地球科学进展, 2021, 36(1): 95-109 DOI: 10.11867/j.issn.1001-8166.2021.009

研究简报

青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究

车雪华,1,2, 罗万银,1, 邵梅1,2, 王中原3

1.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000

2.中国科学院大学,北京 100049

3.北京师范大学地理科学学部,北京 100875

Form-flow Feedback within Blowouts at Different Developing Stages in the Gonghe Basin, Qinghai Province

CHE Xuehua,1,2, LUO Wanyin,1, SHAO Mei1,2, WANG Zhongyuan3

1.Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

2.University of Chinese Academy of Sciences,Beijing 100049,China

3.Beijing Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China

通讯作者: 罗万银(1979-),男,甘肃景泰人,研究员,主要从事风沙物理与风沙地貌研究. E-mail:wyluo@lzb.ac.cn

收稿日期: 2020-10-29   修回日期: 2020-12-09   网络出版日期: 2021-03-19

基金资助: 国家自然科学基金面上项目“共和盆地巨型风蚀坑的发育对环境变化的响应”.  41771015

Corresponding authors: LUO Wanyin (1979-), male, Jingtai County, Gansu Province, Professor. Research areas include aeolian geomorphology and physics of blown sand. E-mail:wyluo@lzb.ac.cn

Received: 2020-10-29   Revised: 2020-12-09   Online: 2021-03-19

作者简介 About authors

车雪华(1997-),女,山西吕梁人,硕士研究生,主要从事风沙物理与风沙地貌研究.E-mail:chexuehua19@mails.ucas.ac.cn

CHEXuehua(1997-),female,LüliangCity,ShanxiProvince,Masterstudent.Researchareasincludeaeoliangeomorphologyandphysicsofblownsand.E-mail:chexuehua19@mails.ucas.ac.cn

摘要

风蚀坑是沙质草原沙漠化的主要地貌响应和驱动,但目前我们对其形成演化的动力机制知之甚少。利用二维超声风速仪和积沙仪观测了共和盆地不同发育阶段风蚀坑表面气流和风沙流特征,研究其形态—动力反馈过程。结果表明:风蚀斑与碗状坑内气流沿主风向先减速后加速,槽形坑内气流则先辐散减速—中部气流加速—积沙体迎风坡风速降低—背风坡风速有所恢复;且发育初期风蚀坑内风速与风速变异系数和风向稳定系数均呈负相关,而发育中期坑内风速与前者呈正相关,与后者呈负相关。受坑体内的涡流影响,槽形坑内风速廓线不符合对数分布规律。槽形坑内不同部位的输沙率随高度均呈指数式递减,但受气流—形态间的反馈作用,各部位输沙通量差异明显,坑底最低、积沙体迎风坡前端最大。风蚀坑内气流场与形态间存在反馈关系,坑体越大反馈效果越明显。

关键词: 风蚀坑 ; 沙漠化 ; 表面气流 ; 形态反馈

Abstract

Blowouts are the primary geomorphologic manifestation and driving force of sandy grassland desertification in the Gonghe Basin. However, their feedback mechanism between the flow dynamics and geomorphology is unclear. Two-dimensional ultrasonic anemometers and gradient sand traps were used in this study to measure the characteristics of wind flows and sediment transport at different blowouts of different developing stages in the Gonghe Basin. The feedback between the morphology-dynamic processes of the blowouts was discussed. Results show as follows. After entering the sand patch and small bowl blowout along the prevailing wind direction, air flow expanded and decelerated, and then accelerated until going outside the blowout; when entering a trough blowout of a small or medium size, it expanded and decelerated at the headwall, accelerated at the bottom of blowout, decelerated at the windward slope of the depositional lobe, and then recovered somewhat at the leeside slope of the depositional lobe. Besides, the wind speed was negatively correlated with steadiness of flow and directional steadiness in the early stage of blowout, but was positively correlated with the steadiness of flow and negatively correlated with the directional steadiness in the middle stage of blowout. Due to the rotating vortices in the blowout, the wind speed profiles in the trough blowout displayed a nonlogarithmic behavior. The measured sand flux density at different stations decreased exponentially with height. However, due to the feedback effect between flow dynamics and morphology, the sediment transport fluxes at different positions were obviously different, with the lowest at the bottom of the blowout and the largest in front of the windward slope of the deposition lobe. In conclusion, there is a form-flow feedback in the blowout, and the bigger the blowout is, the more obvious the feedback effect is.

Keywords: Blowout ; Desertification ; Surface air flow ; Form-flow feedback

PDF (14394KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究. 地球科学进展[J], 2021, 36(1): 95-109 DOI:10.11867/j.issn.1001-8166.2021.009

CHE Xuehua, LUO Wanyin, SHAO Mei, WANG Zhongyuan. Form-flow Feedback within Blowouts at Different Developing Stages in the Gonghe Basin, Qinghai Province. Advances in Earth Science[J], 2021, 36(1): 95-109 DOI:10.11867/j.issn.1001-8166.2021.009

1 引 言

风蚀坑是指松散或裸露的沙质地表经风蚀而形成的凹地12,主要发育在沙质海岸/湖岸2~5、干旱、半干旱的沙质草原6~11和高寒草原带1213,地理分布跨越热带至高纬度的极地地区6,是一种常见的风蚀地貌类型。受其下伏沉积和地表自然条件的复杂影响,风蚀坑形态具有很大的时空变异性,Cooper(1958年和1967年)将其按形态划分为碟形坑和槽形坑2种类型:碟形坑一般表现为半圆形或浅碟形,可进一步演变为杯形或圆形的碗状坑,槽型坑则具有更深的侵蚀盆底和陡峭的坡壁2

长久以来,学者们对于风成地貌的研究主要集中于沙丘等风积地貌,而对风蚀地貌的研究程度比较低14,且主要集中于海岸风蚀坑的表面流场114~16、形态演变111317与蚀积速率1218。近年来,学者们通过野外测量114~16和数值模拟51920的手段对不同风况条件下两类风蚀坑坑体内部不同部位的地表气流状况和输沙状况做了大量研究,然而,由于数值模拟对边界条件的过渡简化以及野外有效测量手段及观测条件的限制,目前对风蚀坑的形态与动力学过程仍缺乏系统性认知。国内研究集中在呼伦贝尔草原7~921~24、浑善达克沙地10和科尔沁沙地2526等沙质草原风蚀坑及沙质海岸风蚀坑27,对高寒干旱区发育的风蚀坑形态—动力学过程研究明显不足。受野外观测条件限制,目前对风蚀坑表面流场的野外测量都较为粗糙,未能完全反映风蚀坑表面流场模式与形态演变之间的互馈关系,对同一区域相同风况环境下不同发育阶段的风蚀坑贴地表流场也缺乏详细研究2829

基于以上研究背景,本研究以共和盆地高寒草原4个不同发育阶段的风蚀坑为研究对象,对风蚀坑表面流场、垂直风速廓线及输沙状况进行同步观测,基于无人机摄影技术计算高精度地形数据,对风蚀坑的形态与动力学反馈过程作进一步探讨。

2 研究区概况

共和盆地位于青藏高原东北缘,地理坐标在35°27′~36°56′N,98°46′~101°22′E,行政区划上包括青海省共和县、贵南县、兴海县及乌兰县,总面积约13 800 km2。地貌上,南北两侧被青海南山、拉脊山、哇洪山、鄂拉山和河卡山所围绕,西邻柴达木盆地,海拔在3 200~3 550 m。气候上属于高寒干旱、半干旱的大陆性气候,年平均气温4.1 ℃,年均降水量为250~400 mm,集中在夏秋季(5~9月),蒸发量为1 200~2 400 m30。盆地内地面风况在冬春季以西北风为主,夏秋季受副热带高压影响多东南风,区域内年平均风速为2.8 m/s,起沙风主风向为W、WNW与NW,属低风能环境(图1)。地带性植被类型以荒漠草原为主31

图1

图1   研究区地理位置及风蚀坑形态与分布图

(a)共和盆地区域概况图,研究区位于龙羊峡北岸三塔拉阶地;(b)研究区域风蚀坑分布,影像来自2019年4月无人机三航向飞行拍摄结果(飞行高度为74 m,重叠度为85%/70%,相机倾角为-90°与-60°);(c)~(f)分别为4个不同发育阶段风蚀坑无人机正摄影像

Fig.1   Location of the study area and the form and distribution of the blowouts in the study site

(a) Regional overview of the Gonghe Basin, the study site is located at the third level terrace of the Tarlatan sandy land; (b) The distribution of the blowouts in the study site, images were taken by a drone’s three course flight in April 2019 (flight height was 74 m, the overlap degree was 85%/70%, the camera tilt angle was -90° and -60°); (c)~(f) The orthoimage of the four targeted blowouts in different develop stages in this study


共和盆地是青海省第二大风沙地貌区,也是中国沙漠/黄土过渡带和景观脆弱带的重要组成部分32。受自然和人为因素影响,盆地内沙漠化土地面积占总面积的91.9%,其中黄河以南的木格滩及本研究所在的塔拉滩地区最为严重,以流动沙丘和半固定沙丘为主31,且土地沙漠化面积有扩大的趋势3334。风蚀坑作为土地沙漠化的首要环节与固定沙丘开始活化的明显标志35在共和盆地广泛分布,据调查,盆地内现存风蚀坑2 625个,坑体面积最大近10万m2,是世界上现已发现的尺度最大的风蚀坑,Luo等13依据坑体形态及面积将其形态演变分为4个发育阶段:胚胎期—风蚀斑、幼年期—小尺度碟型坑/碗状坑、青年期—中尺度槽型坑和成熟期—巨型槽型坑。

本研究选取位于共和县三塔拉高寒荒漠草原上处于不同发育阶段的4个风蚀坑(图1)进行现场观测。风蚀斑B1处于发育的胚胎期,呈不规则形状;碗状坑B2处于发育的幼年期,积沙体尚不明显,坡壁上方有较浅陡坎,坑体呈近圆形;小尺度槽型坑B3也处于幼年期,下风向发育有较低积沙体,两侧坡壁变陡,陡坎变深;中尺度槽型坑B4处于风蚀坑发育的青年期,各部位尺度均有所扩大,坑底地势宽而平坦,积沙体体积变大,迎风坡相对较陡,背风坡相对缓长,顶部较为平缓,且积沙体下风向发育大片流沙,坑体两侧形态不对称,北侧地势高于南侧。各风蚀坑的形态数据来自无人机在实验区多次试验后使用最优飞行参数所得到的高精度测量结果18,具体几何参数见表1

表1   风蚀坑的形态参数

Table 1  Summary of morphological parameters of four observed blowouts

测点走向长轴/m短轴/m深度/m
风蚀斑B1NW311°~SE131°12101.0
碗状坑B2NW315°~SE135°19142.5
槽形坑B3NW308°~SE128°2451.5
槽形坑B4NW316°~SE136°1544512.0

注:长轴长度为不含积沙体及下风向流沙的坑体长度,短轴长度为坑体最宽处长度,深度为侵蚀盆底部与积沙体顶部的相对高度

新窗口打开| 下载CSV


3 数据采集与分析方法

3.1 表面流场测量

观测仪器为已校准的二维超声风速仪DS-2,该仪器为风速风向一体式测量,风向分辨率为1°,风速分辨率为0.01 m/s,可观测的风向范围为0~360°,风速范围为0~60 m/s。实验前在观测区较平坦开阔的西北侧设置3 m高小型气象站(HOBO U30)作为参考站,衡量观测期间风蚀坑外的环境风况。在各风蚀坑均匀布置二维超声风速仪观测风蚀坑贴地层流场,测量高度距地表约5 cm,由于风速仪数量有限,为加密测量风蚀坑各部位风速风向,在形态较大的3个风蚀坑B2、B3和B4进行了多次测量,每次测量时间为15 min至1 d不等,采样间隔为10 s、1 min,风蚀坑B1及B4的测量于2019年4月9~15日完成,风蚀坑B2与B3的测量于2019年5月31日至6月1日完成。各风蚀坑测点的布置见图2

图2

图2   各风蚀坑贴地表气流观测的测点布置

(a)风蚀坑B1进行了1次观测,布置测点共20处;(b)风蚀坑B2进行了3次观测,共布置测点34处;(c)风蚀坑B3进行了2次观测,共布置测点28处;(d)风蚀坑B4进行了4次测量,其中测量三与测量四部分点测量位置相同,实际测量部位63处;剔除传感出错仪器并进行数据筛选后,部分测点(图中未标明编号的测点)被排除,最终用于本研究的测点有:风蚀坑B1 18个;风蚀坑B2 27个,测量三未参与分析;风蚀坑B3 26个;风蚀坑B4 48个,测量四未参与分析

Fig.2   Array of the measurement of the near surface air flow

(a) One measurement was made at B1 with 20 locations, (b) Three measurements were made at B2 with 34 locations, (c) Two measurements were made at B3 with 28 locations, (d) Four measurements were made at B4 with 63 locations, among which some measurement positions of the third measurement and the fourth measurement were the same. After removing the instrument data with sensor error and performing data screening, some stations that were not labeled in the picture being excluded from analysis. A total of 18 stations in blowout B1, 27 stations in blowout B2, 26 stations in blowout B3, 48 stations in blowout B4 passed the quality control and were used in this study, the third measurement data in blowout B2 and the fourth measurement data in blowout B4 were not involved in this paper


本文最终选取了在各发育阶段风蚀坑不同测量时段中参考风况一致(风向变化范围介于测量时段中心风向±5°~8°之间,风速变化范围不超过1 m/s1)且高于起沙风速(5.34 m/s)的5 min时段,按照矢量平均法36进行各测点风速风向的计算和分析,同时段参考风况见表2

表2   贴地表气流观测期间气象站所指示的参考风况

Table 2  Reference wind regime recorded at the 3 m high reference wind tower during the observation periods

测点观测时段风向/°风速/(m/s)SDFs
风蚀斑B1合成风222.34.51.050.04
碗状坑B2观测一283.59.74.430.06
观测二290.39.26.940.05
合成风286.89.46.720.07
槽形坑B3观测一333.96.87.720.16
观测二312.46.46.080.07
合成风323.66.512.490.14
槽形坑B4观测一328.210.67.840.09
观测二328.110.95.770.05
观测三331.910.63.270.09
合成风329.410.76.190.08

注:SD指示观测期间风向的变异性,Fs指示观测期间风速的稳定性;B1风蚀坑为一次观测的数据,B2、B3和B4风蚀坑均选取多次观测时段的数据;合成风表示气象站在多个时段的合成风向风速。由于风蚀坑B1观测时段内风速均未达到起沙风,故选取风速最大时段进行分析

新窗口打开| 下载CSV


该研究区的起沙风速由Bagnold流体起动公式37计算得到:

Ut=5.75Aρs-ρρgdlgZZ0

式中:Ut为高度Z处的起动风速,A为经验常数0.08,ρs为沙粒密度,ρ为空气密度,g为重力加速度(9.8 m/s2),d为地表沙粒平均粒径,Z0为床面粗糙度。根据王中原等30的研究结果,我们取d=250 μm,ρs=1.54×103 kg/m3Z0由1/30定律计算得到,Z0=0.83×10-5 m,ρ=0.82 kg/m3[38。因此,该地区3 m高度的起沙风速为5.34 m/s。

为衡量风速在风蚀坑内各部位的增减速情况,采取Anderson等39的计算方法,计算各部位的相对风速:

Ux=u¯xu¯0

式中:Ux为测点x处的相对风速,u¯x为距离地表0.05 m高度处测点x在5 min内的平均风速(m/s),u¯0为3 m高气象站在测量时段内的平均风速(m/s)。

采用风向标准差(Standard deviation of wind direction,SD)来衡量风蚀坑内各测点风向的稳定性状况,用风速变异系数(Fs)衡量风蚀坑内各测点气流的湍流度40

Fs=uσ/u¯x

式中:Fs代表测点x处气流流速的稳定性,uσ代表测点x处的风速标准差。FsSD越小,表明气流流速、流向越稳定且湍流度越低。

3.2 输沙通量观测

2019年4月15日利用垂直阶梯集沙仪对风蚀坑B4进行风蚀坑表面1 m高度内的输沙通量观测,每个进沙口尺寸为0.02 m×0.02 m,共50层。沿坑体走向共布设7个集沙仪,集沙时间为15 min,与该风蚀坑贴地层气流的测量同步进行,集沙仪布置情况见图3。对采集到的各高度层沙粒样品用千分之一电子天平进行称重记录,采用公式(4)计算单宽输沙率,公式(5)计算不同高度的输沙通量:

q=WLΔT

式中:q为单宽输沙率[g/(m∙min)],W为集沙量(g),L为集沙仪进沙口宽度(m),ΔT为集沙时间(min)。

Qz=WSΔT

式中:Q(z)为输沙通量[kg/(m2∙min)],W为集沙量(kg),S为集沙仪进口面积(m2),ΔT为集沙时间(min)。

图3

图3   集沙仪及风塔测点位置示意图

(a)集沙仪的测量位置分布,共布置7处测点:坑头处(J-4)、坑体中部(J-2、J-6、J-7)、积沙体迎风坡(J-1)、顶部(J-3)及背风坡处(J-5),且均为同步观测;风速廓线的测量共进行了5次,每次测量部位为3处,部分位置进行了2次测量,故实际测量点位共11处,经数据筛选后本文选用第一次(1-1、1-2、1-4)、第三次(3-1、3-2、3-4)和第四次(4-1、4-2、4-4)测量位置进行研究,第二次观测点位(2-1、2-2、2-4)与第五次观测点位(5-1、5-2、5-4)未参与本文数据分析;(b) 风速廓线的测量风塔布置图,每个风塔配一个数采盒与各层风速仪连接进行数据存储;(c)本研究所用二维超声风速仪DS-2

Fig.3   Array of the measurement of the sediment transport and the vertical wind speed profiles

(a) Arrangement of the gradient sand traps, a total of seven traps were arranged at the blowout, with one trap (J-4) at the headwall, three traps (J-2, J-6, J-7) at the bottom of the blowout, one trap (J-1) at the windward of the deposition lobe, one trap (J-3) at the top of the deposition lobe and one trap (J-5) at the lee side of the deposition lobe, all the instruments were observed simultaneously. Five observations were made for the measurement of the vertical wind speed profiles, a total of 11 sites were measured with three sites of each measurement, and some sites were measured twice. After data screening, the first measurement (1-1, 1-2, 1-4), the third measurement (3-1, 3-2, 3-4) and the fourth measurement (4-1, 4-2, 4-4) data passed the quality control and were used in this paper, the second measurement (2-1, 2-2, 2-4) and the fifth measurement (5-1, 5-2, 5-4) data were excluded in this paper. (b) Site layout of the wind tower, each tower was equipped with a data acquisition box which is connected with wind anemometers of each layer for data storage. (c) Two-dimensional ultrasonic anemometer (DS-2) used in this study


3.3 风速廓线观测

2020年5月1~6日于风蚀坑B4进行风速廓线的测量,设置风塔测点共11个(图3),各测点风速仪高度分别为距地表0.1、0.3、0.5、1.0和2.0 m处,受仪器数量限制,测站1-1、2-1、3-1、4-1和5-1的实际观测高度为4个,缺少0.3 m高度处风速。根据气象站数据筛选各风塔大于起沙风的时段,最终9处风塔测量结果通过了数据筛选,之后将各高度测点的数据用矢量平均法求平均值后进行分析。为体现坑体内不同高度的风速情况,以积沙体顶部测站3-4风塔0.3 m高度处的风速作为参考风速,以便计算各测点不同高度的相对风速,即:

Ux=u¯xu¯3-4

式中:Ux为风塔某高度风速仪x处的相对风速,u¯x为该风塔某高度风速仪x在5 min内的平均风速(m/s),u¯3-4为风塔3-4测站0.3 m高度处在测量时段内的平均风速(m/s)。

4 结果与分析

4.1 贴地层气流场的变化

结合表1和2可见,观测期间内除风蚀斑B1参考风向与坑体走向夹角(88°)略大外,其余各测点参考风向均为西北偏北,与坑体走向夹角为13°~28°,气流均为斜向进入坑体;气流稳定性系数Fs均小于0.2,表明观测期间参考气流均处平稳状态14

气流进入坑体后的贴地层流场结构如图4所示。斜向气流从风蚀斑B1西南侧进入,到达坑底后受到中部凸起地形影响产生分流,一支转向东南侧流出,一支绕过中间凸起地块向东北侧流出;最小风速发生在风蚀坑底部,向东北、东南方向的气流速度持续增大,在2个出口处风速达到最大。碗状坑B2在斜向风条件下有西北和西南2个入口,气流由西北侧进入坑体后随地形发生偏转,分散为3个流向:一支沿风蚀坑南侧坡壁发展并与西南侧进入气流汇合从东南侧汇出;另一支沿风蚀坑北侧坡壁向东北口汇出,其中部分气流在经过东北侧陡坎后风向发生偏转向东南口流出;主流向则沿风蚀坑中轴线向东南侧溢出,由此形成一大一小两个气流出口。坑体内流速的总体分布表现为:气流进入坑体后速度降低,随后流速持续增大,并以高流速从出口汇出。小尺度槽形坑B3地形较狭长,斜向气流进入后风向未发生明显改变,在坑头辐散为3股分别沿中轴线及两侧侵蚀坡面的气流后向下风向积沙体输送,且中轴线上整个流速的分布均高于两侧坡面,因此中轴线气流为主流。流速分布模式具体表现为:在坑头气流辐散减速,随后在狭窄的坑体中部气流加速,在积沙体迎风坡坡脚风速达到最大,随后气流在积沙体迎风坡爬升过程中流速降低,并在积沙体顶部气流辐散,流速达到最低。中尺度槽型坑B4较风蚀坑B3宽阔,斜向气流进入后在入口处明显辐散为3股气流,分别受地形引导沿风蚀坑中轴线及两侧侵蚀坡面向积沙体输送。坑体内的流速分布模式表现为:气流进入坑体后先辐散减速,再逐步加速,在坑底风速达到最大,然后受积沙体阻挡,在迎风坡坡脚处风速有所下降,沿积沙体迎风坡爬升过程中风速再次降低,积沙体顶部流速最小,然后在其背风坡侧流速又逐步恢复。

图4

图4   斜向气流进入不同形态风蚀坑后的流场分布模式

风玫瑰图反映各观测期间的风况

Fig.4   Distribution pattern of flow field after oblique air entered different forms of blowouts

The wind roses shows the wind conditions during the near surface airflow observation at the corresponding blowout


风蚀坑的形态变化主要体现在风蚀坑边缘的扩张、风蚀坑盆底的侵蚀及下风向积沙体的堆积三方面18。因此,本文对比了不同发育阶段风蚀坑纵轴线及两侧坡壁断面上的相对风速U、风速变异系数Fs及风向稳定系数SD。如图5所示,风蚀坑B1、B2和B3中轴线上各测点相对风速U与风速变异系数Fs、风向稳定系数SD整体呈负相关关系:风蚀坑B1中轴线L1断面上气流从入口进入后风速降低,气流变得极不稳定,出口处风速增大,气流则变得较为稳定;风向稳定性系数SDFs的变化趋势相同。风蚀坑B2中轴线L4断面上气流变化趋势与风蚀坑B1相同,风向稳定性系数SD在出口前由于三向气流的汇聚风向变得不稳定,除此之外其变化趋势与Fs一致。风蚀坑B3中轴线L7断面上入口处测点不足,但由位于东侧侵蚀坡面L6测线入口处测点的数值可见,气流进入后不稳定性增加(Fs由0.43升高至0.83),相应地风速降低(U由0.16降低至0.08),之后中轴线上的气流在坑底至积沙体迎风坡坡脚变得较为稳定(Fs=0.36),风速增大(U=0.38),随着气流在迎风坡侧爬升,风速变异系数Fs增大(0.44),风速U降低(0.32);风向变异系数SD的变化趋势同样与风速U呈负相关。风蚀坑B4中轴线风速U与风速变异系数Fs的关系则不同于以上三者,呈现正相关关系:气流进入坑体后风速变异系数略微降低(Fs由0.34降低至0.33),风速U也降低至最小(风速U由0.56降低至0.28),之后随着风速持续增加,并在坑底达到最大值(U=0.60)后,风速变异系数Fs也增加至0.32。随着气流到达积沙体顶部,风速在积沙体顶部达到极小值(U=0.37),在背风坡侧风速有所恢复,而风速变异系数Fs呈持续降低趋势(Fs=0.25);中轴线气流风向稳定性系数SD则与风速U、风速变异系数Fs呈负相关关系。风蚀坑两侧坡壁风速U、风速变异系数Fs与风向稳定系数SD的关系基本与坑中轴线变现一致,局部受小地形影响存在较小波动与不一致。

图5

图5   风速变异系数Fs、风向稳定系数SD与相对风速U在各风蚀坑不同观测断面上的变化

最左侧图片为风蚀坑内的各观测断面(中轴线及两侧侵蚀坡面)及其测点位置示意图,风蚀坑B1中为测线L1,L2,风蚀坑B2中设置了测线L3、L4、L5,风蚀坑B3中设置了测线L6、L7(由于西侧侵蚀坡面上测点不足故缺少一条测线),风蚀坑B4中设置了测线L8、L9、L10,灰色区域表示相应测线的地形起伏状况(以3 094 m为基准海拔)

Fig.5   Variation of wind speed variation factor (Fs), wind direction stability factor (SD) and relative wind speed (U) at different observation sections of each blowout

The pictures on the left are the schematic diagram of all the observation sections from section L1 to L2 in blowout B1, section L3 to L5 in blowout B2, section L6 to L7 in blowout B3 (due to the lack of measuring positions on the western erosion slope, a measuring line is missing), section L8 to L10 in blowout B4 and their measuring positions used in this study in the blowouts. The gray area represents the topographic relief of the corresponding survey line (taking 3 094 m as the base elevation)


4.2 风速廓线特征

表3所示,风速廓线观测期间参考风速平均为5.9 m/s,风向平均为313.4°,与坑体走向约呈3°倾角,气流为倾斜进入风蚀坑内。

表3   风蚀坑B4风速廓线观测期间气象站所示的参考风速风向

Table 3  Observation results of reference wind speed and direction at the height of 3 m reference meteorological station during the observation of vertical wind profiles near blowout B4

观测时段风速/(m/s)风向/°SDFs
观测一6.2316.82.80.18
观测三6.0308.91.40
观测四5.8314.55.60
合成风5.9313.45.090.11

注:参考风况用以表示气流进入风蚀坑的风向风速,经数据筛选后选取风况条件一致的观测一、三、四进行分析

新窗口打开| 下载CSV


从风蚀坑内不同部位的风速廓线变化(图6)可以看出,除东侧侵蚀坡面的测站因地形偏转较大外,风蚀坑内各点的风向变化均与坑体走向基本一致,但风速随高度的变化均不符合对数规律。风速廓线的变化主要分为3种情况:风蚀坑入口处(1-1)、积沙体迎风坡(坡脚4-1、坡上方4-4)部位的风速廓线变化表现为风速随高度的升高而增加;风蚀坑底部(1-4)、积沙体顶部(3-4)和侵蚀坡面中部(3-2)部位的风速廓线变化表现为双峰模式。其中,在风蚀坑底部(1-4)0~0.3 m高度范围内,风速随高度上升而减小,在0.3~0.5 m高度范围内,风速随高度上升急剧增加,0.5~2.0 m高度范围内,风速随高度上升减小;而在积沙体顶部(3-4)和东侧侵蚀坡面(3-2)0~0.3 m高度范围内,风速随高度上升而增加,在0.3~0.5 m高度范围内风速随高度上升而减小,在0.5~2.0 m高度范围内风速随高度上升而增加,且积沙体顶部风速的增加趋势相对剧烈;位于侵蚀坡面靠近坑头位置(4-2)及靠近积沙体位置(1-2)的垂直风速梯度变化表现为单峰模式。其中,靠近积沙体部位在0~1.0 m高度范围内风速随高度上升而增加,在1~2 m高度范围内风速随高度上升而减小;靠近坑头部位风速在0~0.3 m高度范围内随高度升高而增加,在0.3~2.0 m范围内风速随高度上升而减小。尽管在该测量高度内的风速廓线与对数规律的分布模式(上凸的曲线)偏离较大,但普遍在贴地层某一高度处出现拐点,拐点以上风速廓线不满足对数规律,拐点以下则应是基本满足对数规律的。由于风蚀坑内气流状况复杂,且不同部位的地表供沙能力不同,该拐点的出现高度也不尽相同,普遍出现在约0.3 m高度处,且坑体底部、积沙体顶部均不同程度地出现风速廓线向低风速值偏转的现象,因此我们认为风蚀坑内有潜在涡流存在的可能7,且涡流高度为距风蚀坑底部0.3~0.5 m高度的位置处。

图6

图6   风蚀坑B4不同部位风速廓线图

图中参考风向为风速廓线观测期间气象站所测,表示进入风蚀坑的初始气流方向;风蚀坑内的箭头表示各观测点距地表0.1 m高度的风向;风速廓线图中表示的是各测点不同高度的相对风速。由于风速仪传感错误,3-4测站0.1 m高度处数据及3-2测站1.0 m高度处数据被剔除,但基于前文中贴地层气流的观测结果,判断3-4测站0.1 m高度的风速应低于积沙体迎风坡测点同高度的风速,U0.1 m(3-4)≈0.8(实心图标表示),风向保持沿积沙体走向发展(虚线箭头表示)

Fig.6   The wind speed profiles at different positions of the trough blowout B4

The reference wind direction in the figure was measured by the meteorological station during the observation, indicated the initial direction of the airflow before entering the wind blowout. The arrow in the blowout indicates the wind direction at 0.1 m height from the surface of each observation point. The wind speed profile shows the wind speed at different heights of each observation point. Because of the anemometer sensor error, wind speed and the direction at 0.1 m height of station 3-4 and 1.0 m height of station 3-2 were eliminated. Based on the observation results of the near surface airflow above, we believe that wind speed at 0.1 m height of station 3-4 should be lower than the windward side of the deposition, U0.1 m (3-4)≈0.8 (the solid circle), wind direction should be along with the deposition (the dotted arrow)


图7更加清晰地揭示了风蚀坑中轴线断面不同高度的风速变化及等风速示意图。由图7可见贴地层气流的变化趋势与前文的分析结果一致,即在风蚀坑底部风速最大,在积沙体顶部风速最小;但在0.5 m高度上则存在2个高值中心,即风蚀坑底部(1-4)及积沙体迎风坡上侧(4-4);在2.0 m高度上存在明显的风速高值区即积沙体顶部及积沙体迎风坡坡脚处,风蚀坑底部变为低风速区。

图7

图7   风蚀坑B4中轴线不同高度相对风速变化示意图(a)及中轴线等风速线示意图(b)

Fig.7   Schematic diagram of uniform wind speed at different heights (a) and the iso-velocity patterns within the blowout (b) at the center axis of the blowout B4


4.3 风沙流通量廓线特征

风沙流观测时段内,气象站参考风速平均为10.7 m/s,风向平均为324.6°,与坑体走向夹角约为8°,风速变异系数为0.15,风向稳定系数为7.80,表明观测时段内环境风况较为稳定。7组集沙仪得到的1 m高度内的风沙流结构如图8所示。由图8可见,风蚀坑底部、积沙体迎风坡侧及背风坡侧的输沙通量与高度并不是简单的曲线递减关系,而是形成“象鼻效应”41。其中,坑底的最大输沙通量在0.08 m高度处,积沙体迎风坡侧与背风坡侧的最大输沙通量均在0.04 m高度处。造成这种现象的原因在于其地表覆盖层砂粒、跃移砂粒与地表之间的碰撞近似弹性碰撞,其反弹的颗粒集中在这一层42~44。结合表4也可看出,在风蚀坑0~20 cm高度范围内的输沙量占总输沙量的70%以上,部分位置0~20 cm高度范围内输沙量达到总输沙量的90%以上,而坑底部位由于跃移颗粒反弹高度较高,0~20 cm高度范围内的输沙量仅占总量的62%,且相对其他部位坑底各高度层输沙量随高度的递减速率较慢。

图8

图8   风蚀坑B4不同部位风沙流结构函数(三参数的指数函数)

Fig.8   Structure function of wind-sand flow and its fitting equation using the modified three parameter exponential function


表4   风蚀坑内风沙流通量特征

Table 4  Characteristics of the sand flux density in the blowout B4

测点 名称总输沙量/g各高度层输沙量占比/%
0~10 cm11~20 cm21~40 cm41~100 cm
J-696.7776.2616.545.841.36
J-1201.6757.3824.1213.834.66
J-272.9974.5013.468.393.64
J-518.5159.2722.9711.226.54
J-434.8279.2411.068.890.81
J-716.1235.3727.0926.1611.38
J-379.1256.0217.1114.0612.81

新窗口打开| 下载CSV


根据常用的5个风沙流结构函数45:指数函数模型、幂函数模型、三参数修正式指数模型与三参数修正式幂函数模型(2个),我们对风蚀坑内7个测站不同高度的输沙通量与高度进行拟合,拟合结果见表5。指数函数模型可较好地拟合坑体内不同高度的输沙通量,且三参数的指数函数模型凭借更高的拟合优度对风蚀坑内各部位不同高度的拟合效果最佳(图8),但各函数模型在积沙体背风坡侧的输沙通量拟合均表现较差,这与背风坡侧气流分离导致的沙粒不均匀搬运和沉降有关,具体原因有待我们进一步研究。

表5   不同函数模型的拟合优度对比

Table 5  Comparisons of the goodness of fit of the five models

拟合函数J-1J-2J-3J-4J-5J-6J-7
Q(z)=a1·z-b10.730.890.980.880.210.840.57
Q(z)=a2·e-b2z0.990.990.990.990.490.990.95
Q(z)=c3+a3z-b30.890.820.720.860.360.910.93
Q(z)=a4(c4+z)-b4-0.04-0.04-0.28-0.09-3.03-0.08-0.06
Q(z)=c5+a5e-b5z0.990.990.910.980.540.990.97

注:Q(z)为输沙通量,单位为kg/(m2∙min);z为高度,单位为m;a1b1a2b2a3b3c3a4b4c4a5b5c5均为拟合系数

新窗口打开| 下载CSV


5 讨 论

5.1 表面气流对输沙的影响

尽管已有学者对沙丘风蚀坑的输沙率与风场进行了相关研究146,但由于各研究风蚀坑形态的不同及研究侧重不同,目前对风蚀坑内二次流结构与输沙模式之间的关系仍没有明确结论。此外,本文所研究的槽型风蚀坑B4形态也与以往风蚀坑不同,主要表现在其尺度的显著差异上。由图9可见,槽型坑B4内各测点的输沙率在坑底最小,为0.05 g/(m∙min),积沙体迎风坡前最大,为0.67 g/(m∙min),这是由于坑体中部、两侧侵蚀斜坡上的3支从坑头辐散的气流在经过坑体内部后携带大量沙物质重新汇集于此,较低的风速变异系数也表明气流在迎风坡处于辐合状态;积沙体顶部及背风坡侧越来越低的输沙率则表明坑体内气流所携带的沙物质部分被带出坑体向下风向输送,但大部分仍堆积在积沙体迎风坡,使得积沙体越来越高、体积越来越大。

图9

图9   风蚀坑不同部位的输沙率与风速

由于集沙仪J-2处的风速仪由于数据出错被剔除,故缺少该处的风速数据

Fig.9   The sediment transport rate and wind speed of different parts of the blowout

As the anemometer at the sand trap J-2 was deleted due to data error, the wind speed data at that location was missing


然而,输沙率最大的部位贴地层风速却不是最大,各测点风速与输沙率之间关系复杂。这主要是由于影响输沙率大小的除风速外还有地表状况,风蚀坑底部处于侵蚀基准,地表沙粒较粗30,沙源供应不足,因此,尽管坑底风速很大,但其输沙率却最小。我们将地表沙物质供应不充足的坑底测站(J-7)去掉后,将其余测站的输沙率分别与地表风速及风速变异系数Fs进行拟合,发现不同于Smyth等46的结果:输沙率与风速之间呈正相关关系,与风速变异系数Fs呈不显著负相关,且两者的拟合结果均不理想,其中与风速的拟合优度略高(R2=0.37),这可能与风蚀坑内小地形引起的二次流相关,需要我们进行贴地层风速廓线与输沙的进一步研究。

5.2 风蚀坑内气流与形态的反馈

气流方向与风蚀坑形态影响坑体内气流场特征。研究表明15,当斜向气流与坑体走向夹角为0~100°时风会被坑体内的低压吸入,风向也会转变为随坑体走向一致,Pease等47则发现当初始气流与坑体走向夹角超过50°时坑体内的气流变得不稳定,风速风向变异性增大,只有风蚀坑中轴线的气流走向与坑体走向一致。本文的观测结果显示,对于发育初期阶段的风蚀斑B1而言,当与坑体夹角为88°的气流进入坑体后,虽然风速风向的变异性由于坑体内部小地形的影响而变大,但其内部气流分布均与坑体走向一致,与Hesp等15的观测结果一致。对于发育初期阶段的碗状坑B2与槽型坑B3而言,与坑体夹角分别为16°与28°的气流进入后风向随地形发生偏转,与Hesp等15及Pease等47的观测结果一致。对于中尺度的槽型坑B4而言,观测结果则与Hesp等15和Pease等47的研究结果有所不同。与坑体夹角为13°的气流进入坑体后,首先在坑头辐散减速,在中部气流加速,而在坑体后方风速则持续减小至积沙体顶部,在背风坡侧风速有所恢复,整个过程中风速变异性与风速的变化趋势一致,风向变异性则与之相反,在坑底最稳定,在积沙体顶部风向变异性最大,这与风蚀坑的形态尺度有关。本文所观测的风蚀坑B4其发育尺度为前人观测风蚀坑的2~10倍45151647,因此坑体内各部位的风速较稳定,风速变异性相对较小,变化幅度也较小;而风向则在坑体中部最稳定,在积沙体顶部由于气流辐散方向不稳定性增大。此外,结合输沙通量及风速廓线的观测结果,我们发现尽管中尺度风蚀坑中由于潜在涡流的存在导致坑体不同部位风速廓线分布模式有所差异,但处于青年期的风蚀坑由于其尺度及形态变化迅速121318,在其后期的形态扩张和演变过程中内部气流的分布模式及地形反馈效应会随之发生变化。

同样,风蚀坑内部气流的分布也会影响风蚀坑形态的发展。斜向气流条件下,风蚀斑内最高风速出现在风蚀坑出口处(即风蚀坑的东北侧与东南侧),加速了风蚀坑的侵蚀程度;碗状坑内最大侵蚀风力也出现在风蚀坑下风向出口处,导致碗状坑长宽比例的增大13;小尺度槽型坑内坑体中部至积沙体前的风速最大,积沙体顶部的风速较小,致使风蚀坑深度及积沙体的进一步加深、加高;而中尺度槽型坑综合其风速廓线及输沙的特征,在斜向气流条件下风蚀坑整体为净堆积状态,侵蚀盆内部大部分沙物质堆积在积沙体前,进一步加大了积沙体体积和风蚀坑的相对深度,有利于风蚀坑的纵向生长。同时,贴地层指向风蚀坑陡坎的风向表明坑体内的螺旋流有利于风蚀坑的生长,贴地层气流通过不断掏蚀两侧陡坎下层沙物质,使得风蚀坑的横向扩张以坍塌生长为主1318,这也在一定程度上供应了坑体两侧侵蚀坡面上的沙物质1830

6 结 论

本文观测了斜向气流条件下不同发育阶段、不同尺度、不同形态的4个风蚀坑内的贴地表气流,并对中尺度槽型坑内的输沙及垂直风速廓线进行了观测,主要结论有:

(1)不同发育阶段风蚀坑其内部流场结构有所差异,贴地层气流场受坑体形态影响较大。

(2)中尺度槽形坑内风速廓线的变化表明坑体内存在潜在涡流分布的可能,涡流高度为距地表0.3~0.5 m。

(3)槽形坑内风沙流结构呈指数函数式递减规律,坑体内输沙率在坑底最低、积沙体迎风坡前最大,输沙率与风速呈弱正向相关、与风速变异系数呈不显著负相关,这与风蚀坑内的二次流分布及地表状况密切相关。

(4)风蚀坑内气流与形态存在反馈关系,气流方向与风蚀坑形态影响坑体内部气流的分布,而风蚀坑内气流的分布也会影响风蚀坑形态的发展,坑体越大这种反馈效果越明显。

参考文献

HESP P AHYDE R.

Flow dynamics and geomorphology of a trough blowout

[J]. Sedimentology, 199643505-525.

[本文引用: 5]

HESP P A.

Foredunes and blowouts: Initiation, geomorphology and dynamics

[J]. Geomorphology, 200248245-268.

[本文引用: 3]

CARTER R W GHESP P ANORDSTROM K F.

Erosional landforms in coastal dunes

[C]// NORDSTROM K F, PSUTY N P, CARTER R W G. Coastal dunes: Form and process. WileyLondon1990217-249.

FRASER G SBENNET S WOLYPHANT G Aet al.

Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan

[J]. Journal of Coastal Research, 199814451-460.

[本文引用: 1]

SMYTH T A GJACKSON D W TCOOPER J A G.

Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds

[J]. Aeolian Research, 20139111-123.

[本文引用: 3]

HUGENHOLTZ C HWOLFE S A.

Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada

[J]. Earth Surface Processes and Landforms, 2006311 540-1 557.

[本文引用: 2]

LI ShuangquanHASI EerdunDU Huishiet al.

Interaction between airflow and shape of saucer blowout in grassland

[J]. Journal of Desert Research, 2012325): 1 201-1 209.

[本文引用: 2]

李双权哈斯杜会石.

沙质草地碟形风蚀坑形态-气流相互作用

[J]. 中国沙漠, 2012325): 1 201-1 209.

[本文引用: 2]

WANG ShuaiHASI EerdunZHANG Junet al.

Geomorphological significance of air flow over saucer blowout of the Hulun Buir Sandy Grassland

[J]. Journal of Desert Research, 2007275): 745-749.

王帅哈斯张军.

呼伦贝尔沙质草原碟形风蚀坑表面气流及其意义

[J]. 中国沙漠, 2007275): 745-749.

WANG ShuaiHASI Eerdun.

Air flow dynamics of the blowout trough in the Hulun Buir Sandy Grassland

[J]. Science of Soil and Water Conservation, 200972): 80-85.

[本文引用: 1]

王帅哈斯.

呼伦贝尔沙质草原槽形风蚀坑表面气流特征

[J]. 中国水土保持科学, 200972): 80-85.

[本文引用: 1]

SUN YuDU HuishiHASI Eerdunet al.

Aeolian dynamical process of blowout on the fixed dune

[J]. Acta Geographica Sinica, 2016719): 1 562-1 570.

[本文引用: 1]

孙禹杜会石哈斯额尔敦.

固定沙丘风蚀坑风沙动力学观测研究

[J]. 地理学报, 2016719): 1 562-1 570.

[本文引用: 1]

HU RinaHASI EerdunHAOBISI Halatuet al.

Dynamic changes of blowouts on fixed sand dunes in the southeastern fringe of Otindag Sandy Land

[J]. Journal of Desert Research, 2019391): 37-46.

[本文引用: 2]

胡日娜哈斯额尔敦浩毕斯哈拉图.

浑善达克沙地东南缘固定沙丘风蚀坑动态变化

[J]. 中国沙漠, 2019391): 37-46.

[本文引用: 2]

LUO W YWANG Z YSHAO Met al.

Historical evolution and controls on mega‐blowouts in northeastern Qinghai‐Tibetan Plateau, China

[J]. Geomorphology, 201932917-31.

[本文引用: 3]

LUO W YWANG Z YLU J Fet al.

Mega‐blowouts in Qinghai-Tibet Plateau: Morphology, distribution and initiation

[J]. Earth Surface Processes and Landforms, 2019442): 449-458.

[本文引用: 6]

HUGENHOLTZ C HWOLFE S A.

Form-flow interactions of an aeolian saucer blowout

[J]. Earth Surface Processes and Landforms, 200934919-928.

[本文引用: 4]

HESP P APRINGLE A.

Flow behaviour in a trough blowout. Tangimoana, New Zealand

[J]. Journal of Coastal Research, 200134(special issue): 597-601.

[本文引用: 5]

HESP P ASMYTH T A GWALKER I Jet al.

Flow within a trough blowout at cape cod

[J]. Journal of Coastal Research, 201675(special issue):288-292.

[本文引用: 3]

DECH J PMAUN M APAZNER M I.

Blowout dynamics on lake huron sand dunes: Analysis of digital multispectral data from colour air photos

[J]. Catena, 2005602): 165-180.

[本文引用: 1]

LUO W YSHAO MCHE X Het al.

Optimization of UAVs-SfM data collection in aeolian landform morphodynamics: A case study from the Gonghe Basin, China

[J]. Earth Surface Processes and Landforms, 2020453 293-3 312.

[本文引用: 6]

SMYTH T A GJACKSON D W TCOOPER J A G.

Computational fluid dynamic modelling of Three-Dimensional airflow over dune blowouts

[J]. Journal of Coastal Research, 201164(special issue): 314-318.

[本文引用: 1]

SMYTH T A GJACKSON D W TCOOPER J A G.

High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout

[J]. Geomorphology, 2012177/17862-73.

[本文引用: 1]

ZHANG A MungkDalaiWANG XiaokeHASI Eerdunet al.

HulunBuir Sandy Grassland blowouts: Geomorphology,classification,and significances

[J]. Journal of Desert Research, 2006266): 894-902.

[本文引用: 1]

张德平王效科哈斯.

呼伦贝尔沙质草原风蚀坑研究(I)——形态、分类、研究意义

[J]. 中国沙漠, 2006266): 894-902.

[本文引用: 1]

ZHANG A MungkDalaiSUN HongweiWANG Xiaokeet al.

HulunBuir Sandy Grassland blowouts (II): Process of development and landscape evolution

[J]. Journal of Desert Research, 2007271): 20-24.

张德平孙宏伟王效科.

呼伦贝尔沙质草原风蚀坑研究(II): 发育过程

[J]. 中国沙漠, 2007271): 20-24.

ZHANG A MungkDalaiWANG XiaokeHURRLE Uet al.

HulunBuir Sandy Grassland blowouts (III): Influence of Soil Layer and Microrelief

[J]. Journal of Desert Research, 2007271): 25-31.

张德平王效科胡日乐.

呼伦贝尔沙质草原风蚀坑研究(III): 微地貌和土层的影响

[J]. 中国沙漠, 2007271): 25-31.

ZHANG A MungkDalaiWANG XiaokeSUN Hongweiet al.

HulunBuir Sandy Grassland blowouts: Influence of human activities

[J]. Journal of Desert Research, 2007272): 214-220.

[本文引用: 1]

张德平王效科孙宏伟.

呼伦贝尔沙质草原风蚀坑研究(IV): 人类活动的影响

[J]. 中国沙漠, 2007272): 214-220.

[本文引用: 1]

SHI Peijun.

Theory of the surface morphological characteristics and development process of desertified land in Daqinggou area, Southern Horqin

[J]. Journal of Inner Mongolia Normal University (Natural Science Edition),19861): 45-56.

[本文引用: 1]

史培军.

试论科尔沁南部大青沟地区沙漠化土地的地表形态特征及其发育过程

[J]. 内蒙古师大学报:自然科学版,19861):45-56.

[本文引用: 1]

YANG GenshengLIU YangxuanLI Changzhiet al.

Characteristics of aeolian sand at different developmental stages of desertification: A case study of Daqinggou typical area in the southern Horqin sandy land

[J]. Environmental Protection of Xinjiang, 19872):8-15.

[本文引用: 1]

杨根生刘阳宣李长治.

沙漠化不同发育阶段的风沙特征——以科尔沁沙地南部大青沟典型区为例

[J]. 新疆环境保护, 19872):8-15.

[本文引用: 1]

ZHANG ShaoyunDONG Yuxiang.

Research progress on morphodynamics of coastal sandy blowout

[J]. Advances in Earth Science, 20193410):1 028-1 037.

[本文引用: 1]

张绍云董玉祥.

海岸沙地风蚀坑形态—动力学研究进展

[J]. 地球科学进展,20193410): 1 028-1 037.

[本文引用: 1]

ZHUANG YanmeiSi HA.

Progress of the study on shapes and dynamical process of blowout on dunes

[J]. Arid Zone Research, 20055): 632-637.

[本文引用: 1]

庄燕美哈斯.

沙丘风蚀坑的形态及动力过程的研究进展

[J]. 干旱区地理, 20055): 632-637.

[本文引用: 1]

SUN YuDU HuishiLIU Meipinget al.

A review on morphodynamic processes of blowouts

[J]. Science Geographica Sinica, 2015357): 898-904.

[本文引用: 1]

孙禹杜会石刘美萍.

风蚀坑形态——动力学研究进展

[J]. 地理科学, 2015357): 898-904.

[本文引用: 1]

WANG ZhongyuanLUO WanyinDONG Zhibaoet al.

Grain size characteristics of the blowout surface sediments and its aerodynamic significance in the alpine meadow region of Gonghe Basin

[J]. Journal of Desert Research, 2017371): 7-16.

[本文引用: 4]

王中原罗万银董治宝.

共和盆地高寒草原风蚀坑表层沉积物粒度特征及动力学意义

[J]. 中国沙漠, 2017371): 7-16.

[本文引用: 4]

DONG GuangrongGAO ShangyuJIN Jiong. Land desertification and its control in Gonghe Basin, Qinghai Province[M]. BeijingScience Press1993.

[本文引用: 2]

董光荣高尚玉金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京科学出版社1993.

[本文引用: 2]

ZHANG DengshanGAO ShangyuSHI Mengyiet al. Sandy desertification and its control in the Qinghai Plateau[M]. BeijingScience Press2009.

[本文引用: 1]

张登山高尚玉石蒙沂. 青海高原土地沙漠化及其防治[M]. 北京科学出版社2009.

[本文引用: 1]

CHEN ZongyanDONG ZhibaoWANG Qingchun. Wind regime and dune field patterns in the Gonghe BasinQinghai

China

[J]. Journal of Desert Research, 2018383): 492-499.

[本文引用: 1]

陈宗颜董治宝汪青春.

青海共和盆地风况及风沙地貌

[J]. 中国沙漠, 2018383): 492-499.

[本文引用: 1]

CHEN ZongyanDONG ZhibaoChongyi Eet al.

Characteristics of wind regime and its variation trend in the Gonghe Basin from 1971 to 2015

[J]. Journal of Lanzhou University:Natural Sciences, 20202): 224-230.

[本文引用: 1]

陈宗颜董治宝鄂崇毅.

1971—2015年共和盆地风况特征及变化趋势

[J]. 兰州大学学报:自然科学版, 20202): 224-230.

[本文引用: 1]

ZHU ZhendaCHEN Guangting. Sandy desertification of land in China[M]. BeijingScience Press1994.

[本文引用: 1]

朱震达陈广庭. 中国土地沙质荒漠化[M]. 北京科学出版社1994.

[本文引用: 1]

Minghua YAN JiangyuYAO Rentaiet al.

Study on the statistical method of wind direction

[J]. Journal of Meteorology and Environment, 2012283): 83-89.

[本文引用: 1]

吕明华闫江雨姚仁太.

风向的统计方法研究

[J]. 气象与环境学报, 2012283): 83-89.

[本文引用: 1]

WU Zheng. Aeolian landform and sand control engineering[M]. BeijingScience Press2003.

[本文引用: 1]

吴正. 风沙地貌与治沙工程学[M]. 北京科学出版社2003.

[本文引用: 1]

LIU Panfeng.

Analysis of annual air density variation in Qinghai lake region

[J]. Journal of Qinghai University (Nature Science), 20102): 14-15.

[本文引用: 1]

刘攀峰.

青海湖地区空气密度年变化分析

[J]. 青海大学学报:自然科学版, 20102): 14-15.

[本文引用: 1]

ANDERSON J LWALKER I J.

Airflow and sand transport variations within a backshore-parabolic dune plain complex: NE Graham Island, British Columbia, Canada

[J]. Geomorphology, 20067717-34.

[本文引用: 1]

WALKER I JNICKLING W G.

Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes

[J]. Earth Surface Processes and Landforms, 2003281 111-1 124.

[本文引用: 1]

QU JianjunHUANG NingWanquan TAet al.

Structural characteristics of gobi sand-drift and its significance

[J]. Advances in Earth Science, 2005201): 19-23.

[本文引用: 1]

屈建军黄宁拓万全.

戈壁风沙流结构特性及其意义

[J]. 地球科学进展, 2005201): 19-23.

[本文引用: 1]

HE QingHU WenfengYANG Xinghuaet al.

Research on wind profile and sand drift structure in Guaizi Lake Region in the Badain Jaran Desert

[J]. Arid Zone Research, 2012293): 517-523.

[本文引用: 1]

何清胡文峰杨兴华.

巴丹吉林沙漠拐子湖地区贴地层风速廓线和风沙流结构特征

[J]. 干旱区研究, 2012293): 517-523.

[本文引用: 1]

LI GZHANG JHERRMANN H Jet al.

Study of aerodynamic grain entrainment in aeolian transport

[J]. Geophysical Research Letters, 202047e2019GL

086574

DOI:10.1029/2019GL086574.

HUANG NHE PZHANG J.

Large-eddy simulation of sand transport under unsteady wind

[J]. Geomorphology, 2020. DOI:10.1016/j.geomorph. 2020. 107105.

[本文引用: 1]

DONG Z BLU J FMAN D Qet al.

Equations for the near‐surface mass flux density profile of wind‐blown sediments

[J]. Earth Surface Processes and Landforms, 2011361 292-1 299.

[本文引用: 1]

SMYTH T A GJACKSON DCOOPER A.

Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions

[J]. Earth Surface Processes and Landforms, 20143914): 1 847-1 854.

[本文引用: 2]

PEASE PGARES P.

The influence of topography and approach angles on local deflections of airflow within a coastal blowout

[J]. Earth Surfaces Processes and Landforms, 2013381 160-1 169.

[本文引用: 4]

/