Druyts Pet al. SAHARA: Semi-Automatic Help for Region Analysis [C]Proceedings of the Joint Workshop of ISPRS Working Groups I/1I/3 and IVA: Sensors and Mapping from Space. Germany Hannover1997:267-274.

[8] Roller Wet al. Detection and Recognition of Vehicles in High-Resolution SAR Imagery [C]. SPIE20014 380:142-152.

[9] Ross T Det al. SAR ATR-So What's the problem? -An MSTAR Perspective [C].SPIE19993 721:662-672.

[10] Kuang GangyaoJi KefengYu Wenxianet al.A survey of researches on SAR ATR [J]. Journal of Image and Graphics2003810:1 115-1 120.[匡纲要,计科峰,郁文贤,等.基于SAR图像的自动目标识别研究综述[J].中国图象图形学报2003810:1 115-1 120.]

[11] Zhong XuelianWang ChanglinZhou Pinget al. Automatic target detection and discrimination in SAR imagery [J]. Journal of Image and Graphics2005106:688-697.[钟雪莲,王长林,周平,等. SAR图像中目标的自动检测与辨别[J]. 中国图象图形学报2005106:688-697.]

[12] Frery A CMuller H JYanasse C C Fet al. A Model for Extremely Heterogeneous Clutter [J]. IEEE Transactions on Geoscience and Remete Sensing1997353:648-659.

[13] Salazar J S II. Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model [D]. The University of New Mexico1999.

[14] Bisceglie M DGaldi C. CFAR Detection of extended objects in high-resolution SAR images [J]. IEEE Transactions on Geoscience and Remete Sensing2005434:833-842.

[15] Bhanu BLin Yingqianget al. Genetic Algorithm based feature selection for target detection in SAR images [J]. Image and Vision Computing2003217: 591-608.

[16] Lin Y QBhanu B. Evolutionary feature synthesis for object recognition [J]. IEEE Transactions on SystemsMan and Cybernetics-Part C: Applications and Reviews2005352: 156-171.

[17] Gao GGangyao KuangQi Zhanget al. Fast detecting and locating groups of targets in high-resolution SAR images [J]. Pattern Recognition2007404:1 378-1 384.

[18] Owirka G Jet al. An Algorithm for Detecting Groups of Targets [C].IEEE International Radar Conference1995:641-643.

[19] Marni S MKuttikkad SChellappa Ret al. Context-Aided False Alarm Reduction for SAR Automatic Target Recognition [J]. IEEE1997126/29: 885-888.

[20] Greig DDenny MarkPosa Francesco. Knowledge-Based Methods for Small Object Detection in SAR Images [C].SPIE20034 883:121-130.

 

文章导航

/