地球科学进展, 2021, 36(3): 245-264 DOI: 10.11867/j.issn.1001-8166.2021.024

综述与评述

铼—锇同位素和铂族元素分析方法及地学应用进展

储著银,1, 许继峰2

1.中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029

2.中国地质大学地球科学和资源学院,北京 100083

Re-Os and PGE: Analytical Methods and Their Applications in Geosciences

CHU Zhuyin,1, XU Jifeng2

1.State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China

2.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China

收稿日期: 2021-01-07   修回日期: 2021-02-28   网络出版日期: 2021-04-30

基金资助: 国家重点研发计划项目“难熔元素和同位素分析技术创建与革新及地学应用”.  2020YFA0714800
国家自然科学基金面上项目“油气藏样品Re-Os-PGE分析方法及应用研究”.  42073050

Received: 2021-01-07   Revised: 2021-02-28   Online: 2021-04-30

作者简介 About authors

储著银(1970-),男,安徽霍山人,研究员,主要从事分析地球化学和同位素地球化学研究.E-mail:zhychu@mail.iggcas.ac.cn

CHUZhuyin(1970-),male,HuoshanCounty,AnhuiProvince,Professor.Researchareasincludeanalyticalgeochemistryandisotopegeochemistry.E-mail:zhychu@mail.iggcas.ac.cn

摘要

近30年来,国内外铼—锇(Re-Os)同位素和铂族元素(PGE)分析方法及其地学应用取得了诸多研究进展。首先对铼—锇同位素和铂族元素分析的样品溶解、化学分离及质谱测定等方面的进展情况进行了综述;然后,对铼—锇同位素和铂族元素在天体化学、大陆岩石圈地幔定年、金属矿床定年、沉积地层定年及古环境,以及在油气系统定年与示踪等领域的应用进展情况进行了简要评述。可供地质分析工作者针对不同分析任务及分析对象,选择分析方法并进一步发展Re-Os-PGE分析技术时参考,也可供地质科研工作者开展Re-Os-PGE地球化学研究工作时借鉴。

关键词: 铼—锇同位素 ; 铂族元素 ; 分析方法 ; 地学应用

Abstract

In the recent decades, there has been plenty of progress, both in analytical methods for Re-Os and PGE in geological samples and the applications of the Re-Os and PGE systems in geosciences. We first briefly review the recent advances for analytical methods of Re-Os and PGE in geological materials including sample dissolution, chemical separation and mass spectrometric determinations. Thereafter, we simply outline the recent progresses in major application fields of the Re-Os isotopic and PGE elemental systems in geosciences, including tracing the evolution of planetary formation and evolution, tracing the evolution of earth's mantle, dating of metal sulfide ore deposits, dating sedimentations and investigating the variations of earth's paleo-environment, as well as dating and tracing of the petroleum systems.This review stands as a comprehensive reference for researchers to facilitate the choice of the analytical method best adapted to each specific scientific problem and sample type, or to consider in the development of analytical methods for Re-Os-PGE in geological materials, as well as to promote the development of the applications of Re-Os and PGE in geosciences.

Keywords: Re-Os isotopic system ; Platinum Group Elements (PGE) ; Analytical methods ; Geoscience applications

PDF (1929KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展. 地球科学进展[J], 2021, 36(3): 245-264 DOI:10.11867/j.issn.1001-8166.2021.024

CHU Zhuyin, XU Jifeng. Re-Os and PGE: Analytical Methods and Their Applications in Geosciences. Advances in Earth Science[J], 2021, 36(3): 245-264 DOI:10.11867/j.issn.1001-8166.2021.024

1 铼—锇同位素和铂族元素分析方法

铼—锇和铂族元素(Re-Os-PGE)(这里PGE主要指Ir-Ru-Pt-Pd)属亲铁亲铜元素,在核幔分异过程中,Re-Os和PGE优先进入地核。因此,地幔、地壳样品中Re-Os-PGE含量很低,一般在ppb(ng/g)~ ppt(pg/g)量级,并且主要赋存于样品中硫化物、PGE合金等微量矿物相中,因此地质样品Re-Os-PGE的准确分析是一项难度较大的工作。近30年来,地质样品Re-Os同位素及铂族元素含量分析方法取得诸多重要进展,包括样品溶解、化学分离及质谱测定,以及微区分析方法等方面。张巽等1、李杰等2、杨红梅等3、杜安道等4、靳新娣等5、黄小文等6、Reisberg等7和Meisel等8均曾对Re-Os同位素分析技术进行了综述。

1.1 样品分解方法

进行地质样品全样Re-Os-PGE分析(bulk analysis),首先要将样品中含Re-Os和PGE的矿物相完全溶解,然后进行后续的化学分离和质谱测定。目前Re-Os-PGE分析主要的样品分解方法包括:NiS火试金、低温酸溶、碱熔法及酸溶—碱熔结合法、Carius管酸溶法以及高压灰化器(HPA)酸溶法。

1.1.1 NiS火试金法

NiS火试金法是经典的Re-Os-PGE分析方法之一9,该方法的优点是样品处理量较大,可以达到10 g以上,因此可以有效减小块金效应的影响(块金效应是指由于Re-Os、铂族元素主要富集于样品中微量硫化物和PGE合金相中,不均匀地分布于200~400目样品粉末中,样品分析时取样量较小的情况下,经常不能得到重现的分析结果)。但是,NiS火试金法由于试剂用量较大,且不易纯化,因此试剂本底较高,不利于低含量样品的分析。研究表明,NiS火试金法Re-Os、PGE本底主要来源于捕集剂Ni10,使用纯化镍、羰基镍和升华硫可有效降低NiS火试金法的本底11~13

Ravizza等14首先建立了低本底NiS火试金法Os同位素和铂族元素联合分析流程。他们将溶解NiS镍扣后的溶液过滤后,将富集PGE残渣的滤纸一分为二,一部分用于Os同位素分析,另一部分用于Ir-Pt-Pd分析。Sun等15则对溶解NiS镍扣后富集PGE的残渣部分,先采用HNO3消解、蒸馏Os,残液进一步处理后采用ICP-MS测定Ir-Ru-Pt-Pd。传统的NiS火试金方法,Re不能定量回收,因此Re一般采用另一份试样单独进行测定。Sun等1215建立了Ni-Fe-S火试金方法,Fe的加入使Re的回收率达到75%以上,使得Re-Os和PGE分析可在同一份样品上完成。

Brandon等16、Ireland等17及Day等18采用NiS火试金法处理较大量的样品(可大于50 g)(NiS扣进一步采用Carius管法溶解),以获得足够量的Os(30~200 ng),供负离子热电离质谱法(Negative Thermal Ionization Mass Spectrometry,NTIMS)进行超高精度的186Os/188Os分析。

1.1.2 低温酸溶法

低温酸溶法指采用Teflon器皿以HCl-HF-乙醇、HF-HBr等还原性酸在电热板上(120~150 ℃)溶样1920。由于采用了还原性酸,该方法不存在Os氧化丢失的问题。该方法的优点是流程本底低,Os本底可小于0.05 pg2021。但是,对超镁铁岩等样品存在Re-Os-PGE矿物相溶解不完全的问题2223。Gannoun等21采用该方法溶解大洋中脊玄武岩(Mid-Ocean Ridge Basalt, MORB)进行Re-Os同位素分析,他们对部分样品分别采用低温酸溶法和Carius管法进行了分析,结果表明二者分析结果在误差范围内一致。

Qi等23建立了Teflon溶样弹法PGE分析流程,结果表明,对超镁铁岩标样,采用HF-HCl溶样,即使190 ℃温度条件下溶样,PGE矿物相仍溶解不完全,而采用HF-HNO3或者HF-HCl-HNO3则可以获得与参考值一致的分析结果。由于使用了氧化性HNO3,该方法不能进行Os同位素分析。

1.1.3 碱熔法及酸溶碱熔结合法

碱熔法(NaOH-Na2O2)可以有效分解岩石样品中尖晶石、铬铁矿及PGE合金等难溶相2224~26,但是该方法同样存在试剂本底可能较高且不易纯化的缺点。早期,碱熔法也被应用于辉钼矿样品的分解27~29

酸溶—碱熔结合法可以减少碱试剂的用量,从而有效降低流程本底。例如,Qi等30建立了酸溶—碱熔结合法PGE(不包括Os)分析方法:首先,采用HF-HCl-HNO3溶解样品,然后采用H3BO3溶解HF溶样过程中形成的氟化物沉淀,最后采用Na2O2碱熔法分解剩余的少量残渣。

1.1.4 Carius管酸溶法

Shirey等31首先将Carius管法应用于Re-Os同位素分析,由于该方法完全密闭溶样,避免了使用氧化性酸(一般为逆王水)溶样Os的挥发性损失。屈文俊等32和李超等33分别报道,采用Carius管法,加入H2O2,有助于黄铁矿和沥青等样品的完全分解。采用Carius管法以KClO3+HCl溶样,可以有效分解Ir和Ru金属粉末34

Carius管法由于使用易纯化的HCl和HNO3溶样,可以获得较低的Re-Os及Ir-Ru-Pt-Pd本底。研究表明Carius管法溶样,Os本底主要来自于HNO320。对HNO3,可以采用加H2O2的方法进行脱Os纯化35~37。但是,往HNO3中加入H2O2,反应比较剧烈,操作过程中需注意安全防护,并且只能向冷的HNO3中加入H2O2

Becker等38报道了一种改进的Carius管法,即将Carius管放入带铜垫片的可密封的外钢套中,外钢套中加入干冰,这样加热时外钢套中干冰气化产生的压力可以平衡Carius管内部酸蒸汽产生的内压。采用该方法,Carius管溶样的温度可以提高至345 ℃。Becker等38研究表明,对一些地幔橄榄岩包体样品,改进Carius管法得到相对常规Carius管法较高的Os含量和较低的Os同位素比值结果,表明改进Carius管法溶样更彻底。类似地,Qi等39采用H2O代替干冰,建立了改进Carius管Re-Os-PGE分析方法,样品处理量可以达到12 g,溶样温度可以提高至320 ℃。但是,改进Carius管法操作比较复杂。

对硅酸盐岩样品,一些学者报道,采用Carius管逆王水溶样法,样品中含Re-Os、PGE相可能溶解不完全,因此,应该在Carius管溶样前或溶样后采用HF溶解硅酸盐岩40~42。例如,Ishikawa等41报道:对TDB-1辉绿岩标样,增加HF溶样步骤,可以得到更高的Re和Ru含量测定结果;对BIR-1玄武岩标样,增加HF溶样步骤,可以提高PGE、特别是Ru的提取率。Li等42报道:对BHVO-2、TDB-1和AGV-2,增加HF溶样步骤,样品中Re的提取率可以提高9%~15%,表明上述样品中部分Re可能赋存于硅酸盐相中;对BCR-2、WGB-1和WPR-1,增加HF溶样步骤,Re的分析结果没有明显改变,表明这些样品中Re可能全部赋存于硫化物相中;对BHVO-2、WGB-1和AGV-2,增加HF溶样步骤,Os的提取率有所提高,表明研磨至200目(粒径小于75 μm)条件下,这些样品中部分Os可能以硫化物包裹体形式赋存于硅酸盐矿物中。Day等43的研究则表明,对一些板内玄武岩样品及WPR-1橄榄岩标样,采用HF溶样步骤与否,对Re-Os和PGE分析结果没有显著影响。同时,他们强调:采用Carius管溶样获得Os同位素结果,然后采用HF进一步溶解硅酸盐相,可能会造成Re/Os、Pt/Os值与Os同位素比值解耦;但是,在Carius管溶样前采用HF溶解硅酸盐相,然后采用Carius管溶样,因为F-的引入,可能会导致Carius管容易炸裂41增加HF溶样步骤后的样品,得到的样品溶液基体、干扰元素等组分大大增加,因此一定程度上会增加后续Re-PGE分离步骤的复杂性。

对黄铁矿样品,Qi等35报道了一种改进的Carius管溶样方法:首先采用开口的Carius管采用HNO3溶样,分解黄铁矿,将产生的Os采用HCl吸收;然后,再将HCl吸收液重新转入Carius管中,进行进一步的常规Carius管法密闭样品消解。该方法可以将黄铁矿样品(Os含量极低)的溶样量提高至3 g,有利于获得更高的Os信号强度。

对石英脉辉钼矿样品,Lawley等44首先采用冷的HF室温条件下溶解去除石英,然后采用Carius管法溶解辉钼矿样品。

对黑色页岩样品,Selby等45和Kendall等46报道,采用CrO3-H2SO4溶样可以选择性溶解赋存于黑色页岩有机质组分中的Re-Os,减少陆源碎屑物质中Re-Os的溶出,有利于获得更高精度的Re-Os年龄和更具古环境意义的Os同位素结果。刘华等47也进行了黑色页岩CrO3-H2SO4溶样Re-Os分析方法的尝试。Yin等48则针对富有机质沉积岩样品,建立了HNO3-H2O2选择性溶样方法,相对CrO3-H2SO4方法,该方法具有Re本底较低的优势,但是H2O2的加入增加了炸管的风险。

1.1.5 HPA酸溶法

高压灰化器(High Pressure Asher, HPA)法最早由奥地利莱奥本大学的Meisel研究组应用于Re-Os-PGE分析工作中2249~51。杨竟红等52曾采用HPA法分析低含量岩石样品Re-Os和铂族元素组成。HPA法采用石英玻璃管通过Teflon膜加压密封,实现溶样过程中的密封性,避免王水溶样过程中OsO4的挥发损失。HPA法溶样温度可以提高至320 ℃,因此可以实现样品更加快速、完全的溶解。相对Carius管法,该方法具有更低的Re-Os-PGE(特别是Pt和Pd)的本底,因此特别适合于超低含量样品如月岩等样品的Re-Os-PGE分析53。Dale等54和Ishikawa等41研究表明,即使采用HPA方法溶样,对某些硅酸盐岩样品,HF去硅步骤仍然是有必要的。

Colorado州立大学的Holly Stein和Hannah研究组采用HPA法分解石油样品55,相对Carius管法,HPA法可以处理相对较大样品量的石油样品,因此有利于超低含量石油样品的Re-Os同位素分析。

1.2 化学分离

1.2.1 Os的分离

Os的分离方法主要包括蒸馏法和萃取法,Os的二次纯化均采用微蒸馏法。

1.2.1.1 蒸馏法

蒸馏法主要利用Os氧化为OsO4后具有挥发性的特点进行Os的分离。Carius管或HPA法由于溶样过程中Os已被氧化成OsO4,因此可以直接蒸馏3156。采用NiS火试金或碱熔法溶样,则需要加入Ce(SO42-H2SO4、CrO3-H2SO4、HNO3或H2O2等氧化剂将Os氧化成OsO4,然后进行蒸馏15282957。OsO4可以采用HBr和NaOH等溶液冰水浴吸收293156。Sun等57则用H2O吸收OsO4,然后直接采用ICP-MS测定Os同位素。常规蒸馏法是将Os转入蒸馏烧瓶进行蒸馏,蒸馏装置可以预先采用高纯试剂进行预蒸馏以降低其本底。孟庆等58和储著银等59建立了利用Savillex PFA器皿进行小型化Os蒸馏的方法。李超等60和Qi等35建立了直接从Carius管中蒸馏Os的方法,进一步降低了Re-Os流程本底。Jin等61报道了一种批式Carius管原位蒸馏方法,可以大大提高蒸馏操作的效率。

1.2.1.2 萃取法
(1) CCl4或CHCl3萃取法

目前应用最广泛的萃取Os的方法是CCl4或CHCl3萃取法6263。对Carius管逆王水/CrO3-H2SO4溶样法或HPA逆王水溶样法,由于Os已被氧化成OsO4,可以直接采用CCl4/CHCl3从王水或CrO3-H2SO4相中萃取Os,然后采用HBr从CCl4/CHCl3中反萃Os。

(2) 液溴萃取法

另一种常用的萃取Os的方法是液溴萃取法20。对HF-HBr溶样法,溶样后将酸液蒸干,然后加入液溴和40% m/V CrO3-8 mol/L HNO3溶液,CrO3-HNO3将Os氧化成OsO4,被液溴萃取20。对Carius管或HPA溶样法,由于Os已经被氧化成OsO4,因此可以直接采用液溴萃取3764。例如,Paul等64采用HPA法以0.5 mL H2O2和0.5 mL H2SO4作为氧化剂消解加入了190Os稀释剂的50 mL水样,使样品和稀释剂达到同位素平衡,然后加入2 mL液溴直接萃取Os,为补偿液溴相对水样的小体积(2∶50),他们进行2次萃取,每次在125 ℃条件下萃取10小时。液溴萃取法的优点是可以获得极低的Os流程本底,因此特别适合于超低含量样品分析202165

1.2.1.3 微蒸馏(Micro-distillation)

对负离子热电离质谱法(Negative Thermal Ion Mass Spectrometry,NTIMS) Os同位素分析方法,Os一般采用微蒸馏法进行二次纯化20。微蒸馏法提供了一种非常简便的Os二次纯化方法,大大提高了NTIMS Os同位素分析的成功率。Birck等20报道,微蒸馏过程中,Os的回收率可以达到70%~90%。最近,Nakanishi等66进一步详细研究了微蒸馏过程中影响Os回收率的因素。研究结果表明:影响微蒸馏Os回收率的最主要因素是Savillex PFA锥形瓶尖端HBr吸收液的浓度。采用尽可能少的氧化剂溶液,增加CrO3-H2SO4氧化剂中H2SO4的浓度,以及控制微蒸馏温度小于80 ℃,从而减小因氧化剂中水分蒸发导致的锥形瓶尖端中HBr的稀释程度,有利于提高微蒸馏过程中Os的回收率。

Pearson等67、Harvey等68、Gannoun等21和Warren等69相继采用类似微蒸馏的方法进行颗粒硫化物Re-Os同位素分析。他们将稀释剂和颗粒硫化物置于锥形瓶盖子中央,加CrO3-H2SO4覆盖颗粒硫化物消解样品,将Os氧化成OsO4,OsO4被锥形瓶尖端的HBr吸收,然后采用NTIMS进行Os同位素分析。Pearson等67曾对比微蒸馏法与微型Carius管法对颗粒硫化物的Re-Os同位素分析结果,结果表明微蒸馏法可以获得与微型Carius管法一致的分析结果,表明CrO3-H2SO4可有效消解颗粒硫化物样品,并且微蒸馏过程中样品和稀释剂达到了同位素平衡。

1.2.2 Re和PGE的分离纯化 1.2.2.1 Re的分离

仅进行Re-Os同位素分析时,一般采用阴离子交换树脂法(通常采用AG1-X8树脂,100~200目)或丙酮萃取法分离Re。通常地,将分离Os之后的残液蒸干,溶于0.8 mol/L HNO3并加载于交换柱,采用0.8 mol/L HNO3洗脱基体元素后,采用6 mol/L HNO3洗脱Re5859。当采用CrO3-H2SO4溶样时,由于Cr6+可以CrO42-等形式被阴离子交换树脂保留,需要采用C2H5OH、H2O2或SO2等预先将Cr6+还原成Cr3+[22,45],然后再上柱分离。

另一种常用的Re分离方法是NaOH(>5 mol/L)-丙酮萃取法2770~72,即将分离Os后的样品残液蒸干,加入NaOH碱化,由于高Na+浓度条件下,丙酮与水相不混溶,丙酮可以有效萃取水相中的Re。相比1∶1条件下,Re的萃取率一般大于95%4,NaOH可以采用丙酮预萃取进行除Re纯化。王礼兵等71报道增加NaOH的浓度至10 mol/L可以进一步改善丙酮萃取Re的效果。

当采用NTIMS或MC-ICP-MS(Multiple Collector Inductively Coupled Plasma Mass Spectrometer)测定Re时,一般需要对Re进行二次纯化,二次纯化可以采用微型阴离子交换柱法73或颗粒阴离子交换树脂(single anion beads)法72

Sun等74报道,对辉钼矿样品,采用Carius管法以HNO3代替逆王水溶样,由于该条件下Mo可形成MoO3沉淀,上清液蒸馏分离Os后,稀释后可直接采用ICP-MS测定Re,无需化学分离。

1.2.2.2 Re-PGE的分离

当采用同位素稀释法分析Re和PGE时,通常采用阴离子或阳离子交换树脂法分离富集Re-PGE1030507375~78

(1) 阳离子交换法

阳离子交换法(一般采用AG50W-X8树脂,200~400目)分离PGE的原理是在稀盐酸介质条件下,样品基体元素以阳离子形式被树脂吸附,而PGE与Cl-形成络阴离子、Re以ReO4-形式不被吸附,因此可以将Re和PGE作为一个整体与样品基体元素分离305078。由于样品中存在大量基体元素,阳离子交换树脂法一般需要采用较大的树脂量以吸附基体元素阳离子,以及采用较大量的纯化酸清洗树脂。此外,一些干扰元素如Zr、Hf可能不能被有效去除(ZrO干扰Pd、HfO干扰Ir-Pt)。

针对上述问题,Meisel等50建立了一种采用2 Bar N2加压的在线(on-line)阳离子交换分离ICP-MS PGE分析方法,他们采用长度1 m、内径4.2 mm的交换柱来改善分离效果,流出液直接进入ICP-MS进行测定,实现在线干扰元素监控。Qi等3039采用碱熔法或改进Carius管法溶样,首先采用Te-共沉淀法富集PGE,然后采用阳离子交换与P507(P507树脂:2-乙基己基磷酸-单2-乙基己基酯,简称HEHEHP,涂敷于Teflon粉末上制成)混合树脂柱分离PGE,研究结果表明,P507树脂对去除Zr和Hf非常有效。类似地,Ren等79采用NiS火试金方法分解样品,然后采用微型阳离子交换-LN[LN树脂:二(2-乙基己基)磷酸萃取剂,简称HDEHP,俗称P204,涂敷于惰性材料Amberchrom CG-71m上制成]串联树脂柱(均为内径5 mm、柱长50 mm)分离PGE。Shinotsuka等76则采用N-苯甲酰基苯基羟胺(又称“钽试剂”)(N-benzoyl-N-phenylhy droxylamine,BPHA)萃取法对阳离子交换法分离的PGE进行二次纯化,以进一步去除Zr、Hf和Mo等干扰元素。Li等78则将BPHA萃取剂吸附在惰性色谱材料Amberchrom CG-71m上,制成BPHA树脂柱,用以对PGE进行二次纯化。最近,Zhou等80报道,对Carius管法或HPA法结合HF去硅溶样得到的样品溶液,首先采用阳离子交换法分离PGE,然后采用LN柱法进行二次纯化来进一步去除Zr和Hf等干扰元素。

(2) 阴离子交换法

不同地,采用阴离子交换法(一般采用AG1-X8树脂,100~200目),在低酸度HCl介质条件下,PGE与Cl-形成络阴离子、Re以ReO4-形式被树脂强烈吸附,而样品基体元素不被吸附,从而实现PGE与基体元素的分离10497375。由于大量基体元素离子不被吸附,该方法不需要使用很大树脂量。同时,该方法可以将Re和PGE相互分开,因此特别适合采用MC-ICP-MS对Re、Ru、Ir-Pt和Pd分别进行同位素稀释分析测定。但是由于Re-PGE在阴离子交换树脂上保留很强,需要使用高浓度HNO3和HCl才能将Re-PGE洗脱(特别是Ir-Pt和Pd),并存在Ir、Ru和Pd回收率不稳定而且偏低的缺点73。针对上述问题,Meisel等49采用HPA法直接消解吸附了Re-PGE的树脂,然后采用ICP-MS直接进行测定。同样地,对于高Cr样品,上柱前,需要采用C2H5OH或H2O2将Cr6+还原成Cr3+[22,54]。此外,由于Zr、Hf在稀盐酸条件下也可能与Cl-形成络阴离子,导致 Zr、Hf与PGE分离不完全1073(注:ZrO+干扰Pd、HfO+干扰Ir-Pt)。针对该问题,Pearson等10和Day等43在洗脱PGE之前,增加1 mol/L HCl-1 mol/L HF洗脱步骤进一步去除Zr、Hf,Chu等73则采用LN柱对Pd和Ir-Pt进行二次纯化。

1.3 质谱测定方法

1.3.1 Os同位素测定
1.3.1.1 负离子热电离质谱法(NTIMS)

NTIMS法是Os同位素测定的首选方法81~83。采用Pt灯丝以Ba(OH)2为发射剂,OsO3-的离子产率(即Ion Yield,=ions detected/atoms loaded)可达10%以上84,因此NTIMS方法可对Os含量极低的样品(Os低至几个pg)进行Os同位素分析。采用NTIMS方法,需要采用逐级剥氧法进行氧化物干扰校正85~87,以校正Os16O16O18O-及Os16O16O17O-等弱氧化物离子峰对Os16O3-主离子峰的干扰(简称氧校正)。由于氧同位素组成可能随样品测试条件变化而变化,尽管影响甚微,氧校正是NTIMS Os同位素分析误差的来源之一88。对岩石样品Os同位素分析,一般在进行氧校正及扣除稀释剂的贡献后,采用192Os/188Os=3.08271进行同位素分馏校正738789

最近,Liu等90和Wang等91分别报道了采用1012和1013 Ω高阻放大器NTIMS进行Os同位素测定的方法。Luguet等92、Chatterjee等93和Chu等94相继报道了在线氧校正Os同位素NTIMS测定方法,即在测定Os同位素过程中,通过测定192Os16O217O-192Os16O218O-192Os16O3-的比值,实时在线测定氧同位素比值,用于氧校正计算,进一步提高了NTIMS Os同位素的测定精度。

1.3.1.2 等离子体质谱法(ICP-MS)

另一种常用的Os同位素测定方法是等离子体质谱法(ICP-MS),一般采用多接收器等离子体质谱法(MC-ICP-MS)95~97。对辉钼矿等187Os/188Os异常高的样品,也可以采用四极杆(Quadrupole)等离子体质谱仪(Q-ICP-MS)进行测定27359899。采用ICP-MS方法,当Os以还原态/络合态(如OsCl62-)形式进样时,Os在进样系统记忆效应较弱9697,但还原态进样时ICP-MS法Os离子产率(ions detected/atoms introduced)远低于NTIMS方法,一般仅可达到约0.08%9596。尽管采用OsO4态进样(OsO4的水溶液),ICP-MS法Os离子产率可以至少提高30倍以上5798100,但OsO4态进样Os在进样系统中的记忆效应极强155798,切换样品时,需要采用H2O2、NH2OH·HCl或H2NNH2·H2O等溶液反复清洗进样系统15495798。对ICP-MS,可以采用外标法进行同位素分馏效应校正98,也可以采用类似NTIMS的方法,扣除稀释剂后以192Os/188Os=3.08271进行同位素分馏效应校正,由于ICP-MS同位素分馏一般较NTIMS高1个数量级,因此需要进行迭代计算95101

ICP-MS方法的一个优点是可以采用Ar载气直接将气态OsO4载入ICP-MS进行Os同位素分析(即Sparging method)49102~105。Sparging方法无需使用雾化器,大大降低了Os记忆效应。同时,该方法只需要溶样过程中或后续步骤将样品中Os完全氧化成OsO4即可,无需进一步的Os分离步骤。但是,由于酸蒸汽可能被载入ICP,Sparging方法对仪器系统存在一定的腐蚀性,此外,测定过程中随着OsO4的消耗,Os信号会较快地衰减。Jin等106建立了采用Ar载气直接从Carius管中将OsO4载入ICP进行Os同位素分析的方法,同时,通过雾化器引入Ir,对Os同位素进行质量歧视校正。Sparging方法特别适合进行较大量样品的高通量快速Os同位素分析104105

ICP-MS的另一个优势是可以与激光剥蚀系统(Laser Ablation, LA)联机进行原位Os同位素分析,该方法最初被应用于PGE合金Os同位素分析107108。Shi等109曾采用LA-MC-ICP-MS技术对挑选自西藏罗布莎和东巧蛇绿岩铬铁矿中的PGE合金进行Os同位素分析。Pearson等110首先建立了LA-MC-ICP-MS原位硫化物Os同位素分析方法。他们采用He气作为载气将激光剥蚀的样品载入ICP,并引入Ir气溶胶对Os进行同位素分馏效应校正。对包裹于硅酸盐矿物内部的粒径大于50 μm、Os含量大于40 μg/g的硫化物,187Os/188Os测定精度可达优于0.1%。Xu等111曾采用LA-MC-ICP-MS方法对中国东南部新生代地幔橄榄岩包体中硫化物进行了Re-Os同位素分析。余淳梅等112曾采用LA-MC-ICP-MS方法对汉诺坝地幔橄榄岩包体进行了硫化物原位Os同位素分析。最近,Zhu等113建立了LA-MIC-ICP-MS(Multiple Ion Counters,MIC,指多离子计数器)硫化物原位Os同位素分析方法。原位Os同位素分析方法的主要问题是187Re对187Os的干扰问题,因此仅适合于对高Os、低Re含量(187Re/188Os<0.5)的矿物进行分析114。另一个问题是若需要进行186Os/188Os测定,则要考虑186W对186Os的干扰问题,因此,LA-MC-ICP-MS方法只适合对不含W的高Os含量的PGE合金进行高精度186Os/188Os测定107114

1.3.2 Re-PGE质谱测定

Re-PGE一般采用ICP-MS以同位素稀释法(Isotope Dilution, ID)进行测定。部分实验室采用NTIMS测定Re115116,由于Pt灯丝可能含有微量Re,NTIMS法通常采用Ni灯丝以Ba(NO32为发射剂进行Re的测定。此外,NTIMS Re同位素分析无法进行同位素分馏效应校正,针对该问题,Suzuki等117曾建立全蒸发法NTIMS Re同位素分析方法,来降低同位素分馏效应的影响。

Re-PGE同位素比值可以采用四极杆(Quadrupole)ICP-MS(Q-ICP-MS)1030435078、磁质谱(Sector Field)ICP-MS(SF-ICP-MS,如Element-XR)77或者MC-ICP-MS73进行测定。ICP-MS质谱测定过程中,质量歧视效应一般采用Re-PGE标准溶液测定结果外标校正。若仅分析Re,也可以掺入Ir进行Re同位素分馏校正9597101。相对而言,MC-ICP-MS具有最低的检测限,但是MC-ICP-MS一般只能对单个Re或PGE元素分别进行测定,比较耗时,且不能在线监测所有干扰元素。采用膜去溶进样法,可有效降低ICP-MS测定过程中的氧化物多原子离子干扰1077

对PGE含量相对较高的样品,可以采用LA-ICP-MS直接进行PGE分析。例如,Alard等118和Lorand等119120采用LA-ICP-MS测定了地幔橄榄岩硫化物中PGE的含量(以人工合成NiS-PGE A作为标样)。LA-ICP-MS也被应用于对铁陨石等PGE含量较高的地外样品进行PGE分析121122

2 铼—锇同位素和铂族元素地学应用

Re-Os-PGE具有不同于传统亲石元素和同位素体系(如REE、Rb-Sr、Sm-Nd和Lu-Hf)的独特的地球化学性质,包括亲铁、亲硫以及亲有机物等特性,因而在地球科学领域具有独特而重要的应用价值。应用领域主要包括天体化学、地幔地球化学、金属矿床定年、沉积地层定年及古环境以及油气系统定年与示踪等方面。

2.1 Re-Os-PGE在天体化学研究中的应用

Re-Os-PGE在天体化学领域的应用主要包括铁陨石定年、行星早期分异历史、地球和月球的后增生历史等方面,Walker123~125、Day等122和杨刚等126曾对Re-Os-PGE在天体化学研究中的应用进行综述。

铁陨石具有较高的Re、Os和PGE含量及较大的Re/Os变化范围(Re/Os值与行星体内金属结晶分异程度相关),因此,Re-Os是铁陨石定年的重要工具63124127。特别地,Smoliar等127通过对IIAB族铁陨石进行Re-Os定年,并与U-Pb体系定年结果进行比较,将187Re的衰变常数修订为1.666×10-11/a。值得注意的是,目前铁陨石Re-Os定年结果表明,行星金属核在太阳系形成后50 Ma内形成,而182Hf-182W定年结果表明核幔分异发生在太阳系形成后3 Ma以内128,2种方法定年结果的差异可能表明金属核结晶时间晚于核幔分异时间,即金属核冷却时间可能较长125

由于原始球粒陨石及铁陨石具有较高的Re、Os和PGE浓度,而高度分异行星的硅酸盐地幔和地壳具有较低的Re、Os和PGE浓度,因此Re、Os和PGE是研究行星后增生历史及地表(如K/T界线)是否遭受陨石撞击影响的重要示踪剂123~125122129。地幔Re、Os和PGE浓度约为球粒陨石的1/200,显著高于通过硅酸盐/金属相分配系数计算得到的Re、Os和PGE浓度,表明地球在经过核幔分异过程后,硅酸盐地球可能经历了后增生作用。由于地幔具有类似球粒陨石的Os同位素组成和PGE配分,一般认为,地核形成之后,增生了球粒陨石类物质,并通过对流进入地幔。

月幔同样具有类似球粒陨石的PGE配分,但其Re、Os和PGE浓度较地幔低约20倍53。近年来,研究表明硅酸盐月球具有较硅酸盐地球高约25×10-6182W/184W值130131,研究者们认为地幔与月幔具有相同的初始W同位素组成,但是大碰撞形成月球后,月球和地球经历了不同程度的后期增生历史。

2.2 Re-Os-PGE在地幔地球化学研究中的应用

2.2.1 大陆岩石圈地幔(Sub-Continental Lithospheric Mantle, SCLM)定年

由于Os是强相容元素,富集于地幔残留相,地幔橄榄岩Os同位素组成不易遭受后期交代作用的影响,因此,Re-Os同位素是大陆岩石圈地幔定年的最重要工具132~135。由于Re属于中等不相容元素,在地幔熔融中优先进入熔体相,对于遭受高度熔体抽提的克拉通型地幔,一般可近似认为其Re被抽提完全,即Re/Os为0,因此,可采用Re亏损年龄,即TRD年龄,代表岩石圈地幔熔体抽提事件的时间132136。对未遭受高度熔体抽提的饱满型地幔,可采用Al2O3代用等时线等方法计算其TRD年龄137

近年来,对地幔橄榄岩Re-Os同位素年龄的解释争议很大。首先,可能代表软流圈地幔组成的大洋中脊橄榄岩的Os同位素组成具有较大的范围,大多在0.120~0.129135,并且近年来陆续发现大洋中脊橄榄岩可以具有低至古元古代TRD年龄的Os同位素组成68138139。例如,Liu等139研究表明,北冰洋Gakkel洋脊橄榄岩187Os/188Os可低至0.114,因此,他们认为软流圈地幔在Os同位素组成上具有高度不均一性。这样一来,对地幔橄榄岩样品得到古老的Os-TRD模式年龄,可能并不代表该岩石圈地幔就一定是古老的。尽管O'Reilly等140认为,大洋中脊橄榄岩古老的Os同位素组分可能代表洋脊裂开时卷入的古老大陆岩石圈地幔的残留,而不是表明软流圈地幔具有高度不均一性。但是他们同样认为,对年轻地壳下伏地幔获得古老Os同位素年龄,不一定表明该岩石圈地幔是古老的,而可能是形成过程中夹带了古老岩石圈地幔的残留。针对上述问题,Rudnick等135建议,对大陆岩石圈地幔定年,应该测定一定数量的地幔橄榄岩包体样品,对比其与深海橄榄岩的187Os/188Os分布趋势,以判断岩石圈地幔的年龄。例如,Chu等141研究表明,华北东部新生代地幔包体具有与深海橄榄岩类似的187Os/188Os分布特征,而与古生代期间岩石圈地幔的Os同位素特征截然不同,因此认为华北东部新生代期间岩石圈地幔可能是新生的。

大陆岩石圈地幔Os同位素定年的另一争议是地幔交代作用对Os同位素年龄的影响程度。一般认为,由于岩石圈地幔Os含量很高,而交代熔流体一般Os含量很低,因此,一般情况下,地幔交代作用对其Os模式年龄的影响很小135142。但是,硫化物熔体可能具有较高的Os含量,岩石圈地幔Os同位素组成可能会遭受硫化物交代作用的影响。针对该问题,可以采用PGE配分辅助判断硫化物交代作用的强度。通常,地幔橄榄岩由于遭受了高程度的熔体抽提事件,一般具有PPGE(指Pt和Pd)相对IPGE(指Os、Ir和Ru)亏损的特征143144。若地幔橄榄岩具有PPGE相对IPGE富集的特征,则表明地幔橄榄岩可能遭受了硫化物交代作用的显著影响。例如,Chu等141研究表明,华北东部新生代期间蓬莱和山旺地区的地幔包体分别具有PPGE相对IPGE亏损和比较平坦的PGE配分,说明上述地幔橄榄岩包体没有遭受硫化物交代作用的显著影响,其Re-Os年龄可以代表岩石圈地幔的形成年代。

2.2.2 玄武岩源区示踪

由于Re、Os和PGE独特的地球化学性质,Re-Os-PGE在玄武岩源区示踪方面同样具有独特的应用价值145~149。例如,Chu等149研究表明:皖东—苏北地区新生代低钙碱性玄武岩具有低187Os/188Os值(187Os/188Os<0.14)、平坦的PGE配分,可能来自亏损的地幔源区,遭受地壳混染的影响很小;少数拉斑和高钙碱性玄武岩具有极低的Os含量(Os低至5 pg/g)、非常高的187Os/188Os(>0.4)、Pd/Ir和Pd/Cu值,可能遭受了硫化物分异—地壳混染过程的影响;而大部分拉斑和高钙碱性玄武岩具有较高的Os含量(Os>30 pg/g),同时具有较高的187Os/188Os值(187Os/188Os:0.15~0.40),以及较高的Pd/Ir值和富集的Sr-Nd同位素特征值,可能来自经再循环壳源物质交代富集的富含辉石岩的地幔源区。

值得注意的是,由于玄武岩Os含量低,其Re-Os同位素组成不仅容易遭受地壳混染的影响,也极易遭受地幔混染的影响147149~151。若玄武岩上升过程中经过了岩石圈地幔过程中捕获的地幔橄榄岩碎块或包含原生硫化物或PGE合金包裹体的地幔捕掳晶(如橄榄石),则可能严重影响玄武岩的Re-Os-PGE组成。实际工作中,可通过测定玄武岩中橄榄石矿物的CaO含量鉴别橄榄石斑晶和捕掳晶,若橄榄石CaO的重量百分含量小于0.1%,且镁指数高,则可能为捕掳晶,其对玄武岩Os同位素组成可能产生显著影响151

2.3 Re-Os同位素在金属矿床定年和示踪研究中的应用

2.3.1 铜镍硫化物矿床定年和物源示踪

Re-Os同位素在Cu-Ni硫化物矿床定年和示踪领域具有重要的应用价值132152~154。例如,Foster等155对澳大利亚西部Kambalda Perseverance-Mt Keith硫化物矿床进行了Re-Os同位素研究,获得了(2 706±36) Ma的Re-Os等时线年龄,Os初始比为0.10889±0.00035,表明成矿物质主要来自地幔源区,遭受地壳混染的影响很小。Walker等156对俄罗斯西伯利亚Noril'sk地区的Cu-Ni-PGE矿床进行了Re-Os同位素研究,获得与赋矿岩体锆石U-Pb年龄一致的Re-Os等时线年龄,结合Pb-Nd同位素数据,表明成矿物质来源于深部Re富集的地幔源区(即地幔柱成因)。Re-Os同位素研究表明Stillwater、Bushveld、Sudbury、Pechenga以及Voisey's Bay等地的Cu、Ni和PGE矿床包含不同程度的壳源物质的贡献,特别是Sudbury和Voisey's Bay等矿床,壳源Os贡献很大(>50%)132152

在我国,杨刚等157对金川Cu-Ni硫化物矿床块状硫化物矿石进行Re-Os定年,获得与金川超镁铁岩体锆石SHRIMP U-Pb年龄一致的Re-Os等时线年龄[(833±35) Ma]。另外,对金川和喀拉通克等铜镍硫化物矿床中的浸染状硫化物矿石定年,则不能得到具有地质意义的Re-Os年龄158159

屈文俊等154、Yang等158和Qu等159认为:对没有遭受明显壳源Os加入的铜镍硫化物矿床,如Kambalda和Noril'sk Cu-Ni硫化物矿床,能够得到与岩体锆石U-Pb年龄一致的Re-Os年龄。对明显具有壳源Os加入的矿床,采用不同类型矿石(块状和浸染状)往往得到不同的年龄。浸染状矿石由于硫化物之间可能被硅酸盐矿物分隔,导致不同硫化物颗粒之间Re-Os同位素没有达到同位素交换平衡,部分硫化物矿物可能保留了矿体围岩更古老的Os同位素信息;而块状硫化物矿石矿物之间由于接触紧密,容易在硫化物熔离过程中达到同位素平衡,因而可以得到具有地质意义的Re-Os同位素年龄。

2.3.2 辉钼矿和低含量高放射性(LLHR)硫化物Re-Os定年

辉钼矿Re-Os是金属硫化物直接定年的最佳手段160161。早在1994年,中国地质科学院地质实验中心杜安道等27就率先建立了辉钼矿Re-Os定年方法,之后被广泛应用于我国各类金属矿床的年龄测定。早期采用碱熔法溶样27,后期相继建立Carius管法溶样NTIMS和Carius管法溶样ICP-MS Re-Os同位素分析方法8399,并研发了JDC-1、HLP-1辉钼矿及JCBY Cu-Ni硫化物等Re-Os定年标样162163。之后,中国科学院地球化学研究所及中国科学院地质与地球物理研究所等单位也相继建立了辉钼矿Re-Os定年方法35106

值得注意的是,尽管辉钼矿Re-Os法已成为金属矿床定年的最重要手段,但是辉钼矿可能存在187Re-187Os失耦的问题164~167。研究表明,较大的辉钼矿颗粒、年龄老的或Re含量高的辉钼矿颗粒容易产生失耦问题164~166,此外,钨矿中辉钼矿失耦现象相对严重167。辉钼矿187Re-187Os失耦可能与辉钼矿晶格排斥187Os有关,使得187Re衰变产生的187Os容易迁移至矿物中晶体缺陷等位置,而与187Re失耦。因而,对辉钼矿Re-Os分析,取样方法非常关键,细粒的、样品量较大的辉钼矿容易得到重现的年龄结果,而大颗粒辉钼矿的碎片往往给出错误的年龄结果。

除辉钼矿外,低含量高放射性(Low level Highly Radiogenic, LLHR)硫化物168(如黄铁矿、黄铜矿和毒砂等)Re-Os定年也已被广泛应用于金属矿床年龄测定。LLHR硫化物较辉钼矿分布更广泛,在沉积型、岩浆—热液型矿床中均有分布,因而适用性更广。但是,不同于辉钼矿,LLHR硫化物具有较低的Re含量,一般仅为ng/g~pg/g(辉钼矿一般为μg/g),因而,具有更低的187Os含量。因此,LLHR硫化物Re-Os同位素分析对分析技术提出了极高的要求,极低的实验室Os本底(<0.3 pg)是获得其可靠的Os同位素分析结果的前提。

此外,值得注意的是,对辉钼矿和LLHR硫化物,由于其基本不含普通Os或普通Os含量很低,因此质谱测定过程中无法采用192Os/188Os进行同位素分馏校正。这一问题可以通过采用双稀释剂法进行解决,如188Os-190Os169186Os-188Os170双稀释剂。对不含普通Os的辉钼矿,也可以采用普通Os作为双稀释剂171172。当采用NTIMS法测定Os同位素,并采用双稀释剂或采用普通Os作为稀释剂校正质谱测定过程中的同位素分馏效应时,辉钼矿Re-Os定年的精度可以达到优于0.1%(不计入稀释剂校准及衰变常数误差)169172

2.4 Re-Os同位素在沉积地层定年及古环境研究中的应用

由于Re-Os具有亲有机物的属性,在富有机质沉积岩如黑色页岩中相对富集,黑色页岩Re-Os法已被广泛应用于沉积地层定年161173~176。研究表明有机质成熟过程、甚至经历绿片岩相变质作用,不会显著影响黑色页岩Re-Os年龄46174,但是风化作用及与含矿或氧化性流体相互作用则可能显著影响黑色页岩的Re-Os年龄177178。黑色页岩Re-Os同位素定年的关键是选择性溶解黑色页岩沉积时从沉积水体中富集的Re和Os,尽可能避免陆源碎屑物质的影响,才能获得具有地质意义的Re-Os年龄和Os初始比数据4546。当采用CrO3-H2SO4等选择性溶样方法时,黑色页岩Re-Os同位素定年的精度可以达到优于1%,甚至0.5%179~182。此外,黑色页岩Re-Os定年,取样方法也非常重要。首先,尽可能顺层取样以保证样品的同时性和同源性,同时,取样间距应尽可能大,从而保证样品间Re/Os值存在一定的差异以较好地构筑等时线,并且,取样量不宜过小(最好大于20 g,粉碎混匀后,取0.5 g用于Re-Os分析),以防止样品可能存在Re-Os失耦问题影响定年结果182。对前寒武纪地层,为尽可能避免风化作用的影响,最好采用岩芯样品161182。在缺少火山灰夹层的沉积地层中,黑色页岩Re-Os是沉积地层定年的重要手段。例如,Xu等183对贵州遵义地区牛蹄塘组底部含Ni-Mo-PGE-Au多金属层的黑色页岩进行了Re-Os同位素研究,获得(521±5) Ma的Re-Os年龄,Zhu等184对三峡九龙湾剖面陡山沱组四段底部的黑色页岩进行了Re-Os同位素研究,获得(591.1±5.3) Ma的Re-Os年龄,均对相关地层的沉积年代进行了很好的制约。

最近,研究表明,对富有机质碳酸盐岩及富有机质沉积型菱锰矿也可以直接进行Re-Os测年181185186。例如,赵鸿等185对浙江长兴二叠纪—三叠纪金钉子处界线的富有机质灰岩进行了Re-Os同位素研究,获得与锆石U-Pb法在误差范围内一致的年龄结果。

此外,石墨具有较高的Re和Os含量,石墨Re-Os定年已在变质成矿年代学研究中获得应用187188。研究表明,石墨Re-Os年龄可能反映使富有机质沉积地层或煤层中的炭质变质为石墨,并发生富集迁移的岩浆热变质事件的年代,即富有机质沉积岩或煤层变质形成石墨的过程中,Re-Os同位素体系发生重置,重新计时187188

富有机质沉积岩Os同位素初始比值在古环境研究中具有极其重要的示踪意义。海水在缺氧条件下沉积的富有机质沉积岩,记录了当时海水的Os同位素组成161175176。地质历史时期海水的Os主要有3个来源:第一,河水带入的陆源Os,具有较高的187Os/188Os值(>1);第二,海底热液带入的幔源Os,具有较低的187Os/188Os值(约0.12);第三,宇宙尘来源的Os,同样具有较低的187Os/188Os值(约为0.12)。若大陆风化作用加强或大陆隆升导致大陆剥蚀作用加强,则陆源输入Os较高,海水就具有较高的187Os/188Os值;若幔源火山作用较强(如大火成岩省火山爆发)或发生陨石撞击事件,则海水具有较低的187Os/188Os值。此外,Re和Os是氧化还原敏感元素,氧化条件下Os活动性高,而还原条件下Os活动性低,若大气氧含量高,则地表Os容易活化随河水进入海洋,海洋187Os/188Os值升高,因此海相地层Os同位素组成可以在一定程度上反演地质历史时期的大气氧化还原状态189。目前,利用地质历史时期海水的Os同位素组成反演古环境研究方面,已取得诸多重要研究进展190~192

2.5 Re-Os-PGE在油气藏定年与示踪研究中的应用

由于Re-Os-PGE具有亲有机的属性,近年来,Re-Os-PGE在油气藏定年与示踪领域显示出应用潜力。最近,蔡长娥等193、沈传波等194195、李真等196以及赛彦明等197均对Re-Os在油气藏定年与示踪领域的应用进展情况进行了综述。

2005年,Selby等198首先开展了西加拿大Alberta盆地油砂矿原油的Re-Os同位素研究工作,获得了一条年龄为(111.6±5.3) Ma的Re-Os等时线,这一开创性工作表明Re-Os同位素在油气藏定年领域具有应用潜力。随后,研究者们对英国大西洋Shetland油田199、美国Bighorn盆地Phosphoria油田200、西加拿大盆地Duvernay油田201、准噶尔盆地西北缘超覆带侏罗系油砂矿202、挪威北海Brynhild油田203以及我国新疆哈拉哈塘油田204等地的原油进行了Re-Os同位素定年工作,尽管年龄精度较差,但均获得了与埋藏史及其他定年方法的年龄结果比较吻合的Re-Os年龄,进一步显示了原油Re-Os定年的潜力。同时,187Os/188Os初始比值及PGE组成可以给出示踪油气藏烃源岩的信息198205。此外,还有研究表明,幔源流体与原油相互作用可能显著改变含油气系统的Re-Os同位素组成206,因此,Os同位素有望为幔源岩浆作用及幔源流体在油气形成过程中的作用提供新的线索175

沥青具有较高的Re和Os含量178,沥青Re-Os同位素法可以为油气藏形成年代提供有效制约。王杰等207、Wang等208和Ge等209~211对我国四川盆地及其周缘出露的沥青脉开展了Re-Os同位素研究,对研究区古油藏的形成或破坏历史进行了同位素年代学制约。一般认为,沥青Re-Os年龄可能代表原油的形成年代,而焦沥青Re-Os年龄可能代表古油藏遭受破坏或原油裂解形成天然气的年代209~211。最近,Su等212对四川盆地中部高石梯—磨溪地区天然气田的储层沥青(采自钻井岩芯)开展了Re-Os同位素研究,获得(154±21) Ma的Re-Os同位素年龄,认为其可能代表该区古油藏裂解形成天然气藏的年代。

尽管油气藏Re-Os定年及示踪研究获得了一定程度的研究进展,但目前仍处于非常初步的阶段。目前研究表明原油中Re-Os主要赋存于其沥青质中213,但对Re和Os在原油中的赋存状态仍不清楚214~216。此外,目前对原油及沥青Re-Os年龄代表的地质意义争议较大217,可能代表油气运移年龄198、油气生成年龄199、硫酸盐热还原作用(thermochemical sulfate reduction,TSR)结束年龄200和原油裂解年龄209,甚至油气充注年龄218219。造成上述争议的主要原因是目前对油气系统的Re/Os分异及Os同位素比值均一化机制(即Re-Os同位素时钟启动机制)的了解仍很不充分,油气藏系统Re-Os同位素定年与示踪仍有待于进一步深入研究。

3 结 语

由于地质样品中Re-Os和PGE含量一般较低,多在ng/g~pg/g量级,且富集于硫化物及PGE合金等微量矿物相中,因此地质样品Re-Os同位素和PGE含量的准确分析是一项难度较大的工作。近30年来,国内外地质样品Re-Os同位素和PGE分析方法,包括样品消解方法、化学分离及质谱测定,以及微区原位分析等方面取得了系列研究进展。

Re-Os同位素和铂族元素具有高温耐熔、强亲铁、亲硫及亲有机等独特的物理、化学性质,在地球科学领域具有诸多重要而独特的应用价值,包括早期太阳系行星的形成和分异、地球和月球等的后增生历史、大陆岩石圈地幔定年、金属矿床定年、成矿物质来源示踪、沉积地层定年及古环境研究、甚至油气藏定年与烃源岩示踪等诸多领域。近年来,由于分析技术的进步,国内外在上述Re-Os-PGE应用研究领域均取得了重要研究进展。

本文对Re-Os-PGE分析技术以及地学应用的研究进展进行了简要综述。随着分析技术的发展,Re-Os-PGE的应用研究将继续深入。分析方法方面下一步工作可能主要包括进一步降低流程本底、针对不同研究目的建立相应的选择性溶样方法以及难溶样品的低本底彻底消解方法等方面。应用研究方面,疑难金属矿床Re-Os定年、古环境Os同位素研究及油气系统Re-Os-PGE定年和示踪研究等仍将是Re-Os同位素和PGE地球化学研究的热点。

参考文献

ZHANG XunJIN LixinCHEN Jiangfeng.

Progress in chemical separation and purification for Re and Os isotopic analyses

[J]. Rock and Mineral Analysis, 2002211): 49-54.

[本文引用: 1]

张巽金立新陈江峰.

铼—锇同位素分析中试样化学预处理方法进展

[J]. 岩矿测试,2002211): 49-54.

[本文引用: 1]

LI JieXU JifengLIANG Xirong.

Progress in Re-Os isotope analytical techniques

[J]. Journal of Chinese Mass Spectrometry Society, 2005263): 175-181.

[本文引用: 1]

李杰许继峰梁细荣.

Re-Os同位素分析测试技术进展

[J]. 质谱学报,2005263): 175-181.

[本文引用: 1]

YANG HongmeiLING Wenli.

Progress of measuring method and its application for Re-Os isotopic system

[J]. Advances in Earth Science, 20062110):1 014-1 024.

[本文引用: 1]

杨红梅凌文黎.

Re-Os同位素组成测试方法及其应用进展

[J].地球科学进展, 20062110):1 014-1 024.

[本文引用: 1]

DU AndaoQU WenjunLI Chaoet al.

A review on the development of Re-Os isotopic dating methods and techniques

[J]. Rock and Mineral Analysis, 2009283):288-304.

[本文引用: 2]

杜安道屈文俊李超.

铼—锇同位素定年方法及分析测试技术的进展

[J]. 岩矿测试,2009283):288-304.

[本文引用: 2]

JIN XindiLI WenjunWU Huayinget al.

Development of Re-Os isotopic dating analytical technique and determination know-how on ICP-MS precise dating for molybdenite

[J]. Acta Petrologica Sinica, 2010265): 1 617-1 624.

[本文引用: 1]

靳新娣李文君吴华英.

Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术

[J]. 岩石学报,2010265): 1 617-1 624.

[本文引用: 1]

HUANG XiaowenQI LiangGAO Jianfeng.

A review on sample preparation in Re-Os isotopic analysis

[J]. Rock and Mineral Analysis, 2011301): 90-103.

[本文引用: 1]

黄小文漆亮高剑锋.

铼—锇同位素分析样品预处理研究进展

[J]. 岩矿测试,2011301): 90-103.

[本文引用: 1]

REISBERG LMEISEL T.

The Re-Os isotopic system: A review of the analytical techniques

[J]. Geostandard Newsletter, 2002263): 249-267. DOI:10.1111/j.1751-908X.2002.tb00633.x.

[本文引用: 1]

MEISEL THORAN M F.

Analytical methods for the highly siderophile elements

[J]. Reviews in Mineralogy & Geochemistry, 20168189-106. DOI:10.2138/rmg.2016.81.02.

[本文引用: 1]

HE HongliaoCaifen ZHOU Zhaoruet al.

Determination of platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICPMS I. Simplification of the analytical procedure

[J]. Rock and Mineral Analysis, 2001203):191-194.

[本文引用: 1]

何红蓼吕彩芬周肇如.

锍镍试金—等离子体质谱法测定地球化学勘探样品中的铂族元素和金I. 分析流程的简化

[J]. 岩 矿 测 试,2001203):191-194.

[本文引用: 1]

PEARSON D GWOODLAND S J.

Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in samples by isotope dilution

[J]. Chemical Geology, 200016587-107. DOI:10.1016/S0009-2541(99)00161-8.

[本文引用: 7]

Caifen HE HongliaoZHOU Zhaoruet al.

Determination of platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICPMS II. Reduction of reagent blank

[J]. Rock and Mineral Analysis, 2002211): 7-11.

[本文引用: 1]

吕彩芬何红蓼周肇如.

锍镍试金—等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ .分析流程空白的降低

[J]. 岩 矿 测 试,2002211):7-11.

[本文引用: 1]

SUN Y LSUN M.

Nickel sulfide fire assay improved for pre-concentration of platinum group elements in geological samples: A practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry

[J]. Analyst, 2005130664-669. DOI:10.1039/b416844e.

[本文引用: 1]

HU ZQI L. 15.

5-Sample digestion methods

[M]// Holland H D, Turekian K K, Treatise on geochemistry. ElsevierOxford, 201487-109. DOI: 10.1016/B978-0-08-095975-7.01406-6.

[本文引用: 1]

RAVIZZA GPYLE D.

PGE and Os isotope analyses of single sample aliquots with NiS fire assay preconcentration

[J]. Chemical Geology, 1997141251-268. DOI:10.1016/S0009-2541(97)00091-0.

[本文引用: 1]

SUN Y LCHU Z YSUN Met al.

An improved Fe-Ni sulfide fire assay method for determination of Re, platinum group elements, and Os isotopic ratios by inductively coupled plasma- and negative thermal ionization-mass spectrometry

[J]. Applied Spectroscopy, 20096311): 1 232-1 237. DOI:10.1366/000370209789806966.

[本文引用: 5]

BRANDON A DWALKER R JMORGAN J Wet al.

Coupled 186Os and 187Os evidence for core-mantle interaction

[J]. Science, 19982801 570-1 573. DOI: 10.1126/science.280.5369.1570.

[本文引用: 1]

IRELAND T JWALKER R JBRANDON A D.

186Os-187Os systematics of Hawai-ian picrites revisited: New insights into Os isotopic variations in ocean island basalts

[J]. Geochimica et Cosmochimica Acta, 2011754 456-4 475. DOI:10.1016/j.gca.2011.05.015.

[本文引用: 1]

DAY J M DWALKER R JWARREN J M.

186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys

[J]. Geochimica et Cosmochimica Acta, 2017200232-254. DOI:10.1016/j.gca.2016.12.013.

[本文引用: 1]

WALKER R J.

Low-blank chemical separation of rhenium and osmium from gram quantities of silicate rock for measurement by resonance ionization mass spectrometry

[J]. Analytical Chemistry, 1988601 231-1 234. DOI:10.1021/ac00162a026.

[本文引用: 1]

J-L BIRCKROY-BARMAN MCAPMAS F.

Re-Os isotopic measurements at the femtomole level in natural samples

[J]. Geostandard Newsletter, 1997201): 19-27. DOI:10.1111/j.1751-908X.1997.tb00528.x.

[本文引用: 8]

GANNOUN ABURTON K WPARKINSON I Jet al.

The scale and origin of the osmium isotope variations in mid-ocean ridge basalts

[J]. Earth and Planetary Science Letters, 2007259541-556. DOI:10.1016/j.epsl.2007.05.014.

[本文引用: 4]

MEISEL TREISBERG LMOSER Jet al.

Re-Os systematics of UB-N, a serpentinized peridotite reference material

[J]. Chemical Geology, 2003201161-179. DOI:10.1016/S0009-2541(03)00234-1.

[本文引用: 3]

QI LGAO J FHUANG X Wet al.

An improved digestion technique for determination of platinum-group elements in geological samples

[J]. Journal of Analytical Atomic Spectrometry, 2011261 900-1 904. DOI:10.1039/c1ja10114e.

[本文引用: 2]

MORGAN J WWALKER J M.

Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

[J]. Analytica Chimica Acta, 1989222291-300.

[本文引用: 1]

QI LiangHU Jing.

Fast determination of platinum group elements and gold in geological samples by ICP-MS

[J]. Rock and Mineral Analysis, 1999184): 267-271.

漆亮胡静.

等离子体质谱法快速测定地质样品中的痕量铂族元素和金

[J]. 岩矿测试,1999184):267-271.

JIN X DZHU H P.

Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and tellurium co-precipitation

[J]. Journal of Analytical Atomic Spectrometry, 200015747-751. DOI:10.1039/b000470g.

[本文引用: 1]

DU AndaoHE HongliaoYIN Ningwanet al.

A study of the rhenium-osmium geochronometry of molybdenite

[J]. Acta Geologica Sinica, 199582): 171-181.

[本文引用: 5]

DOI:10.1111/j.1755-6724.1995.mp8002004.x.[杜安道何红蓼殷宁万.

辉钼矿的铼—锇同位素地质年龄测定方法研究

[J]. 地质学报,1994684): 339-347.]

[本文引用: 5]

DU AndaoSUN DezhongWANG Shuxianet al.

The Re-Os dating using modified alkali fusion method

[J]. Rock and Mineral Analysis, 2002212): 100-104.

[本文引用: 1]

杜安道孙德忠王淑贤.

铼—锇定年法中碱熔分解样品方法的改进

[J]. 岩矿测试,2002212): 100-104.

[本文引用: 1]

MARKEY R JSTEIN H JMORGAN J W.

Highly precise Re-Os dating of molybdenite using alkaline fusion and NTIMS

[J]. Talanta, 199845935-946. DOI:10.1016/S0039-9140(97)00198-7.

[本文引用: 3]

QI LZHOU M FWANG C Y.

Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS

[J]. Journal of Analytical Atomic Spectrometry, 2004191 335-1 339. DOI:10.1039/b400742e.

[本文引用: 5]

SHIREY S BWALKER R J.

Carius tube digestion for low blank rhenium-osmium analysis

[J]. Analytical Chemistry, 1995342 136-2 141. DOI:10.1021/ac00109a036.

[本文引用: 3]

QU WenjunDU AndaoREN Jing.

Influence of H2O2 on the signal intensity of rhenium, osmium and Re-Os age in the process of dissolution for pyrite

[J]. Chinese Journal of Analytical Chemistry, 2008362): 223-226.

[本文引用: 1]

屈文俊杜安道任静.

过氧化氢在黄铁矿的溶解过程中对铼—锇信号强度及年龄的影响

[J]. 分析化学,2008362): 223-226.

[本文引用: 1]

LI ChaoQU WenjunWANG Denghonget al.

Dissolving experimental research of Re-Os isotope system for bitumen samples

[J]. Rock and Mineral Analysis, 2011306): 688-694.

[本文引用: 1]

李超屈文俊王登红.

沥青样品铼—锇同位素分析溶解实验研究

[J]. 岩矿测试,2011306): 688-694.

[本文引用: 1]

REN JingQU WenjunLIU Hua.

Preparation and calibration of isotope spike solutions for platinum-group elements analysis by ID-ICPMS

[J]. Rock and Mineral Analysis, 2007265): 351-355.

[本文引用: 1]

任静屈文俊刘华.

铂族元素稀释剂溶液的制备及标定

[J]. 岩矿测试,2007265): 351-355.

[本文引用: 1]

QI LZHOU M FGAO J Fet al.

An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites

[J]. Journal of Analytical Atomic Spectrometry, 201025585-589. DOI:10.1039/b919016c.

[本文引用: 5]

YANG GZIMMERMAN ASTEIN Het al.

Pretreatment of nitric acid with hydrogen peroxide reduces total procedural Os blank to femtogram levels

[J]. Analytical Chemistry, 2015877 017-7 021. DOI:10.1021/acs.analchem.5b01751.

SEO J HSHARMA MOSTERBERG E Cet al.

Determination of osmium concentration and isotope composition at ultra-low level in polar ice and snow

[J]. Analytical Chemistry, 2018905 781-5 787. DOI:10.1021/acs.analchem.8b00150.

[本文引用: 2]

BECKER HHORAN M FWALKER R Jet al.

Highly siderophile element composition of the Earth's primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths

[J]. Geochimica et Cosmochimica Acta, 2006704 528-4 550. DOI:10.1016/j.gca.2006.06.004.

[本文引用: 2]

QI LiangZHOU MeifuYAN Zaifeiet al.

A Carius tube technique for digesting geological samples in the determination of PGEs and Re by ICP-MS

[J]. Geochimica, 2006356): 667-674.

[本文引用: 2]

漆亮周美夫严再飞.

改进的Carius 管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量

[J]. 地球化学, 2006354): 667-674.

[本文引用: 2]

QI LZHOU M F.

Determination of platinum-group elements in OPY-1: Comparison of results using different digestion techniques

[J]. Geostandards and Geoanalytical Research, 200832377-387. DOI:10.1111/j.1751-908X.2008.00893.x.

[本文引用: 1]

ISHIKAWA ASENDA RSUZUKI Ket al.

Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials

[J]. Chemical Geology, 201438427-46. DOI:10.1016/j.chemgeo.2014.06.013.

[本文引用: 3]

LI JZHAO P PLIU Jet al.

Reassessment of hydrofluoric acid desilicification in the Carius tube digestion technique for Re-Os isotopic determination in geological samples

[J]. Geostandards and Geoanalytical Research, 20153917-30. DOI:10.1111/j.1751-908X.2014.00299.x.

[本文引用: 2]

DAY J M DWATERS C LSCHAEFER B Fet al.

Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in mafic-ultramafic rocks

[J]. Geostandards and Geoanalytical Research, 20164049-65. DOI:10.1111/j.1751-908X.2015.00367.x.

[本文引用: 3]

LAWLEY C J MSELBY D.

Re-Os geochronology of quartz-enclosed ultrafine molybdenite: Implications for ore geochronology

[J]. Economic Geology, 20121071 499-1 505. DOI:10.2113/econgeo.107.7.1499.

[本文引用: 1]

SELBY DCREASER R A.

Re-Os geochronology of organic rich sediments: An evaluation of organic matter analysis methods

[J]. Chemical Geology, 2003200225-240. DOI:10.1016/S0009-2541(03)00199-2.

[本文引用: 2]

KENDALL B SCREASER R AROSS G Met al.

Constraints on the timing of marinoan "snowball Earth" glaciation by 187Re-187Os dating of a neoproterozoic, post-glacial black shale in Western Canada

[J]. Earth and Planetary Science Letters, 2004222729-740. DOI:10.1016/j.epsl.2004.04.004.

[本文引用: 3]

LIU HuaQU WenjunWANG Yingbinet al.

Primary study on Re-Os isotopic dating of black shale using CrO3-H2SO4-Carius Tube inductively coupled Plasma Mass Spectrometry System

[J]. Rock and Mineral Analysis, 2008274): 245-249.

[本文引用: 1]

刘华屈文俊王英滨.

用三氧化铬—硫酸溶剂对黑色页岩铼—锇定年方法初探

[J].岩矿测试,2008274): 245-249.

[本文引用: 1]

YIN LLI JLIU J Get al.

Precise and accurate Re-Os isotope dating of organic-rich sedimentary rocks by thermal ionization mass spectrometry with an improved H2O2-HNO3 digestion procedure

[J]. International Journal of Mass Spectrometry, 2017421263-270. DOI:10.1016/j.ijms.2017.07.013.

[本文引用: 1]

MEISEL TMOSER JFELLNER Net al.

Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICPMS and acid digestion

[J]. Analyst, 2001126322-328.DOI:10.1039/b007575m.

[本文引用: 5]

MEISEL TFELLNER NMOSER J.

A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials

[J]. Journal of Analytical Atomic Spectrometry, 200318720-726. DOI:10.1039/b301754k.

[本文引用: 4]

MEISEL TMOSER J.

Reference materials for geochemical PGE analysis: New analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials

[J]. Chemical Geology, 2004208319-338. DOI:10.1016/j.chemgeo.2004.04.019.

[本文引用: 1]

YANG JinghongJIANG ShaoyongBRUBGMANN G.

Precise determination of the platinum-group elements and Os isotopic ratios in low-level rock samples

[J]. Acta Petrologica Sinica, 2001172): 325-331.

[本文引用: 1]

杨竟红蒋少涌BRUBGMANN G.

岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法

[J]. 岩石学报, 2001172): 325-331.

[本文引用: 1]

DAY J M DWALKER R J.

Highly siderophile element depletion in the Moon

[J]. Earth and Planetary Science Letters, 2015423114-124. DOI:10.1016/j.epsl.2015.05.001.

[本文引用: 2]

DALE C WMACPHERSON C GPEARSON D Get al.

Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source

[J]. Geochimica et Cosmochimica Acta, 201289202-225. DOI:10.1016/j.gca.2012.03.025.

[本文引用: 1]

GEORGIEV S VSTEIN H JHANNAH J Let al.

Re-Os dating of maltenes and asphaltenes within single samples of crude oil

[J]. Geochimica et Cosmochimica Acta, 201617953-75.DOI:10.1016/j.gca.2016.01.016.

[本文引用: 1]

CHEN CSHARMA M.

High precision and high sensitivity measurements of osmium in seawater

[J]. Analytical Chemistry, 2009815 400-5 406. DOI:10.1021/ac900600e.

[本文引用: 2]

SUN Y LZHOU M FSUN M.

Routine Os analysis by isotope dilution inductively coupled plasma mass spectrometry: OsO4 in water solution gives high sensitivity

[J]. Journal of Analytical Atomic Spectrometry, 200116345-349. DOI:10.1039/b008533m.

[本文引用: 5]

MENG QingZHENG LeiXIA Qiongxiaet al.

Study on analytical method for Re-Os Isotopic system in Mafic-ultramafic rocks

[J]. Rock and Mineral Analysis, 2004232): 92-96.

[本文引用: 2]

孟庆郑磊夏琼霞.

镁铁—超镁铁岩铼—锇同位素体系分析方法

[J]. 岩矿测试,2004232):92-96.

[本文引用: 2]

CHU ZhuyinCHEN FukunWANG Weiet al.

High-precision measurement for the concentration and isotopic composition of rhenium and osmium in micro-amount of geological samples

[J]. Rock and Mineral Analysis, 2007266): 431-435.

[本文引用: 2]

储著银陈福坤王伟

微量地质样品铼锇含量及其同位素组成的高精度测定方法

[J].岩矿测试,2007266): 431-435.

[本文引用: 2]

LI ChaoQU WenjunZHOU Liminet al

Rapid separation of osmium by direct distillation with Carius Tube

[J]. Rock and Mineral Analysis, 2010291): 14-16.

[本文引用: 1]

李超屈文俊周利敏

Carius 管直接蒸馏快速分离锇方法研究

[J].岩矿测试,2010291): 14-16.

[本文引用: 1]

JIN X DLI W JXIANG Pet al.

A contribution to common Carius tube distillation techniques

[J]. Journal of Analytical Atomic Spectrometry, 201328396-404. DOI:10.1039/c2ja10374e.

[本文引用: 1]

COHEN A SWATER F G.

Separation of osmium from geological materials solvent extraction for analysis by TIMS

[J]. Analytica Chimica Acta, 1996332269-275. DOI:10.1016/0003-2670(96)00226-7.

[本文引用: 1]

SHEN J JPAPANASTASSIOU D AWASSERBURG G J.

Precise Re-Os determinations and systematics of iron meteorites

[J]. Geochimica et Cosmochimica Acta, 1996602 887-2 900. DOI:10.1016/0016-7037(96)00120-2.

[本文引用: 2]

PAUL MREISBERG LVIGIER N.

A new method for analysis of osmium isotopes and concentrations in surface and subsurface water samples

[J]. Chemical Geology, 2009258136-144. DOI:10.1016/j.chemgeo.2008.09.018.

[本文引用: 2]

LEVASSEUR SBIRCK J LALLÈGRE C J.

Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater

[J]. Science, 1998282272-274. DOI:10.1126/science.282.5387.272.

[本文引用: 1]

NAKANISHI NYOKOYAMA TISHIKAWA A.

Refinement of the micro-distillation technique for isotopic analysis of geological samples with pg-level Osmium contents

[J]. Geostandards and Geoanalytical Research, 201943231-243. DOI: 10.1111/ggr.12262.

[本文引用: 1]

PEARSON D GSHIREY S BHARRIS J Wet al.

Sulphide inclusions in diamonds from the Koffiefontein kimberlite, South Africa: Constraints on diamond ages and mantle Re-Os systematics

[J]. Earth and Planetary Science Letters, 1998160311-326. DOI:10.1016/S0012-821X(98)00092-2.

[本文引用: 2]

HARVEY JGANNOUN ABURTON K Wet al.

Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes from the Mid-Atlantic Ridge

[J]. Earth and Planetary Science Letters, 2006244606-621. DOI:10.1016/j.epsl.2006.02.031.

[本文引用: 2]

WARREN J MSHIREY S B.

Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides

[J]. Earth and Planetary Science Letters, 2012359/360279-293. DOI:10.1016/j.epsl.2012.09.055.

[本文引用: 1]

LI ChaoQU WenjunDU Andaoet al.

Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating

[J]. Rock and Mineral Analysis, 2009283): 233-238.

[本文引用: 1]

李超屈文俊杜安道.

铼—锇同位素定年法中丙酮萃取铼的系统研究

[J]. 岩矿测试,2009283): 233-238.

[本文引用: 1]

WANG LibingQU WenjunLI Chaoet al.

Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry

[J]. Rock and Mineral Analysis, 2013323): 402-408.

[本文引用: 1]

王礼兵屈文俊李超.

负离子热表面电离质谱法测量铼的化学分离方法研究

[J]. 岩矿测试,2013323): 402-408.

[本文引用: 1]

GEORGIEV S VZIMMERMAN AYANG Get al.

Comparison of chemical procedures for Re-isotopic measurements by NTIMS

[J]. Chemical Geology, 2018483151-161. DOI:10.1016/j.chemgeo.2018.03.006.

[本文引用: 2]

CHU Z YYAN YCHEN Zet al.

A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples

[J]. Geostandards and Geoanalytical Research, 201539151-169. DOI:10.1111/j.1751-908X.2014.00283.x.

[本文引用: 8]

SUN Y LXU PLI Jet al.

A practical method for determination of molybdenite Re-Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO3 digestion

[J]. Analytical Methods, 20102575-581. DOI:10.1039/b9ay00258h.

[本文引用: 1]

REHKÄMPER MHALLIDAY A N.

Development and application of new ion-exchange techniques for the separation of the platinum group and other siderophile elements from geological samples

[J]. Talanta, 199744663-672. DOI:10.1016/S0039-9140(96)02100-5.

[本文引用: 2]

SHINOTSUKA KSUZUKI K.

Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction

[J]. Analytica Chimica Acta, 2007603129-139. DOI:10.1016/j.aca.2007.09.042.

[本文引用: 1]

FISCHER-GÖDDE MBECKER HWOMBACHER F.

Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths

[J]. Chemical Geology, 2011280365-383. DOI:10.1016/j.chemgeo.2010.11.024.

[本文引用: 2]

LI JJIANG X-YXU J-Fet al.

Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation

[J]. Geostandards and Geoanalytical Research, 201438337-50. DOI:10.1111/j.1751-908X.2013.00242.x.

[本文引用: 4]

REN M HSUN Y LWANG C Yet al.

Determination of platinum-group elements in geological samples by isotope dilution-inductively coupled plasma-mass spectrometry combined with sulfide fire assay preconcentration

[J]. Geostandards and Geoanalytical Research, 20164067-83. DOI:10.1111/j.1751-908X.2015.00349.x.

[本文引用: 1]

ZHOU X YTANAKA RYAMANAKA Met al.

A method to suppress isobaric and polyatomic interferences for measurements of highly siderophile elements in desilicified geological samples

[J]. Geostandards and Geoanalytical Research, 201943611-633. DOI: 10.1111/ggr.12280.

[本文引用: 1]

VÖLKENING JWALCZYK THEUMANN K G.

Osmium isotope ratio determinations by negative thermal ionization mass-spectrometry

[J]. International Journal of Mass Spectrometry Ion Process, 1991105147-159. DOI:10.1016/0168-1176(91)80077-Z.

[本文引用: 1]

CREASER R APAPANASTASSIOU D AWASSERBURG G J.

Negative thermal ion mass spectrometry of Osmium, Rhenium and Iridium

[J]. Geochimica et Cosmochimica Acta, 199155397-401. DOI:10.1016/0016-7037(91)90427-7.

DU AndaoZHAO DunminWANG Shuxian.

Precise Re-Os dating for molybdenite by ID-NTIMS with Carius Tube sample preparation

[J]. Rock and Mineral Analysis, 20012014): 247-252.

[本文引用: 2]

杜安道赵敦敏王淑贤.

Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼—锇同位素地质年龄

[J]. 岩矿测试,2001204): 247-252.

[本文引用: 2]

BIRCK J L.

The precision and sensitivity of Thermal Ionisation Mass Spectrometry (TIMS): An overview of the present status

[J]. Geostandards and Geoanalytical Research, 200125253-259. DOI:10.1111/j.1751-908X.2001.tb00600.x.

[本文引用: 1]

SUN WeidongPENG ZichengWANG Zhaorong.

Oxygen corrections in negative thermal ionization mass spectrometry determination of Rhenium and Osminum

[J]. Journal of Chinese Mass Spectrometry Society, 1997183): 1-6.

[本文引用: 1]

孙卫东彭子成王兆荣.

铼锇负热电离质谱测定中的氧同位素校正

[J]. 质谱学报,1997183):1-6.

[本文引用: 1]

GAO HongtaoZHAO DunminDU Andaoet al.

Study on Os-Os dating method

[J]. Rock and Mineral Analysis, 1999183): 176-180.

高洪涛赵敦敏杜安道.

锇—锇测年方法研究

[J]. 岩矿测试,1999183):176-180.

ZHENG LeiZHI XiachenJIN Yongbin.

Mass fractionation correction of osmium isotopic compositions in Negative Thermal Ionization Mass spectrometric measurement

[J]. Journal of Chinese Mass Spectrometry Society, 2004254): 193-197.

[本文引用: 2]

郑磊支霞臣靳永斌.

负热电离质谱法测量Os同位素组成的质量分馏校正

[J]. 质谱学报,2004254):193-197.

[本文引用: 2]

LIU YHUANG MMASUDA Aet al.

High-precision determination of osmium and rhenium isotope ratios by in-situ oxygen isotope correction using negative thermal ionisation mass spectrometry

[J]. International Journal of Mass Spectrometry Ion Process, 1998173163-175. DOI:10.1016/S0168-1176(97)00270-X.

[本文引用: 1]

LI ChaoZHOU LiminDU Andaoet al.

N-TIMS measurement and calculation method for Re-Os isotopes

[J]. Geochimica, 2017461): 1-14.

[本文引用: 1]

李超周利敏杜安道.

Re-Os 同位素稀释N-TIMS 测定计算方法

[J]. 地球化学,2017461): 1-14.

[本文引用: 1]

LIU JPEARSON D G.

Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS

[J]. Chemical Geology, 2014363301-311. DOI:10.1016/j.chemgeo.2013.11.008.

[本文引用: 1]

WANG GSUN TXU J.

A comparison using Faraday cups with 1013 Ω amplifiers and a secondary electron multiplier to measure Os isotopes by negative thermal ionization mass spectrometry

[J]. Rapid Communications in Mass Spectrometry, 2017311 616-1 622. DOI:10.1002/rcm.7943.

[本文引用: 1]

LUGUET ANOWELL G MPEARSON D G.

184Os/188Os and 186Os/188Os measurements by negative thermal ionisation mass spectrometry (N-TIMS): Effects of interfering element and mass fractionation corrections on data accuracy and precision

[J]. Chemical Geology, 2008248342-362. DOI:10.1016/j.chemgeo.2007.10.013.

[本文引用: 1]

CHATTERJEE RLASSITER J C.

High precision Os isotopic measurement using N-TIMS: Quantification of various sources of error in 186Os/188Os measurements

[J]. Chemical Geology, 2015396112-123. DOI:10.1016/j.chemgeo.2014.12.014.

[本文引用: 1]

CHU Z-YLI C-FCHEN Zet al.

High-precision measurement of 186Os/188Os and 187Os/188Os: Isobaric oxide corrections with in-run measured oxygen isotope ratios

[J]. Analytical Chemistry, 2015878 765-8 771. DOI:10.1021/acs.analchem.5b01689.

[本文引用: 1]

SCHOENBERG RNÄGLER T FKRAMERS K.

Precise and accurate Os and Re isotopic measurements by multicollector ICP-MS down to the picogram level

[J]. International Journal of Mass Spectrometry, 200019785-94. DOI:10.1016/S1387-3806(99)00215-8.

[本文引用: 4]

NOWELL G MLUGUET APEARSON D Get al.

Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-Collector Plasma Ionisation Mass Spectrometry (MC-ICP-MS) part I: Solution analyses. Special Issue on Highly Siderophile Element Geochemistry

[J]. Chemical Geology, 2008248363-393. DOI:10.1016/j.chemgeo.2007.10.020.

[本文引用: 2]

LI JieLIANG XirongDONG Yanhuiet al.

Measurements of Re-Os isotopic composition in mafic-ultramafic rocks by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS)

[J]. Geochimica, 2007362): 153-160.

[本文引用: 3]

李杰梁细荣董彦辉.

利用多接收器电感耦合等离子体质谱仪( MC-ICPMS) 测定镁铁: 超镁铁质岩石中的铼—锇同位素组成

[J].地球化学,2007362): 153-160.

[本文引用: 3]

HE HongliaoDU AndaoZOU Xiaoqiuet al.

A study on Rhenium-Osmium isotope systematics by using inductively coupled plasma mass spectrometry and its application to molybdenite dating

[J]. Rock and Mineral Analysis, 1993123): 161-165.

[本文引用: 5]

何红蓼杜安道邹晓秋.

铼—锇同位素的等离子体质谱法测定及其在辉钼矿测年中的应用

[J]. 岩矿测试,1993123): 161-165.

[本文引用: 5]

QU WenjunDU Andao.

Highly precise Re-Os dating of molybdenite by ICP-MS with Carius Tube sample digestion

[J]. Rock and Mineral Analysis, 2003224): 254-262.

[本文引用: 2]

屈文俊杜安道.

高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄

[J].岩矿测试, 2003224): 254-262.

[本文引用: 2]

HE HongliaoDU AndaoZOU Xiaoqiuet al.

Chemical behavior of Osmium in the Rhenium-Osmium geochronometry

[J]. Chinese Journal of Analytical Chemistry, 1994222): 109-114.

[本文引用: 1]

何红蓼杜安道邹晓秋.

铼—锇测年法中锇的化学行为研究

[J]. 分析化学,1994222): 109-114.

[本文引用: 1]

YANG ShenghongQU WenjunYANG Ganget al.

The correction of mass fractionation in the measurement of Rhenium and Osmium isotope ratios by ICP-MS

[J]. Rock and Mineral Analysis,2007261): 4-8.

[本文引用: 2]

杨胜洪屈文俊杨刚.

电感耦合等离子体质谱法测量铼和锇同位素比值的质量分馏校正

[J]. 岩矿测试,2007261): 4-8.

[本文引用: 2]

HASSLER D RPEUCKER-EHRENBRINK BRAVIZZA G E.

Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS

[J]. Chemical Geology, 20001661-14. DOI:10.1016/S0009-2541(99)00180-1.

[本文引用: 1]

NORMAN MBENNETT VMCCULLOCH Met al.

Osmium isotopic compositions by vapor phase sample introduction using a multi-collector ICP-MS

[J]. Journal of Analytical Atomic Spectrometry, 2002171 394-1 397. DOI:10.1039/b204518d.

NOZAKI TSUZUKI KRAVIZZA Get al.

A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method

[J]. Geostandards and Geoanalytical Research, 201236131-148. DOI:10.1111/j.1751-908X.2011.00125.x.

[本文引用: 1]

SEN I SPEUCKER-EHRENBRINK B.

Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer

[J]. Analytical Chemistry, 2014862 982-2 988. DOI:10.1021/ac403413y.

[本文引用: 2]

JIN X DDU A DLI W Jet al.

A new modification of the sample introduction system for Os isotope ratio measurements

[J]. Journal of Analytical Atomic Spectrometry, 2011261 245-1 252. DOI:10.1039/C1JA00004G.

[本文引用: 2]

HIRATA THATTORI MTANAKA T.

In-situ osmium isotope ratio analyses of iridosmines by laser ablation-multiple collector inductively coupled plasma mass spectrometry

[J]. Chemical Geology, 1998144269-280. DOI:10.1016/S0009-2541(97)00138-1.

[本文引用: 2]

WALKER R JBRANDON A DBIRD J Met al.

187Os-186Os systematics of Os-Ir-Ru alloy grains from southwestern Oregon

[J]. Earth and Planetary Science Letters, 2005230211-226. DOI:10.1016/j.epsl.2004.11.009.

[本文引用: 1]

SHI RALARD OZHI Xet al.

Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet

[J]. Earth and Planetary Science Letters, 200726133-48. DOI:10.1016/j.epsl.2007.05.044.

[本文引用: 1]

PEARSON N JALARD OGRIFFIN W Let al.

In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results

[J]. Geochimica et Cosmochimica Acta, 2002661 037-1 050. DOI:10.1016/S0016-7037(01)00823-7.

[本文引用: 1]

XU X SGRIFFIN W LO'REILLY S Yet al.

Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle

[J]. Lithos, 20081021/2): 43-64. DOI:10.1016/j.lithos.2007.06.010.

[本文引用: 1]

YU ChunmeiZHENG JianpingGRIFFIN W L.

In situ Re-Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: Significance for the frequently-occurring mantle events beneath the North China Block

[J]. Chinese Science Bulletin, 20075220): 2 847-2 853. DOI:10.1007/s11434-007-0354-2.

[本文引用: 1]

余淳梅郑建平GRIFFIN W L.

汉诺坝橄榄岩捕虏体原位Re-Os同位素年龄与多发地幔事件

[J]. 科学通报, 20075215): 1 814-1 819.

[本文引用: 1]

ZHU L YLIU Y SJIANG S Yet al.

An improved in situ technique for the analysis of the Os isotope ratio in sulfides using laser ablation-multiple ion counter inductively coupled plasma mass spectrometry

[J]. Journal of Analytical Atomic Spectrometry, 2019341 546-1 552. DOI:10.1039/c9ja00066f.

[本文引用: 1]

NOWELL G MPEARSON D GPARMAN S Wet al.

Precise, accurate 186Os/188Os and 187Os/188Os measurements by Multi-Collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt-Os and Re-Os geochronology

[J]. Chemical Geology, 2008248394-425. DOI:10.1016/j.chemgeo.2007.12.004.

[本文引用: 2]

LIU JSELBY D.

A matrix-matched reference material for validating petroleum Re-Os measurements

[J]. Geostandards and Geoanalytical Research, 2018421): 97-113. DOI:10.1111/ggr.12193.

[本文引用: 1]

MARKEY RSTEIN H JHANNAH J Let al.

Standardizing Re-Os geochronology: A new molybdenite reference material (Henderson, USA) and the stoichiometry of Os salts

[J]. Chemical Geology, 200724474-87. DOI:10.1016/j.chemgeo.2007.06.002.

[本文引用: 1]

SUZUKI KMIYATA YKANAZAWA N.

Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique

[J]. International Journal of Mass Spectrometry, 200423597-101. DOI:10.1016/j.ijms.2004.04.006.

[本文引用: 1]

ALARD OGRIFFIN W LLORAND J Pet al.

Non-chondritic distribution of the highly siderophile elements in mantle sulphides

[J]. Nature, 2000407891-894. DOI:10.1038/35038049.

[本文引用: 1]

J-P LORANDLUGUET AALARD Oet al.

Distribution of platinum group elements in orogenic lherzolites: A case study in a Fontête Rouge lherzolite (French Pyrenees)

[J]. Chemical Geology, 2008248174 -194. DOI:10.1016/j.chemgeo.2007.06.030.

[本文引用: 1]

J-P LORANDALARD OLUGUET A.

Platinum-group element micronuggetts and refertilization process in the Lherz peridotite (northeastern Pyrenees, France)

[J]. Earth and Planetary Science Letters, 2010289298-310. DOI:10.1016/j.epsl.2009.11.017.

[本文引用: 1]

CAMPBELL A JHUMAYUN M.

Trace element microanalysis in iron meteorites by laser ablation ICPMS

[J]. Analytical Chemistry, 199971939-946. DOI:10.1021/ac9808425.

[本文引用: 1]

DAY J M DBRANDON A DWALKER R J.

Highly siderophile elements in Earth, Mars, the Moon, and asteroids

[J]. Reviews in Mineralogy & Geochemistry, 201681161-238. DOI:10.2138/rmg.2016.81.04.

[本文引用: 3]

WALKER R J.

Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation

[J]. Chemie der Erde Geochemistry, 200969101-125. DOI:10.1016/j.chemer.2008.10.001.

[本文引用: 2]

WALKER R J.

Rhenium-Osmium dating (meteorites)

[M]//Rink J W, Thompson J W. Encyclopedia of scientific dating methods. DordrechtSpringer Press2015703-707. DOI:10.1007/978-94-007-6304-3.

[本文引用: 1]

WALKER R J.

Siderophile elements in tracing planetary formation

[J]. Geochemical Perspectives, 201651-145. DOI: 10.7185/geochempersp.5.1.

[本文引用: 3]

YANG GangXIE ZhiCHEN Jiangfeng.

Applications of the Re-Os isotope system to meteorites

[J]. Earth Science Frontiers, 200181): 339-344.

[本文引用: 1]

杨刚谢智陈江峰.

Re-Os同位素体系在陨石研究中的应用

[J]. 地学前缘,200182): 339-344.

[本文引用: 1]

SMOLIAR M IWALKER R JMORGAN J W.

Re-Os ages of Group IIA, IIIA, IVA and IVB iron meteorites

[J]. Science, 19962711 099-1 102. DOI:10.1126/science.271.5252.1099.

[本文引用: 2]

KRUIJER T STOUBOUL MFISCHER-GÖDDE Met al.

Protracted core formation and rapid accretion of protoplanets

[J]. Science, 20143441 150-1 154.DOI:10.1126/science.1251766.

[本文引用: 1]

ALVAREZ L WALVAREZ WASARO Fet al.

Extraterrestrial cause for the Cretaceous-Tertiary extinction: Experimental results and theoretical interpretation

[J]. Science, 19802081 095-1 108. DOI:10.1126/science.208.4448.1095.

[本文引用: 1]

KRUIJER T SKLEINE TFISCHER-GÖDDE Met al.

Lunar tungsten isotopic evidence for the late veneer

[J]. Nature, 2015520534-537. DOI:10.1038/nature14360.

[本文引用: 1]

TOUBOUL MPUCHTEL I SWALKER R J.

Tungsten isotopic evidence for dispro-portional late accretion to the Earth and Moon

[J]. Nature, 2015520530-533. DOI:10.1038/nature14355.

[本文引用: 1]

SHIREY S BWALKER R J.

The Re-Os isotope system in cosmochemistry and high-temperature geochemistry

[J]. Annual Review of Earth and Planetary Sciences, 199826423-500. DOI:10.1146/annurev.earth.26.1.423.

[本文引用: 4]

ZHI Xiachen.

Re-Os isotopic system and formation age of subcontinental lithosphere mantle

[J]. Chinese Science Bulletin, 2000453): 193-200.

支霞臣.

Re-Os同位素体系和大陆岩石圈地幔定年

[J]. 科学通报,19994422): 2 362-2 371.

WU FuyuanYANG JinhuiCHU Zhuyinet al.

Dating the subcontinental lithospheric mantle

[J]. Earth Science Frontiers, 2007142): 76-86.

吴福元杨进辉储著银.

大陆岩石圈地幔定年

[J]. 地学前缘,2007142): 76-86.

RUDNICK R LWALKER R J.

Interpreting ages from Re-Os isotopes in peridotites

[J]. Lithos, 20091121 083-1 095. DOI:10.1016/j.lithos.2009.04.042.

[本文引用: 4]

WALKER R JCARLSON R WSHIREY S Bet al.

Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of the subcontinental mantle

[J]. Geochimica et Cosmochimica Acta, 1989531 583-1 595. DOI:10.1016/0016-7037(89)90240-8.

[本文引用: 1]

REISBERG LLORAND J P.

Longevity of sub-continental mantle lithosphere form osmium isotope systematics in orogenic peridotite massifs

[J]. Nature, 1995376159-162. DOI:10.1038/376159a0.

[本文引用: 1]

LUGUET ASHIREY S BJ-P LORANDet al.

Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle

[J]. Geochimica et Cosmochimica Acta, 2007713 082-3 097. DOI:10.1016/j.gca.2007.04.011.

[本文引用: 1]

LIU C ZSNOW J EHELLEBRAND Eet al.

Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean

[J]. Nature, 2008452311-316. DOI:10.1038/nature06688.

[本文引用: 2]

O'REILLY S YZHANG MGRIFFIN W Let al.

Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem?

[J]. Lithos, 20091121 043-1 054. DOI:10.1016/j.lithos.2009.04.028.

[本文引用: 1]

CHU Z YWU F YWALKER R Jet al.

Temporal evolution of the lithospheric mantle beneath the eastern North China Craton

[J]. Journal of Petrology, 2009501 857-1 898. DOI:10.1093/petrology/egp055.

[本文引用: 2]

CHESLEY J TRIGHTER KRUIZ J.

Large-scale mantle metasomatism: A Re-Os perspective

[J]. Earth and Planetary Science Letters, 200421949-60. DOI:10.1016/S0012-821X(03)00698-8.

[本文引用: 1]

REHKÄMPER MHALLIDAY A NBARFOD Det al.

Platinum group element abundance patterns in different mantle environments

[J]. Science, 19972781 595-1 598. DOI:10.1126/science.278.5343.1595.

[本文引用: 1]

PEARSON D GIRVINE G JIONOV D Aet al.

Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites

[J]. Chemical Geology, 200420829-59. DOI:10.1016/j.chemgeo.2004.04.005.

[本文引用: 1]

DAY J M D.

Hotspot volcanism and highly siderophile elements

[J]. Chemical Geology, 201334150-74. DOI:10.1016/j.chemgeo.2012.12.010.

[本文引用: 1]

XU J FSUZUKI KXU Y Get al.

Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province

[J]. Geochimica et Cosmochimica Acta, 2007712 104-2 119. DOI:10.1016/j.gca.2007.01.027.

CHU Z-YHARVEY JLIU C-Zet al.

Source of highly potassic basalts in northeast China: Evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry

[J]. Chemical Geology, 201335752-66. DOI:10.1016/j.chemgeo.2013.08.007.

[本文引用: 1]

HUANG FCHEN J LXU J Fet al.

Os-Nd-Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: Partial melting of a pyroxenite-bearing lithospheric mantle?

[J]. Geochimica et Cosmochimica Acta, 2015163279-298. DOI:10.1016/j.gca.2015.04.053.

CHU ZYAN YZENG Get al.

Petrogenesis of Cenozoic basalts in central-eastern China: Constraints from Re-Os and PGE geochemistry

[J]. Lithos, 2017278/28172-83. DOI:10.1016/j.lithos.2017.01.022.

[本文引用: 3]

WIDOM EHOERNLE K ASHIREY S Bet al.

Os isotope systematic in the Canary Islands and Madeira: Lithospheric contamination and mantle plume signatures

[J]. Journal of Petrology, 199940297-314. DOI:10.1093/petroj/40.2.279.

JACKSON M GSHIREY S B.

Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions

[J]. Earth and Planetary Science Letters, 201131291-101. DOI:10.1016/j.epsl.2011.09.046.

[本文引用: 2]

S-J BARNESRIPLEY E M.

Highly siderophile and strongly chalcophile elements in magmatic ore deposits

[J]. Reviews in Mineralogy & Geochemistry, 201681725-774. DOI:10.2138/rmg.2016.81.12.

[本文引用: 2]

JIANG ShaoyongYANG JinghongZHAO Kuidonget al.

Re-Os isotope tracer and dating methods in ore deposits research

[J]. Journal of Nanjing University, 2000366): 669-677.

蒋少涌杨竞红赵葵东.

金属矿床Re-Os 同位素示踪与定年研究

[J]. 南京大学学报, 2000366): 669-677.

QU WenjunCHEN JiangfengDU Andaoet al.

Review on Re-Os dating for magmatic copper-nickel sulfide ore deposit

[J]. Mineral Deposits, 2012311): 151-160.

[本文引用: 2]

屈文俊陈江峰杜安道.

Re-Os同位素定年对岩浆型Cu-Ni硫化物矿床成矿时代的制约

[J]. 矿床地质,2012311): 151-160.

[本文引用: 2]

FOSTER J GLAMBERT D DFRICK L Ret al.

Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites

[J]. Nature, 1996382703-706. DOI:10.1038/382703a0.

[本文引用: 1]

WALKER R JMORGAN J WHORAN M Fet al.

Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

[J]. Geochimica et Cosmochimica Acta, 1994584 179-4 197. DOI:10.1016/0016-7037(94)90272-0.

[本文引用: 1]

YANG GangDU AndaoLU Jirenet al.

Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit

[J]. Science China Earth Sciences, 20054810): 1 672-1 677. DOI:10.1360/02yd0124.

[本文引用: 1]

杨刚杜安道卢记仁.

金川镍—铜—铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年

[J]. 中国科学:地球科学,2005353): 241-245.

[本文引用: 1]

YANG S HQU W JTIAN Y Let al.

Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: Post-segregation diffusion of Os

[J]. Chemical Geology, 2008247401-418. DOI:10.1016/j.chemgeo.2007.11.002.

[本文引用: 2]

QU W JCHEN J FWANG L Bet al.

Re-Os pseudo-isochron of disseminated ore from the Kalatongke Cu-Ni sulfide deposit, Xinjiang, Northwest China: Implications for Re-Os dating of magmatic Cu-Ni sulfide deposits

[J]. Ore Geology Review, 20135339-49. DOI:10.1016/j.oregeorev.2012.12.007.

[本文引用: 2]

STEIN H J.

Dating and tracing the history of ore formation

[M]// Holland H D,Turekian H D. Treatise on geochemistry (Second edition). OxfordElsevier Press201487-118. DOI:10.1016/B978-0-08-095975-7.01104-9.

[本文引用: 1]

STEIN HHANNAH J.

Rhenium-Osmium geochronology: Sulfides, shales, oils, and mantle

[M]// Rink J W,Thompson J W. Encyclopedia of scientific dating methods. DordrechtSpringer Press2015707-723. DOI:10.1007/978-94-007-6304-3.

[本文引用: 4]

DU AWU SSUN Det al.

Preparation and certification of Re-Os dating reference materials: molybdenites HLP and JDC

[J]. Geostandards and Geoanalytical Research, 20042841-52. DOI:10.1111/j.1751-908X.2004.tb01042.x.

[本文引用: 1]

QU WenjunLI ChaoDU Andao.

Discussion and evaluation of traceability and total uncertainty for the determination results of copper-nickel-sulfide Re-Os reference materials

[J]. Rock and Mineral Analysis, 2011306): 664-668.

[本文引用: 1]

屈文俊李 超杜安道.

铜镍硫化物铼—锇标准物质定值的溯源性讨论及总不确定度评估

[J]. 岩矿测试,2011306): 664-668.

[本文引用: 1]

STEIN HSCHERSTÉN AHANNAH Jet al.

Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite

[J]. Geochimica et Cosmochimica Acta, 2003673 673-3 686. DOI:10.1016/S0016-7037(03)00269-2.

[本文引用: 2]

SELBY DCREASER R A.

Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite

[J]. Geochimica et Cosmochimica Acta, 2004683 897-3 908. DOI:10.1016/j.gca.2004.03.022.

DU AndaoQU WenjunWANG Denghonget al.

Subgrain-size decoupling of Re and 187Os within molybednite

[J]. Mineral Deposits, 2007265): 572-580.

[本文引用: 1]

杜安道屈文俊王登红

辉钼矿亚晶粒范围内Re和187Os的失耦现象

[J]. 矿床地质,2007265): 572-580.

[本文引用: 1]

LI ChaoQU WenjunDU Andao.

Decoupling of Re and Os and migration model of 187Os in coarse-grained molybdenite

[J]. Mineral Deposits, 2009285): 707-712.

[本文引用: 2]

李超屈文俊杜安道.

大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究

[J]. 矿床地质,2009285): 707-712.

[本文引用: 2]

STEIN H JMORGAN J WScherstén A.

Re-Os dating of Low-Level Highly-Radiogenic (LLHR) sulfides: The Harnäs gold deposit, southwest Sweden records continental scale tectonic events

[J]. Economic Geology, 2000951 657-1 671. DOI:10.2113/gsecongeo.95.8.1657.

[本文引用: 1]

MARKEY R JHANNAH J LMORGAN J Wet al.

A double spike for osmium analysis of highly radiogenic samples

[J]. Chemical Geology, 2003200395-406. DOI:10.1016/S0009-2541(03)00197-9.

[本文引用: 2]

QU WDU AZHAO D.

Determination of 187Os in molybdenite by ICP-MS with neutron-induced 186Os and 188Os spikes

[J]. Talanta, 200155815-820. DOI:10.1016/S0039-9140(01)00506-9.

[本文引用: 1]

SELBY DCREASER R A.

Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada

[J]. Economic Geology, 200196197-204. DOI:10.2113/gsecongeo.96.1.197.

[本文引用: 1]

LI YSELBY DCONDON Det al.

Cyclic magmatic-hydrothermal evolution in porphyry systems:High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit

[J]. Economic Geology, 20171121 419-1 440. DOI:10.5382/econgeo.2017.4515.

[本文引用: 2]

RAVIZZA GTUREKIAN K K.

Application of the 187Re-187Os system to black shale geochronometry

[J]. Geochimica et Cosmochimica Acta, 1989533 257-3 262. DOI:10.1016/0016-7037(89)90105-1.

[本文引用: 1]

CREASER R ASANNIGRAHI PCHACKO Tet al.

Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw formation, Western Canada Sedimentary Basin

[J]. Geochimica et Cosmochimica Acta, 2002663 441-3 452. DOI:10.1016/S0016-7037(02)00939-0.

[本文引用: 1]

LI ChaoQU WenjunWANG Denghonget al.

Advances in the study of the Re-Os isotopic system of organic-rich samples

[J]. Acta Petrologica et Mineralogica, 2010294): 421-430.

[本文引用: 2]

李超屈文俊王登红.

富有机质地质样品Re-Os同位素体系研究进展

[J]. 岩石矿物学杂志,2010294):421-430.

[本文引用: 2]

LI ChaoQU WenjunWANG Denghonget al.

The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment

[J]. Acta Geoscientical Sinica, 2014354): 405-414.

[本文引用: 2]

李超屈文俊王登红.

Re-Os 同位素在沉积地层精确定年及古环境反演中的应用进展

[J]. 地球学报,2014354): 405-414.

[本文引用: 2]

JAFFE L APEUCKER-EHRENBRINK BPETSCH S T.

Mobility of rhenium, platinum group elements and organic carbon during black shale weathering

[J]. Earth and Planetary Science Letters, 2002198339-353. DOI:10.1016/S0012-821X(02)00526-5.

[本文引用: 1]

SELBY DCREASER RDEWING Ket al.

Evaluation of bitumen as a Re-Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada

[J]. Earth and Planetary Science Letters, 20052351-15. DOI:10.1016/j.epsl.2005.02.018.

[本文引用: 2]

SELBY DCREASER R A.

Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale chronometer

[J]. Geology, 200533545-548.DOI:10.1130/G21324.1.

[本文引用: 1]

KENDALL BCREASER R ASELBY D.

Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of ''Sturtian" glaciation

[J]. Geology, 200634729-732. DOI:10.1130/G22775.1.

ROONEY A DMACDONALD F ASTRAUSS J Vet al.

Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth

[J]. PNAS, 201411151-56. DOI:10.1073/pnas.1317266110.

[本文引用: 1]

Kendall BCreaser R ASelby D.

187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks

[J]. Geological Society, LondonSpecial Publications, 200932685-107. DOI: 10.1144/SP326.5.

[本文引用: 3]

XU L GLEHMANN BMAO J Wet al.

Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in early Cambrian black shales of South China—A reassessment

[J]. Economic Geology, 2011106511-522. DOI:10.2113/econgeo.106.3.511.

[本文引用: 1]

ZHU BBECKER HJIANG S-Yet al.

Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China

[J]. Precambrian Research, 201322567-76. DOI:10.1016/j.precamres.2012.02.002.

[本文引用: 1]

ZHAO HongLI ChaoJIANG Xiaojunet al.

Direct radiometric dating of limestone from Changxing Permian-Triassic boundary using the Re-Os geochronometer

[J]. Chinese Science Bulletin, 20156023): 2 209-2 215. DOI:10.1360/N972015-00409.

[本文引用: 2]

赵鸿李超江小均.

Re-Os同位素精确厘定长兴“金钉子”灰岩沉积年龄

[J]. 科学通报,20156023): 2 209-2 215. DOI:10.1360/N972015-00409.

[本文引用: 2]

PEI HaoxiangFU YongLI Chaoet al.

Mineralization age and metallogenic environment of Daotuo manganese deposits in Guizhou: Evidence from Re-Os isotopes

[J]. China Science Bulletin, 20176228/29): 3 346-3 355. DOI: 10.1360/N972017-00450.

[本文引用: 1]

裴浩翔付勇李超.

贵州道坨锰矿成矿时代及环境的Re-Os同位素证据

[J]. 科学通报, 20176228/29): 3 346-3 355. DOI: 10.1360/N972017-00450.

[本文引用: 1]

CHEN ZhenghuiLI ChaoQU Wenjunet al.

Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples

[J]. Acta Petrologica Sinica, 20102611): 3 411-3 417.

[本文引用: 2]

陈郑辉李超屈文俊.

石墨Re-Os同位素分析及其在成矿年代学中的初步运用

[J]. 岩石学报, 20102611): 3 411-3 417.

[本文引用: 2]

LI ChaoWANG DenghongZHOU Liminet al.

Study on the Re-Os isotope composition of graphite from the lutang graphite deposit in Hunan Province

[J]. Rock and Mineral Analysis, 2017363): 297-304.

[本文引用: 2]

DOI:10.15898/j.cnki.11-2131/td.201704060050.[李超王登红周利敏.

湖南鲁塘石墨矿Re-Os同位素研究

[J]. 岩矿测试, 2017363): 297-304. DOI:10.15898/j.cnki.11-2131/td.201704060050.]

[本文引用: 2]

HANNAH J LBEKKER ASTEIN H Jet al.

Primitive Os and 2316 Ma age for marine shale: Implications for paleoproterozoic glacial events and the rise of atmospheric oxygen

[J]. Earth and Planetary Science Letters, 200422543-52. DOI:10.1016/j.epsl.2004.06.013.

[本文引用: 1]

RAVIZZA GPEUCKER-EHRENBRINK B.

Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record

[J]. Science, 20033021 392-1 395. DOI:10.1126/science.1089209.

[本文引用: 1]

TURGEON S CCREASER R A.

Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode

[J]. Nature, 2008454323-326. DOI:10.1038/nature07076.

SATO HONOUE TNOZAKI Tet al.

Osmium isotope evidence for a large Late Triassic impact event

[J]. Nature Communication, 201342 455. DOI:10.1038/ncomms3455.

[本文引用: 1]

CAI Chang'eQIU NanshengXU Shaohua.

Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation

[J]. Advances in Earth Science, 20142912): 1 362-1 371.

[本文引用: 1]

蔡长娥邱楠生徐少华.

Re-Os 同位素测年法在油气成藏年代学的研究进展

[J]. 地球科学进展,20142912):1 362-1 371.

[本文引用: 1]

SHEN ChuanboSELBY DMEI Lianfuet al.

Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation

[J]. Journal of Mineralogy and Petrology, 2011314): 87-93.

[本文引用: 1]

沈传波Selby D梅廉夫.

油气成藏定年的Re-Os同位素方法应用研究

[J]. 矿物岩石,2011314): 87-93.

[本文引用: 1]

SHEN ChuanboLIU ZeyangXIAO Fanet al.

Advancements of the research on Re-Os isotope system in petroleum system

[J]. Advances in Earth Science, 2015302): 187-195.

[本文引用: 1]

沈传波刘泽阳肖凡.

石油系统Re-Os同位素体系封闭性研究进展

[J]. 地球科学进展,2015302): 187-195.

[本文引用: 1]

LI ZhenWANG XuanceLIU Keyuet al.

Rhenium-Osmium geochronology in dating petroleum systems: Progress and challenges

[J]. Acta Petrolei Sinica, 2017383): 297-306.

[本文引用: 1]

李真王选策刘可禹.

油气藏铼—锇同位素定年的进展与挑战

[J]. 石油学报,2017383): 297-306.

[本文引用: 1]

Yanming SAITIAN HuiLI Jieet al.

Recent research progresses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems

[J]. Natural Gas Geoscience, 2020317):939-951.

[本文引用: 1]

DOI:10.11764/j.issn.1672-1926.2020.04.025. [赛彦明田辉李杰.

含油气系统Re-Os定年及Re-Os元素和同位素体系研究新进展

[J]. 天然气地球科学,2020317): 939-951. DOI:10.11764/j.issn.1672-1926.2020.04.025.]

[本文引用: 1]

SELBY DCREASER R A.

Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes

[J]. Science, 20053081 293-1 295. DOI:10.1126/science.1111081.

[本文引用: 3]

FINLAY A JSELBY DOSBORNE M J.

Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems

[J]. Geology, 201139475-478. DOI:10.1130/G31781.1.

[本文引用: 2]

LILLIS P GSELBY D.

Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

[J]. Geochimica et Cosmochimica Acta, 2013118312-330. DOI:10.1016/j.gca.2013.04.021.

[本文引用: 2]

LIU JSELBY DOBERMAJER Met al.

Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, Western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems

[J]. AAPG Bulletin, 20181021 627-1 657. DOI:10.1306/12081717105.

[本文引用: 1]

HUANG ShaohuaQIN MingkuanSELBY Det al.

Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin

[J]. Earth Science Frontiers, 2018252): 254-266.

[本文引用: 1]

黄少华秦明宽Selby D.

准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年

[J]. 地学前缘,2018252): 254-266.

[本文引用: 1]

GEORGIEV S VSTEIN H JHANNAH J Let al.

Comprehensive evolution of a petroleum system in absolute time: The example of Brynhild, Norwegian North Sea

[J]. Chemical Geology, 2019522260-282. DOI:10.1016/j.chemgeo.2019.05.025.

[本文引用: 1]

GE XSHEN CSELBY Det al.

Petroleum evolution within the Tarim Basin, northwestern China: Insights from organic geochemistry, fluid inclusions, and rhenium-osmium geochronology of the Halahatang oil field

[J]. AAPG Bulletin, 2020104329-355. DOI:10.1306/05091917253.

[本文引用: 1]

FINLAY A JSELBY DOSBORNE M J.

Petroleum source rock identification of United Kingdom Atlantic Margin oil fields and the Western Canadian Oil Sands using platinum, palladium, osmium and rhenium: Implications for global petroleum systems

[J]. Earth and Planetary Science Letters, 2012313/31495-104. DOI:10.1016/j.epsl.2011.11.003.

[本文引用: 1]

FINLAY A JSELBY DOSBORNE M Jet al.

Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes

[J]. Geology, 201038979-982. DOI:10.1130/G31201.1.

[本文引用: 1]

WANG JieTENGERLIU Wenhuiet al.

Definition of petroleum generating time for Lower Cambrian bitumen of the Kuangshanliang in the West Sichuan Basin, China: Evidence from Re-Os isotopic isochron age

[J]. Natural Gas Geoscience, 2016277): 1 290-1 298.

[本文引用: 1]

王杰腾格尔刘文汇.

川西矿山梁下寒武统沥青脉油气生成时间的厘定——来自于固体沥青Re-Os同位素等时线年龄的证据

[J].天然气地球科学,2016277): 1 290-1 298.

[本文引用: 1]

WANG PHU YLIU Let al.

Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong Antimony deposit, Guizhou Province, China and its geological significance

[J]. Acta Geologica Sinica, 2017916): 2 153-2 163.

[本文引用: 1]

GE XSHEN CSELBY Det al.

Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems

[J]. Geology, 201644491-494. DOI:10.1130/G37666.1.

[本文引用: 3]

GE XSHEN CSELBY Det al.

Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, Northern Sichuan Basin, China: Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis

[J]. AAPG Bulletin, 20181021 429-1 453. DOI:10.1306/1107171616617170.

GE XSHEN CSELBY Det al.

Petroleum generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil generation episodes and sources

[J]. AAPG Bulletin, 2018102913-938. DOI:10.1306/0711171623017125.

[本文引用: 2]

SU ACHEN H HFENG Y Xet al.

Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, Central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology

[J]. Precambrian Research, 20203501-14. DOI:10.1016/j.precamres.2020.105897.

[本文引用: 1]

SELBY DCREASER R AFOWLER M G.

Re-Os elemental and isotopic systematics in crude oils

[J]. Geochimica et Cosmochimica Acta, 200771378-386. DOI:10.1016/j.gca.2006.09.005.

[本文引用: 1]

MAHDAOUI FREISBERG LMICHELS Ret al.

Effect of the progressive precipitation of petroleum asphaltenes on the Re-Os radioisotope system

[J]. Chemical Geology, 201335890-100. DOI:10.1016/j.chemgeo.2013.08.038.

[本文引用: 1]

DIMARZIO J MGEORGIEV S VSTEIN H Jet al.

Residency of rhenium and osmium in a heavy crude oil

[J]. Geochimica et Cosmochimica Acta, 2018220180-200. DOI:10.1016/j.gca.2017.09.038.

LIU JSELBY DZHOU Het al.

Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems

[J]. Chemical Geology, 20195131-22. DOI:10.1016/j.chemgeo.2019.03.004.

[本文引用: 1]

ROONEY A DSELBY DLEWAN M Det al.

Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

[J]. Geochimica et Cosmochimica Acta, 201277275-291. DOI:10.1016/j.gca.2011.11.006.

[本文引用: 1]

MAHDAOUI FMICHELS RREISBERG Let al.

Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum

[J]. Geochimica et Cosmochimica Acta, 20151581-21. DOI:10.1016/j.gca.2015.02.009.

[本文引用: 1]

HURTIG NGEORGIEV S VSTEIN H Jet al.

Controlling factors on Re-Os systematics in petroleum during water-oil interaction: The effects of oil chemistry

[J]. Geochimica et Cosmochimica Acta, 2019247142-161. DOI:10.1016/j.gca.2018.12.021.

[本文引用: 1]

/