地球科学进展 ›› 2005, Vol. 20 ›› Issue (7): 746 -750. doi: 10.11867/j.issn.1001-8166.2005.07.0746

综述与评述 上一篇    下一篇

UO 2氧化的天然类比研究:现状与展望
卢 龙 1,陈繁荣 1,赵炼忠 2   
  1. 1.中国科学院广州地球化学研究所,广东 广州 510640;2.江西地质矿产勘查开发局赣西地质调查大队,江西 南昌 330201
  • 收稿日期:2004-07-19 修回日期:2005-03-21 出版日期:2005-07-25
  • 通讯作者: 卢 龙
  • 基金资助:

    国家自然科学基金项目“沥清铀矿风化蚀变作用与核废料地质处置库安全性评价”(编号:40072095);广东省自然科学基金项目“钙铀云母溶解的机理和动力学”(编号:04300766)资助.

NATURAL ANALOGY OF UO 2 CORROSION: A REVIEW

LU Long 1;CHEN Fanrong 1;ZHAO Lianzhong 2   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Acdemy of Sciences, Guangzhou 510640, China;2.Western Jiangxi Geological Surveying and Research Party, JBGED, Nanchang 330201, China
  • Received:2004-07-19 Revised:2005-03-21 Online:2005-07-25 Published:2005-07-25

核废料地质处置库UO2的氧化及氧化过程中放射性核素的迁移直接关系到处置库的安全性,为此,许多研究者在实验室研究了UO2氧化行为。然而,短期的实验结果无法直接外推地质处置库中长期氧化行为,天然类比研究为这种外推提供了可能,因此,UO2氧化的天然类比研究已经引起了广泛的关注。系统地总结了天然类比研究的现状,包括沥青铀矿与UO2的可比性、沥青铀矿风化产物的共生组合和共生次序、沥青铀矿及其风化产物的化学成分特征、沥青铀矿风化过程中类比元素的迁移性等;并初步指出了进一步研究的方向,如铀酰矿物的微结构研究、类比元素在沥青铀矿和铀酰矿物中分布的激光探针研究、地下水成分分析、模拟实验等。

The behavior of UO2 corrosion and the fate of radionuclids released during the corrosion of UO2 are of critical signification for performance assessment of a spent fuel repository. In laboratory, therefore, corrosion of UO2 and mobility of radionuclids during the corrosion are detailedly researched by many researchers. However, the short-term experiment results may not be extrapolated to the long-term corrosion behaviors of the spent fuel in repository, and natural analogy provides a possibility for this extrapolation. Consequently, many studies on natural analogy were conducted. In this paper, the progresses acquired in the studies of natural analogy are summarized, including a comparison of structural properties, radiation damage and chemical composition between uraninite and UO2, combination and paragenesis of alteration products of uraninite, chemical composition of uraninite and its secondary phases, mobility of analogy elements in the process of uraninite alteration. In addition, the problems in next studies are pointed out, e.g., characterization of micro-structure of secondary uranium minerals, high-resolution analyses of trance elements distributed in original and secondary uranium minerals using laser microprobe analyzer, composition of underground water, simulation experiments.

中图分类号: 

[1] Luo Xingzhang. Geochemistry of the Pre-selected Beishan Area for High-level Radioactive Waste Repository of China[D]. Nanjing:  Nanjing University, 2002.[罗兴章.中国高放废物处置库北山预选场的地球化学研究[D]. 南京:南京大学,2002.]
[2] Murphy W M, Pabalan R T. Review of Empirical Thermodynamic Data for uranyl Silicate Minerals and Experimental Plan[R]. Center for Nuclear Waste Regulatory Analyses, Report 95-014, 1995.
[3] TRWESS. Total System Performance Assessment-Viability Assessment (TSPA-VA), Chapter 6: Waste form Degradation[R]. TRW Environmental Safety Systems Corporation,1998.
[4] Wronkiewicz D J, Bates J K, Gerding T J, et al. Uraniu release and secondary phase formation during unsaturated testing of UO2 at 90℃[J]. Journal of Nuclear Material, 1992, 190: 107-127.
[5] Wronkiewicz D J, Bates J K, Wolf S F, et al. Ten-year results from unsaturated dip tests with UO2 at 90℃: Implications for the corrosion of spent nuclear fuel[J]. Journal of Nuclear Material, 1996, 238 (1): 78-95.
[6] Wilson C N. Results from NNWSI Series 2 Bare Fuel Dissolution Tests[R]. PNL-2169, NNA, 19900814.0048,1990.
[7] Wilson C N. Results from NNWSI Series 2 Bare Fuel Dissolution Tests[R]. PNL-2170, NNA, 200816,1990.
[8] Leenears A, Sannen L, Berghe S V, et al. Oxidation of spent UO2 fuel in moist environment[J]. Journal of Nuclear Material, 2003, 317 (2/3): 226-233.[9] Buck E C, Wronkiewicz D J, Finn P A, et al. A new uranyl oxide hydrate phase derived from spent fuel alteration[J]. Journal of Nuclear Material, 1997, 249 (1): 70-76.
[10] Pablo J D, Cases I, Gimenez J, et al. The oxidative dissolution mechanism of uranium dioxide: I. The effect of temperature in hydrogen carbonate medium[J]. Geochimica et Cosmochimica Acta, 1999, 63 (19/20): 3 097-3 103.
[11] Rollin S, Spahiu K, Eklund U B. Determination of dissolution rates of spent fuel in carbonate solution under different redox conditions with a flow-through experiment[J]. Journal of Nuclear Material, 2001, 297 (3): 231-243.
[12] Trocellier P, Cachoir C, Guilbert S. A simple thermodynamical model to describe the control of the dissolution of uranium dioxide in granitic groundwater or by secondary phase formation[J]. Journal of Nuclear Material, 1998, 256 (2/3): 197-206.
[13] Fujino T, Sato N, Yamada K, et al. Thermodynamic of the spent UO2 solid solution with magnesium and europium oxides[J]. Journal of Nuclear Material, 2001, 297 (3): 332-340.
[14] Pearcy E C, Prikryl J D, Murphy W M, et al. Alteration of uraninite from the Nopal I deposit, Pena Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U. S. high-level nuclear waste repository at Yucca Mountain, Nevada[J]. Applied Geochemistry, 1994, 9 (6): 713-732.
[15] Janeczk J, Ewing R C, Oversby V M, et al. Uraninite and UO2 in spent nuclear fuel: A comparison[J]. Journal of Nuclear Material, 1996, 238 (1): 121-130.
[16] Karlsson F, Oversby V M, Smellie J. Proceeding 1995 Final Meeting of the CEC-CEA 'Oklo as a Natural Analogue' Programme[R]. Paris: EUR Report, 1996.
[17] Dahlkamp F J. Uranium Ore Deposits[M]. Berlin: Springer-Verlag, 1993.
[18] Isobe H, Murakami T, Ewimg R C. Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone[J]. Journal of Nuclear Material, 1992, 190: 174-187.
[19] ANSTO. Alligator Rivers Analogue Project Final Report[M]. Conberra: Australian Nuclear Science and Technology Organization, 1992.
[20] Finch R J, Ewing R C. Alteration of natural UO2 under oxidizing conditions from Shinkolobwe, Katanga, Zaire: A natural analogue for the corrosion of spent fuel[J]. Radiochimica Acta, 1991, 52/53 (2): 395-401.
[21] Curtis D B, Benjamin T M, Gancarz A J. The Oklo reactor: Natural analogs to nuclear waste repositories[A]. In: Hofman P L ed. The Technology of High-level Nuclear Waste Disposal[C]. Washington: Department of Energy, 1981.255-283.
[22] Cramer J J.Sandstone-hosted uranium deposits in northern Saskatchewan as natural analogs to nuclear fuel waste disposal vaults[J]. Chemical Geology, 1986, 55 (3/4): 269-279.
[23] Waber N, Schorscher H D, Peters T. Mineralogy, petrology and geochemistry of the Poos de Caldas analogue sites, Minas Gerais, Brazil I. Osamu Utsumi uranium mine[R]. Switzerland: NAGRA/SKB /UKDOE/USDOE, 1991.
[24] Zhang Jingyi, Wan Anwa, Gong Wenshu. New data on Yingjiangite[J]. Acta Petrologica Mineralogica, 1992, 11(2): 178-184.[张静宜,万安娃,龚温书. 盈江铀矿新资料[J]. 岩石矿物学杂志,1992, 11(2): 178-184.]
[25] Janeckez J, Ewing R D. Mechanism of lead release from uraninite in the natural fission reactors in Gabon[J]. Geochimica et Cosmochimica Acta, 1995, 59 (10): 1 917-1 931.
[26] Fayek M, Kyser T K. Characterization of multiple fluid-flow and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan[J]. The Canadian Mineralogist, 1997, 35: 627-628.
[27] Zao D G, Ewing R D. Alteration products of uraninite from the Colorado Plateau[J]. Radiochimica Acta, 2000, 88 (4): 739-749.
[28] Janeczek J, Ewing R C, Thomas L E. Oxidation of uraninite: Does tetragonal U3O8 occur in nature?[J]. Journal of Nuclear Material,1993, 207: 176-179.
[29] Fayek M, Burns P, Guo Y X, et al. Micro-structures associated with uraninite alteration[J]. Journal of Nuclear Material, 2000, 277 (2/3): 204-210.
[30] Katz J J, Seaborg G T. The Chemistry of the Actinide Elements[M]. London: Methuen, 1957.
[31] Casas I, Bruno J, Cera E, et al. Characterization and dissolution behavior of a becquerelite from Shinkolobwe, Zaire[J]. Geochimica et Cosmochimica Acta, 1997, 61 (18): 3 879-3 884.
[32] Perez I, Casas I, Martin M, et al. The thermodynamics and kinetics of uranophane dissolution in bicarbonate test solutions[J]. Geochimica et Cosmochimica Acta, 2000, 64 (4): 603-608.
[33] Haverbeke L V, Vochten R, Springel K V. Solubility and srectrochemical characteristics of synthetic chernikovite and meta-ankoleite[J]. Mineralogical Magazine, 1996, 60 (4): 759-766.
[34] Nguyen S N, Silva R J, Weed H C, et al. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: Soddyite, uranophane, sodium boltwoodite, and sodium weeksite[J]. Journal Chemical Thermodynamics, 1992, 24 (4): 359-376.
[35] Burns P C, Ewing R C, Miller M L. Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel[J]. Journal of Nuclear Material,1997, 245 (1): 1-9.
[36] Chen F R, Burns P C, Ewing R C. 79Se: Geochemical and crystallo-chemical retardation mechanisms[J]. Journal of Nuclear Material, 1999, 275 (1): 81-94.
[37] Bolwes J F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses[J]. Chemical Geolog, 1990, 83 (1/2): 47-53.
[38] Hofmann B, Eikenberg J. The Krunkelbach uranium deposits, Schwarzwald, Germany: Correlation of radiometric ages (U-Pb, U-Xe-Kr, K-Ar, 230Th-240U) with mineralogical stages and fluid inclusions[J]. Economical Geology, 1991, 86: 1 031-1 049.
[39] Min Maozhong, Liu Lanzhong, Meng Zhaowu, et al. Migration of uranium-series radionuclides and some analogue trance elements around a uranium deposit—A natural analogue of safety assessment on high-level radwaste repositories[J]. Geochimica, 1997, 26 (4): 61-69.[闵茂中,刘兰忠,孟昭武,等. 某花岗岩型铀矿床中铀系和类比元素迁移特征——高放废物地质处置库安全性评价的天然类比研究[J]. 地球化学,1997,26(4): 61-69.]
[40] Krauskopf K B. Thorium and rare-earth metals as analogs for actinide elements[J]. Chemical Geology, 1986, 55 (3/4): 323-325.
[41] Dearlove J P L. Analogue Studies in Natural Rock Systems: Uranium Series Radionuclide and REE Distribution and Transport; Unpubl[D]. Cambridgeshire: Cambridgeshire College of Arts and Technology, 1989.
[42] Iida Y, Ohnuki T, Isobe H, et al. Hygrothermal redistribution of rare earth elements in Toki granitic rock, central Japan[J]. Journal of Contaminant Hydrology, 1998, 35 (1/3):191-199.
[43] Xu H F, Wang Y F. Electron Energy-Loss Spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninite-natural analogues for Pu- and U-bearing waste forms[J]. Journal of Nuclear Material,  1999, 265 (1/2): 117-123.
[44] Hidaka H, Gauthier-Lafaye F. Redistribution of fissiogenic and non-fissiogenic REE, Th and U in and around natural fission reactors at Oklo and Bangombe, Gabon[J]. Geochimica et Cosmochimica Acta, 2000, 64 (6):1 093-2 108.
[45] Min Maozhong, Wu Yanyu, Wang Xiangyun. Geochemical migration of elements across contact zone between granite and pegmatite: A natural analogue study of safety assessment on geological disposal repository of high-level radioactive waste[J]. Geochemica, 1995, 24 (1): 49-55.[闵茂中,吴燕玉,王湘云. 花岗岩—伟晶岩接触带元素地球化学迁移——高放废物地质处置库安全性评价的天然类比研究[J]. 地球化学,1995,24(1): 49-55.]

No related articles found!
阅读次数
全文


摘要