地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1111 -1118. doi: 10.11867/j.issn.1001-8166.2017.10.1111

上一篇    

光释光测年中石英颗粒全球标准曲线法(gSGC)与单片再生法(SAR)等效剂量(D e)的比对
杨宏宇 1, 2( ), 赵晖 1, *( ), 王兴繁 1, 2, 耿建伟 1, 2   
  1. 1.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院大学资源与环境学院,北京 100049
  • 收稿日期:2017-06-05 修回日期:2017-09-05 出版日期:2017-12-20
  • 通讯作者: 赵晖 E-mail:yanghongyu15@mails.ucas.ac.cn;hzhao@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目“巴丹吉林沙漠西南缘山地洪水补给沙漠地下水的沉积学与年代学证据”(编号:41771016)资助.

Optical Dating Equivalent Dose (D e) Comparison of Global Standardised Growth Curve (gSGC) and Single-aliquot Regenerative-dose (SAR) Methods for Quartz Grains

Hongyu Yang 1, 2( ), Hui Zhao 1, *( ), Xingfan Wang 1, 2, Jianwei Geng 1, 2   

  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.College of Resources and Environment, University of Chinese Academy of Sciences, Benjing 100049, China
  • Received:2017-06-05 Revised:2017-09-05 Online:2017-12-20 Published:2017-10-20
  • Contact: Hui Zhao E-mail:yanghongyu15@mails.ucas.ac.cn;hzhao@lzb.ac.cn
  • About author:

    First author:Yang Hongyu(1992-),female,Taigu County,Shanxi Province,Master student. Research areas include environmental engineering.E-mail:yanghongyu15@mails.ucas.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China“Moutain flood from southwestern margin of Badain Jaran Desert recharges the desert-groundwater by sedimentology and chronlogy evidences”(No. 41771016).

全球标准曲线法(gSGC)的提出为高效快速地测定释光样品的等效剂量(De)值提供了可能。但是由于各个实验室的放射源剂量率、操作流程、仪器误差以及选取的再归一化剂量值等不同,每个实验室得出的gSGC会有参数的不同。通过建立实验室的gSGC曲线和测试流程,并比较gSGC法和SAR法获取的De值的一致性,发现在低剂量范围内(0~100 Gy),使用gSGC法估计的De和SAR法估计的De非常接近,表明在低剂量范围内用gSGC法估计De是可靠的。这将很大程度地提高本实验室的释光测年速度,同时也为其他实验室gSGC的建立提供借鉴。在较高剂量范围(>100 Gy)与SAR方法结果比对时出现较大差别,这可能是由于研究中用于拟合gSGC的样品数量不够多,尤其是年龄较老的样品还不够多,还需在今后工作中逐步积累更多样品,完善gSGC参数,使其也能胜任较老年龄样品。

Optical dating is a method of measuring the time since the sample was buried from last thermal event or light exposure. Samples such as quartz and feldspar grains are the most commonly used sediment of measurement. Single-Aliquot Regenerative-dose (SAR) method has become the most acceptable procedure for obtaining the equivalent Dose (De) of a sample. The Standardised Growth Curve (SGC) method provides a possible procedure for measuring a large number of samples; the limitation is that the growth curve fitted by different samples or even different aliquots is divergent. The global Standardised Growth Curve (gSGC) method improves the shortage by normalizing the dose response curves using one regenerative dose OSL signal. The gSGC provides a possible method for obtaining the De value of the sample efficiently and quickly. However, due to the radiation dose rate, operating procedures and instrument error and the selected regenerative-dose normalized dose value, etc., each laboratory should develop their own gSGC which has unique parameters. This study established the gSGC curve and measurement process of our laboratory, and then compared the consistency of the equivalent Dose (De) values from gSGC and SAR methods. In gSGC procedure, the De value of an aliquot can be estimated from the nature signal, one regenerative dose signal and their corresponding test dose signal. It will speed up the optical dating measurement rate of our laboratory and provide reference to establish gSGC in other laboratories. It is found that in the low dose range (0~100 Gy) the obtained De values were well consistent by gSGC and SAR methods. There were obviously differences in the higher dose range (>100 Gy) compared to the SAR results. It may be due to the insufficient number of older samples used to fit gSGC in this study. It is necessary to gradually accumulate more samples to improve the gSGC parameters in the future work. For some aliquots, individual quartz grains do not follow the global standardised growth curve, which leads to some deviations of De from gSGC. However, these two methods could obtain the similar average De value when multiple aliquots measuring.

中图分类号: 

图1 技术路线图
Fig.1 Technical road map
表1 SAR测量流程
Table 1 Single-Aliquot Regenerative-dose(SAR) protocol
图2 单个样品归一化前后对比图
黑色菱形表示样品没有进行再归一化的信号,右侧的棕绿色圆点表示其进行再归一化后的信号值
Fig.2 Before and after the normalization of a single sample comparison chart
The black in the figure diamond indicates the signals without re-normalized;The brownish green dots represent the re-normalized signal values corresponding to their left
图3 根据所有样品数据点拟合出gSGC曲线
Fig.3 The gSGC curve is fitted according to the data points of all samples
表2 拟合出的方程
Table 2 Fitted the equations
图4 gSGC法与SAR法求 De的比较
Fig.4 Comparison of gSGC and SAR for the determination of De
图5 样品L2011-21-AGE-1的10个测片的剂量响应曲线
10条曲线对应的是样品L2011-21-AGE-1 10个测片的生长曲线, 当剂量为24 Gy时,F1的信号值最大,F2的信号值最小
Fig.5 Dose response curves of ten aliquots of L2011-21-AGE-1
The 10 growth curves in the graph correspond to the 10 aliquots of the sample L2011-21-age-1; At the dose 24 Gy, the signal value of F1 is the maximum, and the signal value of F2 is the smallest
[1] Aitken M J.Optical dating[J]. Quaternary Science Reviews, 1992, 11(1/2): 127-131.
[2] Lai Zhongping, Ou Xianjiao.Basic procedures of Optically Stimulated Luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683-693.
[赖忠平,欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683-693.]
[3] Aitken M J.An Introduction to Optical Dating[M]. Oxford: Oxford University Press, 1998.
[4] Duller G A T. Equivalent dose determination using single aliquots[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1991, 18(4): 371-378.
[5] Murray A S, Wintle A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73.
[6] Roberts H M, Duller G A T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots[J]. Radiation Measurements, 2004, 38(2): 241-252.
[7] Liu Ruiyuang.Improvement in Mathmatics for Equivalent Dose(De) Calculation Use the Standardized Growth Curve(SGC) in Optically Stimulated Luminescence Dating[D]. Xining:Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2012.
[刘瑞元. 光释光测年中应用标准曲线法(SGC)求等效剂量(De)计算方法的一种改进研究[D]. 西宁: 中国科学院青海盐湖研究所, 2012.]
[8] Li Bo, Roberts R G, Jacobs Z, et al. Potential of establishing a ‘global Standardised Growth Curve’ (gSGC) for optical dating of quartz from sediments[J]. Quaternary Geochronology, 2015, 27: 94-104,doi: 10.1016/j.quageo.2015.02.011.
[9] Li Guoqiang, Jin Ming, Wen Lijuan, et al. Quartz and K-feldspar optical dating chronology of eolian sand and lacustrine sequence from the southern Ulan Buh Desert, NW China: Implications for reconstructing late Pleistocene environmental evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 111-121,doi: 10.1016/j.palaeo.2013.11.003.
[10] Chen Fahu, Li Guoqiang, Zhao Hui, et al. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary[J]. Quaternary Research, 2014, 81(3): 476-487.
[11] Roberts R G, Galbraith R F, Olley J M, et al. Optical dating of single and multiple grains of quartz from jinmirum rock shelter, northern australia:Part II, results and implications[J]. Archaeometry, 1999, 41(2): 365-395.
[12] Jacobs Z, Hayes E H, Roberts R G, et al. An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: Further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa[J]. Archaeological Science, 2013, 40(1): 579-594.
[13] Rberts H M, Duller G A T. Standardised gorwth curves for optical dating of sediment using multiple-grain aliquots[J]. Radiat Measurements, 2004, 38(2): 241-252.
[14] Hu Gang, Yi Chaolu, Zhang Jiafu, et al. Late Quaternary glacial advances in the eastern Qilianshan, north-eastern Tibet, as inferred from luminescence dating of fluvioglacial sediments[J]. Journal of Quaternary Science, 2016, 31(6): 587-597.
[1] 李国强,赵晖,范育新,彭海梅,陈发虎. 光释光测年中石英样品提纯方法的改进[J]. 地球科学进展, 2008, 23(3): 284-289.
阅读次数
全文


摘要