地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1271 -1276. doi: 10.11867/j.issn.1001-8166.2014.11.1271

上一篇    下一篇

复电阻率测量方法与模型仿真 *
葛双超( ), 邓明, 陈凯   
  1. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083
  • 出版日期:2014-11-27
  • 基金资助:
    国家高技术研究发展计划项目“大功率井—地多参数成像系统”(编号: SS2012AA063003)资助

Complex Resistivity Measurement Method and Model Simulation

Shuangchao Ge( ), Ming Deng, Kai Chen   

  1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
  • Online:2014-11-27 Published:2014-11-20

介绍了国内外复电阻率测量方法的发展状况, 指出了其中存在的问题, 提出了利用高斯白噪声作为信号源的复电阻率测量方法。在matlab的simulink组件中建立了复电阻率测量模型并进行了仿真测试, 利用时间域和频率域相结合的办法计算获得了模型待测区域的复电阻率值, 并将计算值与理论值进行了对比分析, 结果表明利用该方法获得的复电阻率值与待测区域的真实电性特征相符。

The development and the current research situations at home and abroad of complex resistivity measurement were introduced and existing problems pointed out. A measurement method in time domain with Gaussian White Noise as input signal was proposed. The complex resistivity measurement model was built by simulink in matlab and the simulation was tested. The complex resistivity was obtained combined by time domain and frequency domain method. Then, the comparison and analysis between the calculated value and theoretical value were conducted, and results showed that the complex resistivity gained by this method was coincided with the real electrical characteristics of the model.

中图分类号: 

图1 复电阻率法仿真电路
Fig.1 Complex resistivity method artificial circuit
图2 电流和电压时域波形图
Fig.2 Time domain waveform of current and voltage
图3 电流和电压频域波形
Fig.3 Frequency domain waveform of current and voltage
图4 复电阻率理论值和计算值对比
Fig.4 Comparison between calculated and theoretical values
图5 观测值混入随机干扰后计算所得复电阻率与理论复电阻率对比
Fig.5 Comparison between calculated and theoretical values of observed value with random disturbance
[1] Jiang Jianjun, Dai Lidong, Li Heping, et al.Influential factors and conduction mechanisms of the in-situ electrical conductivity measurements of Earth’s interior materials: A case study on crustal minerals[J]. Advances in Earth Science, 2013, 28(4): 455-466.
[蒋建军, 代立东, 李和平, 等. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.]
[2] Van Voorhis G D, Nelson P H, Drake T L. Complex resistivity spectra of porphyry copper mineralization[J]. Geophysics, 1973, 38: 49-60.
[3] Zonge K L. The complex resistivity method: Geophysics[J]. Geophysics, 1981, 46: 463.
[4] Su Zhuliu, Wu Xinquan, Hu Wenbao, et al.Application of complex apparent resistivity (CR) method in prediction of oil/gas[J]. Geophysical Prospecting for Petroleum, 2005, 40(4): 467-471.
[苏朱刘, 吴信全, 胡文宝, 等. 复视电阻率(CR)法在油气预测中的应用[J]. 石油地球物理勘探, 2005, 40(4): 467-471.]
[5] Zonge K L. Recent advances and applications in complex resistivity measurements[J]. Geophysics, 1975, 40: 851-864.
[6] Liu Song, Xu Jianhua. A study of using CR method for hydrocarbon detection[J]. Earth Science—Journal of China University of Geosciences, 1997, 22(6): 627-632.
[刘崧, 徐建华.用复电阻率法探测油气藏的研究[J].地球科学——中国地质大学学报, 1997, 22(6): 627-632.]
[7] Zonge. GDP-32II Instruction Manual[EB/OL].(2003-01-15)[2012-10-29]..
URL    
[8] Xu Chuanjian, Xu Zisheng, Yang Zhi, et al. Effect of applying on detecting oil/gas reservoirs by using Complex Resistivity(CR) method[J]. Geophysical Prospecting for Petroleum, 2004, 39(Suppl.1): 31-35.
[许传建, 徐自生, 杨志, 等. 复电阻率(CR)法探测油气藏的应用效果[J].石油地球物理勘探, 2004, 39(增刊1): 31-35.]
[9] Liu Pingsheng, Jiang Wenbo, Sun Weibin. Using V8 acquisition system and CR method for oil/gas detection[J]. Equipment for Geophysical Prospecting, 2005, 15(1): 46-49.
[刘平生, 江纹波, 孙卫斌.用于CR 法的无线遥测式V8仪器采集系统[J]. 物探装备, 2005, 15(1): 46-49.]
[10] Luo Yanzhong, Fang Sheng. An approximate inversion of the apparent complex resistivity spectrum[J]. Earth Science—Journal of China University of Geosciences, 1986, 11(1): 93-102.
[罗延钟, 方胜.视复电阻率频谱的一种近似反演方法[J]. 地球科学——中国地质大学学报, 1986, 23(1): 93-102.]
[11] Liu Song. A new approximation for apparent complex resistivities[J]. Chinese Journal of Geophysics, 1988, 3(6): 687-694.
[刘崧. 计算视复电阻率的新的近似公式[J].地球物理学报, 1988, 3(6): 687-694.]
[12] Ruan Baiyao, Luo Runlin. A new recursive inversion method of the complex—Resistivity spectrum[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2003, 25(4): 298-301.
[阮百尧, 罗润林.一种新的复电阻率频谱参数的递推反演方法[J].物探化探计算技术, 2003, 25(4): 298-301.]
[13] Wang Dayong, Li Tonglin, Li Jianping, et al.Forward simulation of a 3D complex resistivity model[J]. Progress in Geophysics, 2010, 25(1): 266-271.
[王大勇, 李桐林, 李建平, 等. 三维复电阻率模型电磁场正演模拟研究[J].地球物理学进展, 2010, 25(1): 266-271.]
[14] Zhang Hui. Research of Complex Resistivity 3D Electromagnrtic Forward and Inversion [D]. Jilin: Jilin University, 2006.
[张辉. 复电阻率三维电磁场正反演研究[D]. 吉林: 吉林大学, 2006.]
[15] He Jishan. The Double Frequency Induced Polarization Method [M]. Beijing: Higher Education Press, 2006.
[何继善. 双频激电法[M].北京: 高等教育出版社, 2006.]
[16] Qiu Bing. Swift and lightweight dual-frequency instrument[J]. Geophysical and Geochemical Exploration, 1983, 7(1): 60-61.
[秋冰. 轻便快速的双频仪[J].物探与化探, 1983, 7(1): 60-61.]
[17] He Jishan, Liu Jianxin. Pseudo-random multi-frequencies phase method and its application[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(2): 374-376.
[何继善, 柳建新. 伪随机多频相位法及其应用简介[J]. 中国有色金属学报, 2002, 12(2): 374-376.]
[18] He Jishan. Research of pseudo-random triple-frequencies electrical method[J]. The Chinese Journal of Nonferrous Metals, 1994, 4(1): 1-7.
[何继善. 伪随机三频电法研究[J]. 中国有色金属学报, 1994, 4(1): 1-7.]
[19] Chen Rujun, Luo Weibing, He Jishan, et al.The data acquisition system in the high-precision multi-frequencies electric method[J]. Geophysical and Geochemical Exploration, 2003, 27(5): 375-378.
[陈儒军, 罗维炳, 何继善, 等.高精度多频电法数据采集系统[J].物探与化探, 2003, 27(5): 375-378.]
[20] Chen Rujun, Luo Weibing, He Jishan, et al.WDD-2 pseudo-random multi-frequencies receiver for electrical exploration[J]. Petroleum Instruments, 2003, 17(6): 8-12.
[陈儒军, 罗维炳, 何继善, 等.WDD-2伪随机多频电法接收机[J].石油仪器, 2003, 17(6): 8-12.]
[21] Ye Shumin. Results of test surveys in three mining districts in Jiangxi province with FX-1 amplitude-phase meter[J]. Geology and Prospecting, 2003, 39: 31-35.
[叶树民. FX-1型幅相仪在江西三个矿区的试验效果[J].地质与勘探, 2003, 39: 31-35.]
[22] Dong Maosong, Li Li, Jiang Yizhong, et al.Auto controlled complex resistivity measurement system under modeling reservoir condition[J]. Well Logging Technology, 2005, 29(4): 364-367.
[童茂松, 李莉, 姜亦忠, 等.模拟地层条件的复电阻率自动测量系统研制[J].测井技术, 2005, 29(4): 364-367.]
[23] Chongqing Geological Instrument. CLEM-V High-power multifunctional electromagnetic system[J]. Equipment for Geotechnical Engineering, 2012, 13(4): 42.
[重庆地质仪器厂. CLEM-V大功率多功能电磁法系统[J].地质装备, 2012, 13(4): 42.]
[24] Liu Daizhi. The data acquisition and data preprocessing of Ip complex impedance spectrum measurements[J]. Journal of Guilin Institute of Metallurgical Geology, 1986, 6(4): 375-380.
[刘代志. 复阻抗谱数据采集与预处理方法[J].桂林冶金地质学院学报, 1986, 6(4): 375-380.]
[25] Sakurai K, Hasegawa N, Shima H. Study of the Efficiency and Quality of Complex Resistivity Measurement[Z]. SEG Technical Program Expanded Abstracts, 1997: 466-469.
[26] Ma Jing, Xiao Zhanshan, Wang Dong, et al.The research progress of complex resistivity logging technology[J]. Progress in Geophysics, 2008, 23(5): 1586-1591.
[马静, 肖占山, 王东, 等. 复电阻率测井技术的研究进展[J].地球物理学进展, 2008, 23(5): 1586-1591.]
[27] Zhong Guangfa, You Qian. Applications of high-resolution formation microscanner image logs to scientific ocean drilling[J]. Advances in Earth Science, 2012, 27(3): 347-358.
[钟广法, 游倩. 高分辨率FMS 成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.]
No related articles found!
阅读次数
全文


摘要