[1] Luo Xingzhang. Geochemistry of the Pre-selected Beishan Area for High-level Radioactive Waste Repository of China[D]. Nanjing: Nanjing University, 2002.[罗兴章.中国高放废物处置库北山预选场的地球化学研究[D]. 南京:南京大学,2002.] [2] Murphy W M, Pabalan R T. Review of Empirical Thermodynamic Data for uranyl Silicate Minerals and Experimental Plan[R]. Center for Nuclear Waste Regulatory Analyses, Report 95-014, 1995. [3] TRWESS. Total System Performance Assessment-Viability Assessment (TSPA-VA), Chapter 6: Waste form Degradation[R]. TRW Environmental Safety Systems Corporation,1998. [4] Wronkiewicz D J, Bates J K, Gerding T J, et al. Uraniu release and secondary phase formation during unsaturated testing of UO2 at 90℃[J]. Journal of Nuclear Material, 1992, 190: 107-127. [5] Wronkiewicz D J, Bates J K, Wolf S F, et al. Ten-year results from unsaturated dip tests with UO2 at 90℃: Implications for the corrosion of spent nuclear fuel[J]. Journal of Nuclear Material, 1996, 238 (1): 78-95. [6] Wilson C N. Results from NNWSI Series 2 Bare Fuel Dissolution Tests[R]. PNL-2169, NNA, 19900814.0048,1990. [7] Wilson C N. Results from NNWSI Series 2 Bare Fuel Dissolution Tests[R]. PNL-2170, NNA, 200816,1990. [8] Leenears A, Sannen L, Berghe S V, et al. Oxidation of spent UO2 fuel in moist environment[J]. Journal of Nuclear Material, 2003, 317 (2/3): 226-233.[9] Buck E C, Wronkiewicz D J, Finn P A, et al. A new uranyl oxide hydrate phase derived from spent fuel alteration[J]. Journal of Nuclear Material, 1997, 249 (1): 70-76. [10] Pablo J D, Cases I, Gimenez J, et al. The oxidative dissolution mechanism of uranium dioxide: I. The effect of temperature in hydrogen carbonate medium[J]. Geochimica et Cosmochimica Acta, 1999, 63 (19/20): 3 097-3 103. [11] Rollin S, Spahiu K, Eklund U B. Determination of dissolution rates of spent fuel in carbonate solution under different redox conditions with a flow-through experiment[J]. Journal of Nuclear Material, 2001, 297 (3): 231-243. [12] Trocellier P, Cachoir C, Guilbert S. A simple thermodynamical model to describe the control of the dissolution of uranium dioxide in granitic groundwater or by secondary phase formation[J]. Journal of Nuclear Material, 1998, 256 (2/3): 197-206. [13] Fujino T, Sato N, Yamada K, et al. Thermodynamic of the spent UO2 solid solution with magnesium and europium oxides[J]. Journal of Nuclear Material, 2001, 297 (3): 332-340. [14] Pearcy E C, Prikryl J D, Murphy W M, et al. Alteration of uraninite from the Nopal I deposit, Pena Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U. S. high-level nuclear waste repository at Yucca Mountain, Nevada[J]. Applied Geochemistry, 1994, 9 (6): 713-732. [15] Janeczk J, Ewing R C, Oversby V M, et al. Uraninite and UO2 in spent nuclear fuel: A comparison[J]. Journal of Nuclear Material, 1996, 238 (1): 121-130. [16] Karlsson F, Oversby V M, Smellie J. Proceeding 1995 Final Meeting of the CEC-CEA 'Oklo as a Natural Analogue' Programme[R]. Paris: EUR Report, 1996. [17] Dahlkamp F J. Uranium Ore Deposits[M]. Berlin: Springer-Verlag, 1993. [18] Isobe H, Murakami T, Ewimg R C. Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone[J]. Journal of Nuclear Material, 1992, 190: 174-187. [19] ANSTO. Alligator Rivers Analogue Project Final Report[M]. Conberra: Australian Nuclear Science and Technology Organization, 1992. [20] Finch R J, Ewing R C. Alteration of natural UO2 under oxidizing conditions from Shinkolobwe, Katanga, Zaire: A natural analogue for the corrosion of spent fuel[J]. Radiochimica Acta, 1991, 52/53 (2): 395-401. [21] Curtis D B, Benjamin T M, Gancarz A J. The Oklo reactor: Natural analogs to nuclear waste repositories[A]. In: Hofman P L ed. The Technology of High-level Nuclear Waste Disposal[C]. Washington: Department of Energy, 1981.255-283. [22] Cramer J J.Sandstone-hosted uranium deposits in northern Saskatchewan as natural analogs to nuclear fuel waste disposal vaults[J]. Chemical Geology, 1986, 55 (3/4): 269-279. [23] Waber N, Schorscher H D, Peters T. Mineralogy, petrology and geochemistry of the Poos de Caldas analogue sites, Minas Gerais, Brazil I. Osamu Utsumi uranium mine[R]. Switzerland: NAGRA/SKB /UKDOE/USDOE, 1991. [24] Zhang Jingyi, Wan Anwa, Gong Wenshu. New data on Yingjiangite[J]. Acta Petrologica Mineralogica, 1992, 11(2): 178-184.[张静宜,万安娃,龚温书. 盈江铀矿新资料[J]. 岩石矿物学杂志,1992, 11(2): 178-184.] [25] Janeckez J, Ewing R D. Mechanism of lead release from uraninite in the natural fission reactors in Gabon[J]. Geochimica et Cosmochimica Acta, 1995, 59 (10): 1 917-1 931. [26] Fayek M, Kyser T K. Characterization of multiple fluid-flow and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan[J]. The Canadian Mineralogist, 1997, 35: 627-628. [27] Zao D G, Ewing R D. Alteration products of uraninite from the Colorado Plateau[J]. Radiochimica Acta, 2000, 88 (4): 739-749. [28] Janeczek J, Ewing R C, Thomas L E. Oxidation of uraninite: Does tetragonal U3O8 occur in nature?[J]. Journal of Nuclear Material,1993, 207: 176-179. [29] Fayek M, Burns P, Guo Y X, et al. Micro-structures associated with uraninite alteration[J]. Journal of Nuclear Material, 2000, 277 (2/3): 204-210. [30] Katz J J, Seaborg G T. The Chemistry of the Actinide Elements[M]. London: Methuen, 1957. [31] Casas I, Bruno J, Cera E, et al. Characterization and dissolution behavior of a becquerelite from Shinkolobwe, Zaire[J]. Geochimica et Cosmochimica Acta, 1997, 61 (18): 3 879-3 884. [32] Perez I, Casas I, Martin M, et al. The thermodynamics and kinetics of uranophane dissolution in bicarbonate test solutions[J]. Geochimica et Cosmochimica Acta, 2000, 64 (4): 603-608. [33] Haverbeke L V, Vochten R, Springel K V. Solubility and srectrochemical characteristics of synthetic chernikovite and meta-ankoleite[J]. Mineralogical Magazine, 1996, 60 (4): 759-766. [34] Nguyen S N, Silva R J, Weed H C, et al. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: Soddyite, uranophane, sodium boltwoodite, and sodium weeksite[J]. Journal Chemical Thermodynamics, 1992, 24 (4): 359-376. [35] Burns P C, Ewing R C, Miller M L. Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel[J]. Journal of Nuclear Material,1997, 245 (1): 1-9. [36] Chen F R, Burns P C, Ewing R C. 79Se: Geochemical and crystallo-chemical retardation mechanisms[J]. Journal of Nuclear Material, 1999, 275 (1): 81-94. [37] Bolwes J F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses[J]. Chemical Geolog, 1990, 83 (1/2): 47-53. [38] Hofmann B, Eikenberg J. The Krunkelbach uranium deposits, Schwarzwald, Germany: Correlation of radiometric ages (U-Pb, U-Xe-Kr, K-Ar, 230Th-240U) with mineralogical stages and fluid inclusions[J]. Economical Geology, 1991, 86: 1 031-1 049. [39] Min Maozhong, Liu Lanzhong, Meng Zhaowu, et al. Migration of uranium-series radionuclides and some analogue trance elements around a uranium deposit—A natural analogue of safety assessment on high-level radwaste repositories[J]. Geochimica, 1997, 26 (4): 61-69.[闵茂中,刘兰忠,孟昭武,等. 某花岗岩型铀矿床中铀系和类比元素迁移特征——高放废物地质处置库安全性评价的天然类比研究[J]. 地球化学,1997,26(4): 61-69.] [40] Krauskopf K B. Thorium and rare-earth metals as analogs for actinide elements[J]. Chemical Geology, 1986, 55 (3/4): 323-325. [41] Dearlove J P L. Analogue Studies in Natural Rock Systems: Uranium Series Radionuclide and REE Distribution and Transport; Unpubl[D]. Cambridgeshire: Cambridgeshire College of Arts and Technology, 1989. [42] Iida Y, Ohnuki T, Isobe H, et al. Hygrothermal redistribution of rare earth elements in Toki granitic rock, central Japan[J]. Journal of Contaminant Hydrology, 1998, 35 (1/3):191-199. [43] Xu H F, Wang Y F. Electron Energy-Loss Spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninite-natural analogues for Pu- and U-bearing waste forms[J]. Journal of Nuclear Material, 1999, 265 (1/2): 117-123. [44] Hidaka H, Gauthier-Lafaye F. Redistribution of fissiogenic and non-fissiogenic REE, Th and U in and around natural fission reactors at Oklo and Bangombe, Gabon[J]. Geochimica et Cosmochimica Acta, 2000, 64 (6):1 093-2 108. [45] Min Maozhong, Wu Yanyu, Wang Xiangyun. Geochemical migration of elements across contact zone between granite and pegmatite: A natural analogue study of safety assessment on geological disposal repository of high-level radioactive waste[J]. Geochemica, 1995, 24 (1): 49-55.[闵茂中,吴燕玉,王湘云. 花岗岩—伟晶岩接触带元素地球化学迁移——高放废物地质处置库安全性评价的天然类比研究[J]. 地球化学,1995,24(1): 49-55.] |