地球科学进展, 2021, 36(3): 325-334 DOI: 10.11867/j.issn.1001-8166.2021.031

研究简报

大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展

闫雅妮,1,2,3, 张伟1,2,3, 张俊文4, 任亚雄1,2,3, 赵志琦,1,2,3

1.长安大学 地球科学与资源学院,陕西 西安 710054

2.西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054

3.长安大学成矿作用及动力学实验室,陕西 西安 710054

4.天津大学 地球系统科学学院,天津 300072

Advances in Magnesium Isotope Geochemistry During Weathering of Continental Silicate Rocks

YAN Yani,1,2,3, ZHANG Wei1,2,3, ZHANG Junwen4, REN Yaxiong1,2,3, ZHAO Zhiqi,1,2,3

1.School of Earth Science and Resources,Chang'an University,Xi'an 710054,China

2.Key Laboratory of Western Mineral Resources and Geological Engineering Ministry of Education of China,Xi'an 710054,China

3.Laboratory of Mineralization and Dynamics,Chang'an University,Xi'an 710054,China

4.School of Earth System Science,Tianjin University,Tianjin 300072,China

通讯作者: 赵志琦(1971-),男,甘肃庆阳人,教授,主要从事同位素地球化学研究. E-mail:zhaozhiqi@chd.edu.cn

收稿日期: 2020-10-03   修回日期: 2021-01-06   网络出版日期: 2021-04-30

基金资助: 国家自然科学基金项目“玄武岩和花岗岩风化过程的Li、Mg同位素分馏机理研究”.  41930863
长安大学中央高校基本科研项目“河套平原黄土与黄河相互作用之环境影响研究”.  300102278302

Corresponding authors: ZHAO Zhiqi (1971-), male, Qingyang City, Gansu Province, Professor. Research areas include isotopic geochemistry. E-mail:zhaozhiqi@chd.edu.cn

Received: 2020-10-03   Revised: 2021-01-06   Online: 2021-04-30

作者简介 About authors

闫雅妮(1990-),女,陕西汉中人,博士研究生,主要从事同位素地球化学研究.E-mail:2019027015@chd.edu.cn

YANYani(1990-),female,HanzhongCity,ShaanxiProvince,Ph.Dstudent.Researchareasincludeisotopicgeochemical.E-mail:2019027015@chd.edu.cn

摘要

Mg同位素体系被证明在示踪硅酸盐矿物风化方面颇具优势。通过总结近年来大陆硅酸盐风化过程中Mg同位素地球化学的研究,归纳出以下认识:化学风化方面,原生矿物溶解使得液相的Mg同位素组成变轻,而固相残留的Mg同位素组成变重;次生矿物中含有两种形态的Mg(交换态Mg和结构态Mg),二者δ26Mg不同,次生矿物形成过程中Mg同位素分馏方向与矿物种类、结构和形成机制等因素有关;黏土矿物吸附和解吸Mg2+引起Mg同位素分馏,但方向尚不确定;土壤可交换复合物倾向于优先吸附和解吸26Mg。物理风化方面,水流、风等造成的矿物分选会引起风化产物Mg同位素组成发生变化。植物—土壤体系Mg同位素的分馏很小。目前,大陆硅酸盐风化中一些重要过程的Mg同位素地球化学行为还存在争议,亟待通过室内试验、模拟计算,以及与其他同位素联用等途径完善理论基础,推动Mg同位素在示踪大陆风化中的广泛应用。

关键词: 镁同位素 ; 硅酸盐 ; 风化 ; 分馏 ; 次生矿物

Abstract

The magnesium (Mg) isotope system has been proved to be quite advantageous in tracking silicate weathering. By summarizing the researches about Mg isotope geochemistry in the process of continental silicate weathering, the following cognitions are summarized: In terms of chemical weathering, dissolution of primary minerals makes the Mg isotopic composition of the liquid phase lighter and the residual solid phase heavier. The secondary minerals contain two forms of Mg (exchangeable Mg and structural Mg) with different δ26Mg. During the formation of secondary minerals, the Mg isotope fractionation direction is related to their types,structures and formation mechanisms. When Mg2+ isadsorbed and desorbed by clay minerals, the Mg isotope fractionation direction is still uncertain. However, compared to 24Mg, 26Mg preferentially tends to be adsorbed and desorbed by the soil exchange complex. In terms of physical weathering, mineral separation caused by water and wind will change the Mg isotope composition of weathering products. In plant-soil system, the degree of Mg isotope fractionation is very small. At present, in some important processes of continental silicate weathering, the Mg isotope geochemical behavior is still controversial. Therefore, laboratory tests, simulation calculations, and the combination with other isotopes are needed urgently to consummate the theoretical basis, so as to promote the widespread application of Mg isotopes in the tracking of continental weathering.

Keywords: Magnesium isotopes ; Silicate ; Weathering ; Fractionation ; Secondary minerals

PDF (2640KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展. 地球科学进展[J], 2021, 36(3): 325-334 DOI:10.11867/j.issn.1001-8166.2021.031

YAN Yani, ZHANG Wei, ZHANG Junwen, REN Yaxiong, ZHAO Zhiqi. Advances in Magnesium Isotope Geochemistry During Weathering of Continental Silicate Rocks. Advances in Earth Science[J], 2021, 36(3): 325-334 DOI:10.11867/j.issn.1001-8166.2021.031

1 引 言

镁(Mg)是地球上的主量元素之一,广泛分布于岩石圈、水圈和生物圈。Mg的地球丰度仅次于Fe、O和Si。Mg有3种稳定同位素,即24Mg、25Mg 和26Mg,其相对丰度分别为78.95%、10.02%和11.03%1。Galy等23建立了Mg同位素陆地分馏曲线(Terrestrial Fractionation Curve,TF),证明了Mg同位素的质量分馏,并基于多接收电感耦合等离子体质谱仪(Multicollector-Inductively Coupled Plasma-Mass Spectrometer,MC-ICP-MS),率先建立了地质样品中Mg同位素组成的高精度分析方法。随后,Mg同位素体系被广泛应用于示踪成矿过程和古环境演化等方面4~17

硅酸盐化学风化消耗大气CO2,从而在地质时间尺度上对全球碳循环和气候变化起着重要的调节作用18~21。如何有效示踪大陆风化过程是地球科学研究的重要科学问题之一。Mg同位素作为大陆风化示踪剂有诸多优势:Mg是陆壳中的主量元素;Mg具有水溶性,在化学风化过程中易发生迁移转化;Mg无化合价变化,不直接受氧化还原过程影响2224Mg与26Mg之间质量差高达约8%,在低温水—岩相互作用过程中易发生显著分馏223~25

研究大陆硅酸盐矿物和岩石风化过程中的Mg同位素行为是利用Mg同位素示踪大陆风化的基础,对指示全球气候变化有重要意义。本文系统总结了近些年有关风化剖面和室内实验的相关研究成果,归纳了硅酸盐中Mg同位素在化学风化、物理风化和植物生长过程中的地球化学行为,探讨了该领域研究中尚存的问题以及发展趋势。

2 天然储库的Mg同位素组成

Mg同位素组成一般用δiMg值表示:

δiMg(‰)=[(iMg/24Mg)样品/(iMg/24Mg)标准-1]×1000,

式中:i=25或26。

目前,国际通用的Mg同位素标准物质为DSM3(Dead Sea Magnesium Ltd., Israel)26。本文报道的所有数据均以DSM3为标准。

天然储库的Mg同位素组成归纳于图1。上陆壳(Upper Continental Crust,UCC)δ26Mg为-1.64‰~ +0.92‰,均值为-0.22‰72930。整体上,硅酸盐矿物δ26Mg值(-1.22‰~+0.44‰)较碳酸盐矿物(δ26Mg=-5.44‰~-0.47‰)高31~35。风化产物δ26Mg变化范围较大,但总体上相对富集26Mg736。受流域岩性和化学风化等因素影响,全球河流的δ26Mg变化范围较大,为-2.50‰~-0.64‰,平均值约为 -1.09‰37~41。与河流相比,海水δ26Mg值较为均一,约为-0.83‰,高于河流平均值4243

图1

图1   天然储库的δ26Mg[27,28]

Fig.1   δ26Mg values of natural reservoirs[27,28]


3 硅酸盐化学风化中Mg同位素的行为

以风化剖面为对象的Mg同位素地球化学行为研究中,关注玄武岩风化剖面者居多2244~46,其次为花岗岩47~49,少量研究关注页岩50、辉绿岩51和安山岩3652。已报道的大陆玄武岩δ26Mg值为 -0.46‰~-0.37‰23,花岗岩为-0.40‰~+0.44‰22。辉绿岩和玄武岩风化剖面中Mg的亏损量可大于99%224451,而花岗岩类风化剖面中Mg的亏损量最高为64%48。Liu等22所观察的玄武岩风化剖面中母岩的δ26Mg值为-0.24‰,风化产物的δ26Mg值最高达+1.81‰。与辉绿岩和玄武岩风化剖面相比,花岗岩类风化剖面中Mg同位素分馏很小48图2)。Brewer等48认为矿物组成不同以及矿物的差异风化是造成不同岩性风化剖面中Mg同位素分馏程度存在差异的主要原因。辉绿岩和玄武岩中主要富Mg矿物为辉石,花岗岩类主要富Mg矿物为黑云母和角闪石,辉石较黑云母和角闪石易风化,因而辉绿岩和玄武岩风化剖面中Mg的亏损和同位素分馏都比花岗岩类剖面显著。

图2

图2   不同岩性原岩风化产物的δ26Mg值(纵坐标参考文献代表数据来源)

Fig.2   Weathering products δ26Mg values of the different lithologies rocks (The ordinate references represent data sources)


硅酸盐岩石的化学风化主要包括原生矿物的溶解和次生矿物的形成两个阶段36445053~56。总体上,硅酸盐风化过程中,Mg从固相大量流失,24Mg易于进入液相,而26Mg倾向于留在风化产物中222728

3.1 原生矿物的溶解

理论上,稳定同位素在不同共生矿物之间分配达到平衡时,重的同位素倾向于聚集在配位数较小、键长较短、键能较长的化合物中57。对于Mg而言,Mg配位数低的矿物中更容易富集重的26Mg58。自然界中主要的富Mg硅酸盐原生矿物有橄榄石、辉石、角闪石以及云母等59。这几种矿物中Mg的配位数都为6,δ26Mg值接近60~62。石榴石中Mg的配位数为8,δ26Mg值较上述4种矿物小28图3)。已有报道显示,原生矿物溶解后,液相的Mg同位素组成较轻,而固相中残留的Mg同位素较重4447515363

图3

图3   主要富Mg硅酸盐原生矿物的δ26Mg[28,58]

Fig.3   The δ26Mg of primary Mg-rich silicate minerals[28,58]


一方面,原生矿物溶解过程中轻的Mg同位素优先进入液相,使固—液两相间发生Mg同位素分馏。Wimpenny等53观察到随着镁橄榄石溶解,液相δ26Mg值减小,且最终溶液的δ26Mg值低于初始状态,表明镁橄榄石溶解时24Mg优先进入液相。Huang等44总结了多个风化剖面的δ26Mg和MgO数据,指出风化初期原生矿物溶解,风化产物MgO含量较高,24Mg倾向于进入液相,但Mg同位素分馏较小。

另一方面,不同矿物的溶解性和δ26Mg不同,因此差异性溶解也会使得固—液两相Mg同位素组成发生变化。Ryu等63开展了花岗岩(δ26Mg=-0.73‰)全岩溶解实验,结果显示液相Mg同位素组成的变化是δ26Mg不同的矿物(黑云母δ26Mg=-0.29‰、角闪石δ26Mg=-0.32‰、绿泥石δ26Mg=-1.82‰)先后溶解再混合的结果。高庭47在花岗闪长岩风化剖面中发现,随着风化的增强,角闪石相对含量减少,黑云母相对含量增大,Mg逐渐亏损,δ26Mg值增大,他认为由于角闪石δ26Mg值比黑云母低,风化产物δ26Mg值增大可能是因为角闪石相对黑云母的优先溶解以及角闪石、黑云母等富Mg矿物溶解时优先流失24Mg。Ryu等54在黑云母淋洗实验中观察到液相优先富集24Mg,认为由于液相中Mg是黑云母层间吸附的Mg、晶格结构中Mg释放以及少量富Mg碳酸盐溶解的Mg的混合,三者的δ26Mg值不同,因而液相的δ26Mg变化受到黑云母释放Mg引起的分馏效应和碳酸盐溶解的共同影响。

3.2 次生矿物的影响

原生硅酸盐矿物经过水解作用和碳酸化作用等过程,形成次生黏土矿物。例如黑云母、橄榄石、辉石和角闪石转变为绿泥石和蛭石,长石转变为高岭石或三水铝石64。硅酸盐风化过程中Mg同位素组成变化主要受新生成的黏土矿物控制28

Wimpenny等65通过室内实验研究了富Mg次生矿物伊利石、蒙脱石和贫Mg次生矿物高岭石中δ26Mg特征,他们将次生矿物中的Mg分为2种(图4),即通过化学键形式结合进入八面体结构中的结构态Mg,以及通过静电吸附作用存在于层间或矿物表面的交换态Mg,结构态δ26Mg值较交换态高,因此黏土矿物δ26Mg主要取决于结构态Mg和交换态Mg的占比[公式(2)]。贫Mg次生矿物中结构Mg占比少,因此δ26Mg值较小。Gao等66分析了稻田土的高岭石和Fe-Mn结核(Fe-Mn Nodules,FMNs)中的结构态Mg和交换态Mg的组成,也认为次生矿物中含有2种形态的Mg且其δ26Mg值差异显著。这一观点能很好地解释以贫Mg次生矿物为主的风化产物δ26Mg值小于母岩4666和次生矿物δ26Mg分布范围相差较大(大于2‰)等现象67

δ26Mg黏土矿物=[%Mg结构态×δ26Mg结构态]+[%Mg交换态×δ26Mg交换态]。

图4

图4   四面体—八面体—四面体(TOT)层状结构中Mg的分布及δ26Mg的特征[28]

Fig.4   The distribution and the characteristic of Mg and δ26Mg in Tetrahedra-Octahedra-Tetrahedra (TOT) layered structure[28]


次生矿物形成过程中Mg同位素分馏方向可能受控于次生矿物的种类、结构和形成机制。一部分黏土矿物形成时会优先结合26Mg:在风化剖面研究中,Brewer等48发现花岗岩和花岗闪长岩风化产物的δ26Mg值与富Mg矿物中伊利石所占比重成正比。伊利石中的Mg主要为结构Mg,δ26Mg值较大,因此由剖面底部向上随着伊利石生成风化产物δ26Mg值逐渐增大;Ryu等54的黏土矿物合成实验发现四面体—八面体(Tetrahedra-Octahedra,TO)结构和四面体—八面体—四面体(Tetrahedra-Octahedra-Tetrahedra,TOT)结构的黏土矿物形成时都显著富集26Mg,在250 ℃下α=1.00059±0.00014,90~250 ℃下α=1.00054±0.00014。也有一部分黏土矿物形成时优先结合24Mg:Pogge等68在玄武岩流域的研究表明,风化产物中水铝英石的形成优先结合24Mg,在高pH值、高Mg浓度和低δ26Mg值(较母岩)的河流中,滑石和绿泥石的形成也优先结合了24Mg;Wimpenny等53在室内实验中观察到随着温石棉的形成,液相δ26Mg增大,认为温石棉生成时优先结合了24Mg;Hindshaw等69在黏土矿物合成实验中观察到硅镁石和皂石形成优先结合24Mg,而液相富集26Mg。对于水镁石[Mg(OH)2],2个合成实验显示出了相反的Mg同位素分馏方向:Wimpenny等65的实验研究显示26Mg倾向于优先进入水镁石,中性pH条件下,分馏系数α固相-液相=1.0005。Li等70观察到24Mg优先进入水镁石中,他们认为引起分馏的根本原因是Mg在水镁石中的八面体结构中键长比Mg在水合离子八面体中的更长,键能则更弱,因此24Mg倾向于进入水镁石中。为什么黏土矿物形成过程中Mg分馏方向不一致?Hindshawa等69提出,可能是由于黏土矿物八面体结构中Mg的键长与水合离子中Mg的键长相近,因此矿物结构和初始溶液条件的微小变化就可能改变分馏方向。Li等49基于一套弱风化花岗岩剖面样品的研究,指出对于同一种层状硅酸盐矿物,不同的溶解和形成机制可能引起Mg同位素的分馏方向和程度发生变化。

黏土矿物晶格内可以发生类质同相置换,使晶层带负电荷,从而能吸附水合阳离子71,由于离子交换或者环境因子改变,所吸附的Mg2+会被解吸附。一些研究指出次生矿物吸附和解吸Mg2+倾向于优先结合和释放24Mg:Wimpenny等65通过伊利石、蒙脱石和高岭石吸附实验,发现24Mg倾向于被优先吸附,并被储存为交换态Mg,但分馏程度很小;Ma等50在页岩风化剖面中发现,24Mg在表层积累,认为这与蛭石优先吸附了24Mg有关;Fries等72研究了土壤水δ26Mg值对降雨的响应,认为离子交换作用下黏土矿物表面优先吸附和解吸24Mg,从而引起土壤水和河水的δ26Mg值发生改变。也有一些研究认为次生矿物吸附和解吸Mg2+会优先结合和释放26Mg:Huang等44在玄武岩风化剖面中观察到,深部Mg的含量和δ26Mg值随高岭土族矿物丰度的增加而增加,浅部则减小,认为这是由于深部高岭土族矿物吸附Mg2+时优先吸附26Mg,浅部低水化能的Sr2+、Cs+与Mg2+发生离子交换,使26Mg优先解吸附;Liu等22在玄武岩的风化剖面中发现风化产物的δ26Mg值与三水铝石丰度呈正相关关系,且三水铝石在风化产物中占20%~70%,因此认为三水铝石优先吸附了26Mg;Lara等52和Gao等66分别在安山岩风化剖面和稻田土剖面中发现氧化还原条件更替的情况下,由于Fe氧化物或水化物发生溶解和重结晶,其吸附和解吸Mg2+时优先结合和释放26Mg,从而引起同位素分馏。目前,次生矿物种类以及环境因子的改变对吸附和解吸所引起的Mg同位素分馏的影响研究较少,次生矿物吸附和解吸Mg2+所引起的同位素分馏的机制是亟待研究的课题。

Opfergelt等36首次提出,风化产物的Mg同位素组成也受到土壤可交换复合物(the soil exchange complex)的影响,并指出,土壤可交换复合物包括带电的次生黏土矿物和有机复合物,它们能保存Mg2+和其他可交换态阳离子。Pogge等45观察到玄武岩风化产物与孔隙水作用时26Mg在固相中富集,但该过程中并没有形成富Mg的次生矿物,因此他们认为这是因为26Mg优先被土壤可交换复合物吸附,而并非26Mg优先进入次生矿物结构中。Opfergelt等36分离了黏土中的交换态Mg,发现土壤δ26Mg值与交换态Mg含量呈负相关,但遗憾的是,该研究中未进一步测定交换态Mg的同位素组成,未揭示出土壤可交换复合物中交换态Mg的同位素特征及吸附分馏特征。Opfergelt等46进一步研究了冰岛玄武岩风化土壤中可交换复合物的Mg及其同位素组成,指出土壤可交换复合物δ26Mg值较母岩低,且土壤可交换复合物直接控制着土壤、土壤黏粒、土壤溶液及植被的δ26Mg,认为土壤可交换复合物对Mg的吸附过程中优先吸附26Mg,解吸过程中优先释放26Mg。一些相关研究444666也认为随着土壤可交换复合物上Mg的吸附—解吸过程的持续发生,最终会使土壤中Mg同位素组成较母岩轻。该观点可以解释一些硅酸盐岩石流域河水δ26Mg值较母岩高的现象68。总之,已有研究普遍认为土壤可交换复合物倾向于吸附和解吸26Mg,但是相关研究数量有限,主要研究对象均为表层土,土壤可交换复合物的界定、土壤可交换复合物吸附和解吸引起分馏的原因及其与次生矿物吸附和解吸的分馏机制有何差别等问题还有待深入研究。

4 物理风化和植物生长过程中的Mg同位素效应

除了化学风化过程之外,物理风化过程和植被生长等也会引起硅酸盐岩石中Mg同位素组成变化325073~75

物理风化方面,Ma等50观察到在水流作用下,风化剖面表层中富26Mg细黏土细颗粒先发生迁移,以悬浮物形式随着水流运移并在河流沉积物中富集,最终表层的风化产物的δ26Mg值比母岩低。另外,风尘搬运作用也会影响黄土Mg同位素组成,风尘搬运作用优先输运细颗粒,其主要由Mg同位素组成较重的黏土矿物所组成,搬运引起的矿物分选会导致黄土的Mg同位素组成随着风尘颗粒粒径的降低而变重32

植物根系在摄取养分时,会分泌出有机酸及其螯合物,有机物的微生物降解也能产生有机酸,这些酸性物质与原生矿物发生化学反应,进而加速其发生化学风化76。例如在冰岛发现植被覆盖地区Mg的风化通量比植被贫瘠地区高4倍73。Opfergelt 等46认为在渗透性好的土壤中,母岩是植物最原始的Mg摄取源,而在渗透性差的土壤中,植物摄取的Mg主要来自有机质和大气沉降,因而在不同渗透性土壤中生长的植物Mg同位素组成也不同。通常,植物优先从土壤水中摄取26Mg747577,但土壤水δ26Mg值较母岩低,植物—土壤体系中Mg同位素的分馏很小46747578。另外,Mg在植物体内运输的过程中也会发生同位素分馏。Black等77发现种子相对于根、枝和叶更富集26Mg。Bolou-Bi等7475指出植物的叶比根更富集24Mg,植物产生的凋落物会腐烂产生有机物,使Mg转移到表层土中,从而使得土壤溶液δ26Mg值较低。Ryu等79指出,与植物相关的Mg循环过程能使得土壤里结合不稳定的Mg中富集24Mg,而次生矿物富集26Mg,随着时间推移结合不稳定的Mg与残余Mg二者δ26Mg值会相差的越来越大。

5 存在问题及发展趋势

Mg在地球上分布广泛,利用Mg同位素示踪大陆风化具有诸多优势。已有研究表明,大陆硅酸盐风化过程中Mg同位素分馏显著,通常24Mg倾向于进入液相,而26Mg倾向于保存在风化产物中。硅酸盐岩石化学风化过程中Mg同位素分馏的主要控制因素包括:原生矿物的溶解、次生矿物的形成和吸附—解吸作用。另外,物理风化和植物生长也会引起Mg同位素分馏。虽然目前对大陆硅酸盐岩石风化过程中的Mg同位素分馏与示踪的研究已经积累了一些研究成果,但仍有一些问题未解决,主要包括以下几个方面:

(1) 原生矿物溶解过程中Mg同位素的分馏机理

在风化剖面中,原生矿物溶解和次生矿物形成过程难以完全分开,加之研究对象多为风化程度较高的剖面,风化初期原生矿物溶解过程中Mg同位素的分馏机理往往需要室内实验的研究成果来佐证。但是目前单矿物溶解实验成果匮乏,不同种类的矿物溶解过程中是否会引起Mg同位素分馏、有何差异、主要受哪些因素控制等问题尚不清楚,风化初期原生矿物溶解过程中的Mg同位素的分馏主要是由单矿物溶解引起的还是矿物差异性溶解引起的尚无法回答。

(2) 次生矿物形成对于Mg同位素分馏的影响

已有研究对于次生矿物形成过程中Mg同位素的分馏方向不一致的解释尚停留在推测层面,次生矿物种类、结构、形成机制是如何影响Mg同位素分馏的还有待深入研究;次生矿物吸附和解吸过程中Mg同位素分馏方向为何存在差异、受哪些因素影响还不清楚;土壤可交换复合物吸附和解吸引起Mg同位素分馏的机制及其与纯次生矿物吸附和解吸过程中Mg同位素分馏的区别还有待进一步研究。

(3) 植物生长对风化剖面表层中Mg同位素分馏的影响

植物生长对风化剖面表层Mg的循环有重要意义,目前关于植物生长过程对土壤中Mg同位素组成的影响关注较少,植物生长过程中Mg同位素在植物—矿物—土壤溶液体系三相之间的分馏机制还不清楚。

这些遗留问题直接影响着大陆风化中Mg同位素地球化学循环模型的建立,同时也制约了Mg同位素体系的在示踪大陆风化中广泛使用。深化大陆风化中Mg同位素分馏机制的研究,完善Mg同位素示踪大陆风化的理论基础十分必要,亟需开展的工作包括:

(1) 加强室内实验研究

实验研究分馏机理是Mg同位素地球化学的前沿方向,亟待开展大量室内实验,从单矿物的角度出发研究原生矿物溶解、次生矿物吸附—解吸等过程中Mg同位素的行为,揭示矿物种类、结构和环境因素对Mg同位素行为的影响。

(2) 加强植物生长对风化剖面表层中Mg同位素分馏的影响研究

开展对植物生长引起的植物—矿物—土壤溶液体系三相之间的Mg同位素分馏程度、方向和影响因素的研究,完善我们对风化剖面表层中Mg同位素分馏过程的认识。

(3) 与其他同位素联用

单一的化学风化指标都存在局限性,在地质剖面和实验研究中,若能同时开展其他稳定同位素的分析,则可借助于其他同位素相对成熟的研究成果,补充对大陆风化过程中Mg同位素分馏机制的认识。

(4) 加强理论计算

将野外地质剖面、室内实验和理论计算有机结合,基于风化剖面中实际矿物组成及Mg同位素分布特征,提出科学假设,设计实验模拟验证,选择代表性的矿物—流体开展理论计算,从而深化对大陆风化中Mg同位素分馏机理的认识。

参考文献

MEIJA JCOPLEN T BBERGLUND Met al.

Isotopic compositions of the elements 2013(IUPAC technical Report)

[J]. Pure and Applied Chemistry, 2016883): 293-306.

[本文引用: 1]

GALY AYOUNG E DASH R Det al.

The formation of chondrules at high gas pressures in the solar nebula

[J]. Science, 20002905 497): 1 751-1 753.

[本文引用: 2]

GALY ABELSHAW N SHALICZ Let al

High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry

[J]. International Journal of Mass Spectrometry, 20012081): 89-98

[本文引用: 1]

DE VILLIERS SDICKSON J A DELLAM R M.

The composition of the continental river weathering flux deduced from seawater Mg isotopes

[J]. Chemical Geology, 20052161/2): 133-142.

[本文引用: 1]

SHEN BJACOBSEN BLEE C T Aet al.

The Mg isotopic systematic of granitoids in continental arcs and implications for the role of chemical weathering in crust formation

[J]. Proceedings of the National Academy of Sciences, 200910649):20 652-20 657.

SUN JianFANG NanLI Shizhenet al.

Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit

[J].Acta Petrologica Sinica, 2012289): 2 890-2 902.

孙剑房楠李世珍.

白云鄂博矿床成因的Mg同位素制约

[J]. 岩石学报, 2011289):2 890-2 902.

HUANG K JTENG F ZELSENOUY Aet al.

Magnesium isotopic variations in loess: Origins and implications

[J]. Earth and Planetary Science Letters, 201337460-70.

[本文引用: 2]

WANG S JTENG F ZLI S Get al.

Magnesium isotopic systematics of mafic rocks during continental subduction

[J]. Geochimica et Cosmochimica Acta, 201414334-48.

HU YTENG F ZZHANG H Fet al.

Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites

[J]. Geochimica et Cosmochimica Acta, 201618588-111.

DONG AiguoHAN Guilin.

A review of magnesium isotope system in rivers

[J]. Advances in Earth Science, 2017328): 800-809.

董爱国韩贵琳.

镁同位素体系在河流中的研究进展

[J]. 地球科学进展, 2017328): 800-809.

TIAN H CYANG WLI S Get al.

Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids

[J]. Geochimica et Cosmochimica Acta, 2018240191-219.

SU B XHU YTENG F Zet al.

Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism

[J]. Earth and Planetary Science Letters, 201952279-86.

CHEN Y XDEMÉNY ASCHERTL H Pet al.

Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps

[J]. Geochimica et Cosmochimica Acta, 2020271154-178.

LI L BZHANG FJIN Z Det al.

Riverine Mg isotopes response to glacial weathering within the Muztag catchment of the eastern Pamir Plateau

[J]. Applied Geochemistry, 20201181-13.

BERG R DSOLOMON E ATENG F Z.

The role of marine sediment diagenesis in the modern oceanic magnesium cycle

[J]. Nature Communications, 2019101):1-10.

CHEN X YTENG F ZHUANG K Jet al.

Intensified chemical weathering during Early Triassic revealed by magnesium isotopes

[J]. Geochimica et Cosmochimica Acta, 2020287. DOI: 10.1016/j.gca.2020.02.035.

LI JHAO CWANG Zet al.

Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020552. DOI: 10.1016/j.palaeo.2020.109774.

[本文引用: 1]

CHEN JunYANG JiedongLI Chunlei.

The continental weathering and the global climatic change

[J]. Advances in Earth Science, 2001163): 399-405.

[本文引用: 1]

陈骏杨杰东李春雷.

大陆风化与全球气候变化

[J].地球科学进展,2001163): 399-405.

[本文引用: 1]

RIEBE C SKIRCHNER J WFINKEL R C.

Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance

[J]. Geochimica et Cosmochimica Acta, 20036722):4 411-4 427.

DESSERT CDUPRÉ BGAILLARDET Jet al.

Basalt weathering laws and the impact of basalt weathering on the global carbon cycle

[J]. Chemical Geology, 20032023/4): 257-273.

RUBIN A ECOOPER K MTILL C Bet al.

Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals

[J]. Science, 20173566 343): 1 154-1 156.

[本文引用: 1]

LIU X MTENG F ZRUDNICK R Let al.

Massive magnesium depletion and isotope fractionation in weathered basalts

[J]. Geochimica et Cosmochimica Acta, 2014135336-349.

[本文引用: 7]

YOUNG E DGALY A.

The isotope geochemistry and cosmochemistry of magnesium

[J]. Reviews in Mineralogy and Geochemistry, 2004551): 197-230.

[本文引用: 2]

TENG F Z.

Magnesium isotope geochemistry

[J]. Reviews in Mineralogy and Geochemistry, 2017821):219-287.

TENG F ZWANG SMOYNIER F.

Tracing the formation and differentiation of the Earth by non-traditional stable isotopes

[J]. Science China Earth Sciences, 20196211): 1 702-1 715.

[本文引用: 1]

GALY AYOFFE OJANNEY P Eet al.

Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements

[J]. Journal of Analytical Atomic Spectrometry,20031811): 1 352-1 356

[本文引用: 1]

GUO BZHU XDONG Aet al.

Mg isotopic systematic and geochemical applications: A critical review

[J]. Journal of Asian Earth Sciences, 2019176368-385.

[本文引用: 3]

TIPPER E TGALY ABICKLE M J.

Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle

[J]. Earth and Planetary Science Letters, 20062473/4): 267-279.

[本文引用: 9]

LI W YTENG F ZKE Set al.

Heterogeneous magnesium isotopic composition of the upper continental crust

[J]. Geochimica et Cosmochimica Acta, 20107423): 6 867-6 884.

[本文引用: 1]

WIMPENNY JYIN Q ZTOLLSTRUP Det al.

Using Mg isotope ratios to trace Cenozoic weathering changes: A case study from the Chinese Loess Plateau

[J]. Chemical Geology, 201437631-43.

[本文引用: 1]

SCHAUBLE E A.

First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals

[J]. Geochimica et Cosmochimica Acta, 2011753): 844-869.

[本文引用: 1]

HUANG Kangjun.

The behavior of Mg isotopes during low-temperature water-rock interactions processes

[D]. WuhanChina University of Geoscience(Wuhan)2013.

[本文引用: 2]

黄康俊.

低温水—岩相互作用过程中镁同位素的行为研究

[D]. 武汉中国地质大学(武汉)2013.

[本文引用: 2]

HIGGINS J ASCHRAG D P.

Constraining magnesium cycling in marine sediments using magnesium isotopes

[J]. Geochimica et Cosmochimica Acta, 20107417): 5 039-5 053.

IMMENHAUSER ABUHL DRICHTER Det al.

Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments

[J]. Geochimica et Cosmochimica Acta, 20107415): 4 346-4 364.

POKROVSKY B GMAVROMATIS VPOKROVSKY O S.

Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?

[J]. Chemical Geology, 20112901/2): 67-74.

[本文引用: 1]

OPFERGELT SGEORG RDELVAUX Bet al.

Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences,Guadeloupe

[J]. Earth and Planetary Science Letters,2012341176-185

[本文引用: 5]

BRENOT ACLOQUET CVIGIER Net al.

Magnesium isotope systematics of the lithologically varied Moselle river basin, France

[J]. Geochimica et Cosmochimica Acta, 20087220): 5 070-5 089.

[本文引用: 1]

TIPPER E TGALY AGAILLARDET Jet al.

The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios

[J]. Earth and Planetary Science Letters, 20062501/2): 241-253.

TIPPER E TGALY ABICKLE M J.

Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?

[J]. Geochimica et Cosmochimica Acta, 2008724): 1 057-1 075.

TIPPER E TCALMELS DGAILLARDET Jet al.

Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering

[J]. Earth and Planetary Science Letters, 201233335-45.

TIPPER E TLEMARCHAND EHINDSHAW R Set al.

Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream

[J]. Chemical Geology, 201231280-92.

[本文引用: 1]

FOSTER G LPOGGE VON STRANDMANN P A ERAE J W B.

Boron and magnesium isotopic composition of seawater

[J]. Geochemistry, Geophysics, Geosystems, 2010118) : 253-274

[本文引用: 1]

LING M XSEDAGHATPOUR FTENG F Zet al.

Homogeneous Magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis

[J]. Rapid Communications in Mass Spectrometry,20112519): 2 828-2 836.

[本文引用: 1]

HUANG K JTENG F ZWEI G Jet al.

Adsorption-and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China

[J]. Earth and Planetary Science Letters, 201235973-83.

[本文引用: 7]

POGGE VON STRANDMAN P A EOPFERGELT SLAI Y Jet al.

Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland

[J]. Earth and Planetary Science Letters, 201233911-23.

[本文引用: 1]

OPFERGELT SBURTON K WGEORG R Bet al.

Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland

[J]. Geochimica et Cosmochimica Acta, 2014125110-130.

[本文引用: 6]

GAO Ting.

High-precision measurement of Mg isotopes and their geochemical behaviors during continental weathering

[D]. BeijingChina University of Geoscience (Beijing)2016.

[本文引用: 3]

高庭.

Mg同位素的高精度测定及其在大陆风化过程中的地球化学行为

[D].北京中国地质大学(北京)2016.

[本文引用: 3]

BREWER ATENG F ZDETHIER D.

Magnesium isotope fractionation during granite weathering

[J]. Chemical Geology, 201850195-103.

[本文引用: 4]

LI M Y HTENG F ZZHOU M F.

Phyllosilicate controls on magnesium isotopic fractionation during weathering of granites: Implications for continental weathering and riverine system

[J]. Earth and Planetary Science Letters, 2021553. DOI: 10.1016/j.epsl.2020.116613.

[本文引用: 2]

MA LTENG F ZJIN Let al.

Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation

[J]. Chemical Geology, 201539737-50.

[本文引用: 5]

TENG F ZLI W YRUDNICK R Let al.

Contrasting lithium and magnesium isotope fractionation during continental weathering

[J]. Earth and Planetary Science Letters, 20103001/2): 63-71.

[本文引用: 3]

LARA M CBUSS H LPOGGE VON STRANDMANN P A Eet al.

The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment

[J]. Geochimica et Cosmochimica Acta, 201720277-100.

[本文引用: 2]

WIMPENNY JGÍSLASON S RJAMES R Het al.

The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt

[J]. Geochimica et Cosmochimica Acta, 20107418): 5 259-5 279.

[本文引用: 4]

RYU J SVIGIER NDECARREAU Aet al.

Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation

[J]. Chemical Geology, 2016445135-145.

[本文引用: 2]

LAI ZhengSU NiWU Zhouyanget al.

Stable strontium isotopic fractionation during chemical weathering in drainage basins:Mechanisms and applications

[J]. Advances in Earth Science,2020357):691-703.

赖正苏妮吴舟扬.

流域风化过程稳定锶同位素的分馏与示踪

[J]. 地球科学进展,2020357):691-703.

CUOZZO NSLETTEN R SHU Yet al.

Silicate weathering in Antarctic Ice-rich Permafrost: Insights using Magnesium isotopes

[J]. Geochimica et Cosmochimica Acta, 2020278244-260.

[本文引用: 1]

CHACKO TCOLE D RHORITA J.

Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems

[J]. Reviews in Mineralogy and Geochemistry, 2001431): 1-81.

[本文引用: 1]

LIU S ATENG F ZHE Yet al.

Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust

[J]. Earth and Planetary Science Letters, 20102973/4): 646-654.

[本文引用: 3]

FAN BailingTAO FaxiangZHAO Zhiqi.

Advance of geochemical applications of magnesium isotope in marine and earth surface environments

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20131): 114-120.

[本文引用: 1]

范百龄陶发祥赵志琦.

地表及海洋环境的镁同位素地球化学研究进展

[J]. 矿物岩石地球化学通报, 20131): 114-120.

[本文引用: 1]

HANDLER M RBAKER J ASCHILLER Met al.

Magnesium stable isotope composition of Earth's upper mantle

[J]. Earth and Planetary Science Letters, 20092821/4): 306-313.

[本文引用: 1]

YOUNG E DTONUI EMANNING C Eet al.

Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth

[J]. Earth and Planetary Science Letters, 20092883/4): 524-533.

KE ShanLIU ShengaoLI Wangyeet al.

Advances and application in magnesium isotope geochemistry

[J]. Acta Petrologica Sinica, 2011272): 383-397.

[本文引用: 1]

柯珊刘盛遨李王晔.

镁同位素地球化学研究新进展及其应用

[J]. 岩石学报, 2011272): 383-397.

[本文引用: 1]

RYU J SJACOBSON A DHOLMDEN Cet al.

The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH=1 and T=25 °C: Power-law processes and the relative reactivity of minerals

[J]. Geochimica et Cosmochimica Acta, 20117520): 6 004-6 026.

[本文引用: 2]

CHEN JunWANG Henian. Geochemistry[M]. BeijingScience Press2016273-280.

[本文引用: 1]

陈骏王鹤年. 地球化学[M]. 北京科学出版社2016273-280.

[本文引用: 1]

WIMPENNY JCOLLA C AYIN Q Zet al.

Investigating the behaviour of Mg isotopes during the formation of clay minerals

[J]. Geochimica et Cosmochimica Acta, 2014128178-194.

[本文引用: 3]

GAO TKE SWANG S Jet al.

Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides

[J]. Geochimica et Cosmochimica Acta, 2018237205-222.

[本文引用: 4]

DONG AiguoZHU Xiangkun

Mg isotope geochemical cycle in supergene environment

[J].Advances in Earth Science, 2016311): 43-58.

[本文引用: 1]

董爱国朱祥坤

表生环境中镁同位素的地球化学循环

[J].地球科学进展, 2016311): 43-58.

[本文引用: 1]

POGGE VON STRANDMAN P A EBURTON K WJAMES R Het al.

The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain

[J]. Earth and Planetary Science Letters, 20082761/2): 187-197.

[本文引用: 2]

HINDSHAWA R STOSCAB RTOSCA N Jet al.

Experimental constraints on Mg isotope fractionation during clay formation: Implications for the global biogeochemical cycle of Mg

[J]. Earth and Planetary Science Letters, 2020. DOI: 10.1016/j.epsl.2019.115980.

[本文引用: 2]

LI W QBEARD B LLI Cet al.

Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes

[J]. Earth and Planetary Science Letters, 201439482-93.

[本文引用: 1]

LI Chen.

Study of vermiculite adsorption to Ca and Mg metal ions

[D]. BeijingChina University of Geoscience (Beijing)2009.

[本文引用: 1]

李陈.

蛭石对钙镁阳离子的吸附性能探讨

[D]. 北京中国地质大学(北京)2009.

[本文引用: 1]

FRIES D MJAMES R HDESSERT Cet al.

The response of Li and Mg isotopes to rain events in a highly-weathered catchment

[J]. Chemical Geology, 201951968-82.

[本文引用: 1]

MOULTON K LWEST JBERNER R A.

Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering

[J]. American Journal of Science, 20003007): 539-570.

[本文引用: 2]

BOLOU-BI E BPOSZWA ALEYVAL Cet al.

Experimental determination of magnesium isotope fractionation during higher plant growth

[J]. Geochimica et Cosmochimica Acta, 2010749): 2 523-2 537.

[本文引用: 3]

BOLOU-BI E BVIGIER NPOSZWA Aet al.

Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)

[J]. Geochimica et Cosmochimica Acta, 201287341-355.

[本文引用: 4]

GRIFFITHS R PBAHAM J ECALDWELL B A.

Soil solution chemistry of ectomycorrhizal mats in forest soil

[J]. Soil Biology and Biochemistry, 1994263):331-337.

[本文引用: 1]

BLACK J REPSTEIN ERAINS W Det al.

Magnesium-isotope fractionation during plant growth

[J]. Environmental Science and Technology, 20084221): 7 831-7 836.

[本文引用: 2]

TIPPER E TGAILLARDET JLOUVAT Pet al.

Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California

[J]. Geochimica et Cosmochimica Acta, 20107414): 3 883-3 896.

[本文引用: 1]

RYU J SVIGIER NDERRY Let al.

Variations of Mg isotope geochemistry in soils over a Hawaiian 4 Myr chronosequence

[J]. Geochimica et Cosmochimica Acta, 202129294-114.

[本文引用: 1]

/