收稿日期: 2007-08-20
修回日期: 2007-10-20
网络出版日期: 2007-11-10
Applications of Data Assimilation in Climate Modeling:A Perspective from Regional Climate Studies Over Western China
Received date: 2007-08-20
Revised date: 2007-10-20
Online published: 2007-11-10
蒲朝霞 , . 数据同化在气候模拟中的应用——对中国西部区域气候研究的展望[J]. 地球科学进展, 2007 , 22(11) : 1177 -1184 . DOI: 10.11867/j.issn.1001-8166.2007.11.1177
Modern data assimilation techniques represent a way to combine the numerical model and observations together for an optimal estimation of the state of the earth system. In addition to their vital role in numerical weather prediction and climate reanalysis, data assimilation techniques can also be applied in many aspects of climate study, such as model initialization, validation and optimization. The paper gives a brief discussion on the applications of data assimilation in climate modeling with emphases on a few key issues that are closely associated with the regional climate study over the western China. Challenges, potential methodologies, recent results and future development are presented.
Key words: Data assimilation; Climate modeling; Regional climate; Western China.
[1]Kalnay E, Atmospheric Modeling, Data Assimilation and Predictability [M]. Cambridge: Cambridge University Press, 2003.
[2]Talagrand O. Assimilation of observations, an introduction[J].Journal of Meteorological Society of Japan,75:191-209.
[3]Daley R.Linear non-divergent mass-wind laws on the sphere[J].Tellus, 1983, 35A:17-27.
[4]Evensen G. Data assimilation, the ensemble Kalman filter [M]. USA New york: Springer Verlag, 2006.
[5]Kopken C, Kelly G , Thepaut J N. Assimilation of meteosat radiances data within 4DVAR system at ECMWF: Assimilation experiences and forecast impact[J].Quartery Journal of Royal Meteorological Society,2004,130:2 277-2 292.
[6]LaMashall J, Uccellini L, Einaudi F, et al. The joint center for satellite data assimilation[J].Bulletin of the American Meteorological Society,2007,88(3):329-340
[7]Reichler T, Roads J O. Time-space distribution of long-range atmospheric predictability[J].Journal of Atmospheric Science,2004, 61:249-263.
[8]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J].Bulletin of the American Meteorological Society,2001,82:247-267.
[9]Uppala S, et al.The ERA-40 reanalysis[J].Quarterly Journal of the Royal Meteorological Society,2005,131:2 961-3 012.
[10]Mesinger F, DiMego G, Kalnay E. North American regional reanalysis[J]. Bulletin of the American Meteorological Society,2006, 87(3):343-360.
[11]Parrish D F, Derber J D. The National meteorological center spectral statistical interpolation analysis system[J].Monthly Weather Review,120:1 747-1 763.
[12]Rabier F, McNally A, Anderson E,et al.The ECMWF implementation of three- dimensional variational data assimilation (3D-Var).II: Structure function[J].Quarterly Journal of the Royal Meteorological Society,1998,124:1 809-1 830.
[13]Bailey D A, Lynch A H. Development of an Antarctic Regional Climate System Model. Part II: Station Validation and Surface Energy Balance[J]. Journal of Climate, 2000,13(8):1 351-1 361.
[14]King J C, Connolley W M. Validation of the Surface Energy Balance over the Antarctic Ice Sheets in the U.K. Meteorological Office Unified Climate Model[J].Journal of Climate,1997,10(6):1 273-1 287.
[15]Pu Z, Xu L, Salomonson V. MODIS/Terra observed seasonal variations of snow cover over the Tibet Plateau[J].Geophysical Research Letter,34:101 029-101 034.
[16]Reichle H R, Koster R D, Dong J. Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation[J].Journal of Hydrometeorology,2004, 5(3):430-442.
[17]Ji M, Leetmaa A. Impact of data assimilation on ocean initialization and El Nino prediction[J]. Monthly Weather Review, 1997,125(5):742-753.
/
〈 |
|
〉 |