地球科学进展, 2020, 35(2): 137-153 DOI: 10.11867/j.issn.1001-8166.2020.003

综述与评述

中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨

赵振洋,1, 李双建,2, 王根厚1

1.中国地质大学(北京)地球科学与资源学院,北京 100083

2.中国石化石油勘探开发研究院,北京 100083

Discussion on Sedimentary Environments,Origin and Source of Middle Permian Gufeng Formation Bedded Cherts in theNorthern Margin of the Middle-Lower Yangtze Area

Zhao Zhenyang,1, Li Shuangjian,2, Wang Genhou1

1.School of Geosciences and Resources,China University of Geosciences,Beijing 100083,China

2.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083,China

通讯作者: 李双建(1978 -),男,河北泊头人,研究员,主要从事油气盆地研究. E-mail:lishuangjian.syky@sinopec.com

收稿日期: 2019-09-29   修回日期: 2019-12-20   网络出版日期: 2020-03-24

基金资助: 国家自然科学基金重点项目“特提斯域内大陆单向裂解—聚合过程中的油气大规模富集效应”.  91755211
国家科技重大专项“海相碳酸盐岩大中型油气田分布规律及勘探评价”.  2017ZX05005-001

Corresponding authors: Li Shuangjian (1978-), male, Botou County, Hebei Province, Professor. Research areas include petroliferous basins. E-mail:lishuangjian.syky@sinopec.com

Received: 2019-09-29   Revised: 2019-12-20   Online: 2020-03-24

作者简介 About authors

赵振洋(1996-),男,河南长葛人,硕士研究生,主要从事构造地质学研究.E-mail:zzycugb@163.com

ZhaoZhenyang(1996-),male,ChanggeCounty,HenanProvince,Masterstudent.Researchareasincludestructuregeology.E-mail:zzycugb@163.com

摘要

硅质岩中蕴含着重要的古地理、古构造及古海洋等信息,是进行岩石大地构造学研究的重要手段。针对中下扬子北缘孤峰组层状硅质岩的沉积环境、成因及硅质来源存在的较大争议,基于沉积—构造演化过程,从正反两方面进行论证:正向论证通过对前人关于孤峰组层状硅质岩成因的观点进行归纳总结,并广泛搜集已发表的相关地球化学原始数据,建立硅质岩主量、稀土元素数据库,重新系统地进行沉积环境、成因及硅质来源判别;反向论证通过对华南中二叠世主要地质事件进行时间及成因的梳理,建立构造演化序列,以检验或解释目前存在的系列争议,结果表明:除个别地区如安徽贵池唐田、铜陵花树坡和巢湖平顶山受火山活动及断裂影响向热液成因过渡,中下扬子北缘孤峰组层状硅质岩主要为非热液成因或生物成因,且沉积于被动大陆边缘深水环境;华夏古陆隆升及海平面升降控制了研究区孤峰组层状硅质岩中部分陆源物质的输入,但陆源物质对硅质岩的硅质贡献并不明显;孤峰组硅质岩的研究对峨眉山玄武岩的喷发时间及动力学机制具有重要的启示意义。

关键词: 中下扬子北缘 ; 中二叠统 ; 孤峰组层状硅质岩 ; 地球化学 ; 峨眉山玄武岩

Abstract

Cherts contain important information of paleogeography, paleostructure and paleo-ocean, which is the important means of studying petrotectonics. With regard to the major disputes on the sedimentary environments, origin and source of Gufeng Formation bedded cherts in the northern margin of middle-lower Yangtze area, demonstrations from both forward and reverse aspects from the perspective of the sedimentary-tectonic evolution were given. By summarizing previous views on the genesis of bedded cherts in Gufeng Formation, and extensively collecting published original geochemical data, in the forward demonstrations we created the database of the cherts about rare earth elements to systematically identify the sedimentary environments, origin and source of cherts. By sorting out the time and cause of the main geological events in the middle Permian in south China, in the reverse demonstrations we established the sequence of tectonic evolution to verify or explain the current series of disputes. The results show that: Except some areas, such as Guichi-Tangtian, Tongling-Huashupo and Chaohu-Pingdingshan in Anhui province, which were affected by volcanic activities and faults, the bedded cherts of Gufeng Formation in the northern margin of middle-lower Yangtze area are mainly of non-hydrothermal origin or biological origin, and deposited in the passive continental margin deep water environments. Paleocontinental uplift in cathaysian and sea level eustacy controlled the input of some terrestrial materials in the the Gufeng Formation bedded cherts in the study area, but the contribution of terrestrial materials to cherts is not obvious. The study of cherts in Gufeng Formation is of great significance to the eruption time and dynamic mechanism of Emeishan basalts.

Keywords: The northern margin of middle-lower Yangtze area ; The middle Permian ; Gufeng Formation bedded cherts ; Geochemistry ; Emeishan basalts

PDF (6639KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨. 地球科学进展[J], 2020, 35(2): 137-153 DOI:10.11867/j.issn.1001-8166.2020.003

Zhao Zhenyang, Li Shuangjian, Wang Genhou. Discussion on Sedimentary Environments,Origin and Source of Middle Permian Gufeng Formation Bedded Cherts in theNorthern Margin of the Middle-Lower Yangtze Area. Advances in Earth Science[J], 2020, 35(2): 137-153 DOI:10.11867/j.issn.1001-8166.2020.003

1 引 言

基于1985年大洋钻探计划(Ocean Drilling Program,ODP)的实施,Murray等[1,2,3,4,5]根据不同地区主微量元素和稀土元素对应样品的平均值建立了硅质岩数据库并提出硅质岩成因及沉积环境的相应判别标准,由此掀起了国内外学者对硅质岩的研究热潮。例如近年来对中下扬子北缘中二叠统孤峰组层状硅质岩的研究,其数据资料相当丰富,研究程度相对较高,但对其成因众说纷纭,且往往因地而异。

截至目前,其成因包括热液成因、生物成因和上升流成因等,大地构造背景如大陆边缘和深海盆地等仍存在较大争议[6,7,8,9,10]。最近,程成等[10]对扬子地台北缘中上二叠统层状硅质岩的研究表明其主要为生物成因,沉积环境主要为大陆边缘;姚旭[11]认为以鄂渝边界划分,以西为热液成因,以东为生物成因,且主要为深水沉积。

针对以上问题,以及考虑到前人通常基于小区域研究得出结论,且对稀土元素进行页岩标准化时,所依标准也不尽相同,如北美页岩组合样(North American Shale Composite,NASC)、澳大利亚后太古代页岩(Post-Archaean Average Australian Sedimentary Rock,PAAS)[12,13,14,15]等,关于NASC的元素丰度也各有差异,此外为避免受到前人研究结论的影响而重复工作,本文首先系统收集了前人已报道的研究区孤峰组层状硅质岩地球化学分析原始数据,包括主量和稀土元素(微量元素因不同作者在不同地区所测试分析的种类和数量差异较大,不能统一),并按照Murray[5]建立硅质岩沉积环境判别标准时所依据的NASC及对每个地区同种元素对应的不同样品取平均值这一思路,对硅质岩的沉积环境、成因及硅质来源进行判别分析。

其次通过详细调研华南中二叠世各种构造事件,如潘吉亚大陆的裂解[16,17]、勉略洋的扩张[18,19]、峨眉山玄武岩的喷发[20,21,22,23,24,25,26,27,28]、伊拉瓦拉古地磁反转(Illawarra Reversal)[16,17]和中二叠世末期生物大灭绝[25,29,30,31,32]等,将硅质岩的沉积作为对系列构造事件的响应进行研究,对华南中二叠世沉积环境及区域构造背景进行系统性归纳,并建立构造演化序列,对以上地球化学判别结果进行检验及综合对比分析,以期厘定中下扬子孤峰组层状硅质岩的沉积环境、成因及硅质来源,并取得关于华南中二叠世构造演化的一些新的认识。

2 研究进展及争议

自1959年第一届全国地层会议盛金章提出孤峰组以来,目前普遍认为孤峰组的定义为:栖霞组与龙潭组之间的薄层硅质岩、硅质页岩、粉砂质泥岩、碳质页岩和锰质页岩,下部页岩含锰及磷质结核。含菊石、腕足类、双壳类和放射虫等化石。底至栖霞组以厚层灰岩为止,含锰页岩出现为界;顶至龙潭组薄层硅质岩为止,含个体甚小的双壳类等化石的页岩为界[33]。此后,关于华南扬子地台孤峰组层状硅质岩的研究历史及进展,作者根据代表性观点厘定出以下2个阶段。

2.1  区域地质调查及成因初定

孔庆玉等[34]将前人一直认为的苏皖地区中二叠统孤峰组硅质岩中的鲕粒纠正为放射虫,且硅质岩区域上呈北东向展布于郯庐断裂与江南断裂之间的狭长地带,并结合区域地质资料分析认为苏皖地区中二叠统孤峰组硅质岩形成于赤道地区的深海环境,处于裂陷活动产生的凹槽内。朱洪发等[35]根据在华南碳酸盐岩区观察和收集的资料,总结出孤峰组层状硅质岩在华南扬子地台呈条状并与茅口组、长兴组的碳酸盐岩间互呈棋盘格式分布,认为华南二叠纪受南北向统一拉张应力场控制,经历了大规模拉张活动,且古特提斯洋同步打开。邱威挺等[36]通过对华南二叠系系列岩相剖面实测及对川东北地区地质资料的研究,认为孤峰组硅质岩形成于浅水泻湖海湾—局限台地,后期水深可为数米,而孤峰组的底界自西至东分别为:上扬子如旺苍、广元地区为平行不整合,中扬子自四川南江起经重庆奉节至鄂东南与茅口组为连续沉积,下扬子如南京地区与下伏地层为平行不整合。

作为对华南二叠系硅质岩地球化学特征系统分析的先驱,夏邦栋等[37]认为下扬子地区含有放射虫及海绵骨针的中二叠统孤峰组层状硅质岩富Fe贫Al,且富集As、Sb、Bi、Ga、Au、Ag和Cr等微量元素,稀土元素总量低且Ce呈负异常,重稀土元素有不同程度的富集,显示热水硅质岩的特征并混有少量非热水成因的物质,而硅质沉积时的海水温度约为几十度到160 ℃。

之后杨玉卿等[38]根据在华南野外观察和收集的资料,按照沉积特征和空间分布特点将中二叠统层状硅质岩分为北缘区、中南区及西部的川黔地区3个大区,且以前2个为主。其中北缘区主要分布于孤峰组中,厚度一般为30~80 m。胡世忠[33]总结孤峰组硅质岩带在华南地块北缘呈东西向绵延2 000 km,自东至西由老变新(茅口早期—茅口晚期),且孤峰组为穿时岩石地层单位,与茅口组灰岩段呈“跷跷板”式沉积。

2.2  地球化学特征判别及综合分析

Kametaka等[6]依据安徽巢湖庵门口剖面中硅质岩及下部含磷酸盐结核的泥质岩地球化学特征分析,认为孤峰组放射虫硅质岩沉积环境为大陆架,成因受上升流控制。随后Takebe等[39]进一步测定了巢湖地区二叠系孤峰组硅质岩中有机碳(Corg)、总氮(Ntotal)及S的浓度,认为其富集表明了硫化还原环境;此外,Corg/Ntotal平均值为35,干酪根中的H/C值和O/C值被归为IV型。这些有机质的地球化学特征表明,陆源或再次搬运的有机质是孤峰盆地的陆源补给,且可能是孤峰组含放射虫硅质岩的重要生物生产力来源。

二叠纪晚瓜德鲁普世,华南板块位于古特提斯洋东缘近赤道地区(图1a),同期沿扬子西北缘广泛分布的含放射虫硅质岩及磷酸盐沉积,普遍被认为受上升流作用控制[40]。研究区(图1b)内,吴勘等[41,42]通过系统收集扬子北缘孤峰组露头剖面及钻井资料,以扬子北缘边界断裂作为北部界线,孤峰组剖面与南部、西南部相邻其他剖面分界线之间的中点作为孤峰组分布的其他界线,绘制出孤峰组等厚度分布图,并认为扬子北缘孤峰组主要分布在四川东北部、鄂西渝东、江汉盆地以及安徽东南部地区(图1c)。

图1

图1   研究区古地理、地质背景及地理位置

(a) 晚瓜德鲁普世全球古地理图[40];(b) 研究区地理位置图(http://bzdt.ch.mnr.gov.cn/);(c) 华南扬子北缘孤峰组分布、同沉积断裂展布[10,42]及剖面位置[6,43,44,45,46,47,48,49,50,51,52]

Fig. 1   Palaeogeography, geological setting and geographical location of the study area

(a) Late Guadalupian palaeogeography of the world[40]; (b) Location of the study area in South China(http://bzdt.ch.mnr.gov.cn/); (c) Distribution of Gufeng Formation, syndepositional faults[10,42] and sampling locations[6,43,44,45,46,47,48,49,50,51,52] in the Northern Margin of Yangtze area, South China


Shi等[53]认为孤峰组硅质岩在华南北部的边缘盆地为生物成因,在南部的边缘盆地(南盘江盆地)为热液成因。姚旭等[11,54]研究认为中下扬子地区为受到古海洋、古气候长期演变的驱动所形成的生物成因硅质岩。Zhang等[55]认为孤峰组硅质岩—泥岩韵律层聚集在扬子地台北缘及南缘广泛分布的大陆架盆地,横向上与以碳酸盐岩为主的茅口组为同时异相沉积。最近Ito等[56]详细总结了扬子北缘孤峰组的岩石地层学、放射虫生物地层学及地球化学特征,认为孤峰组硅质岩总体为生物成因,沉积环境为大陆架,氧化还原状况在下扬子地区表现为有氧—次氧—缺氧的变化,而中扬子地区为好氧—缺氧—次氧的变化。

综上所述,华南孤峰组层状硅质岩主要为生物成因、热液成因、上升流成因及之间的过渡类型(表1),其中上升流成因的提出是对生物成因的一种解释及对热液成因的一个否定[6]。此外,热液成因的硅质岩主要集中在中扬子地区,下扬子地区以生物成因为主。沉积环境包括大陆边缘到远洋盆地,且多为封闭缺氧还原环境。

表1   华南孤峰组层状硅质岩成因及沉积环境

Table 1  Genesis and sedimentary environments of Gufeng Formation bedded cherts in South China

主要成因采样地沉积环境参考文献
生物成因湖北武昌上部深水盆地;下部深水斜坡[57]
巢湖平顶山深水缺氧(远洋盆地)[47]
鄂西猫儿山鄂西裂陷槽[49]

生物

(含热液)成因

广西平乐浅海至深海[38]
巢湖平顶山大陆边缘缺氧水体[46]
巢湖平顶山深海盆地[48]
巢湖平顶山大陆边缘[11]
宿松座山
恩施田风坪

大陆边缘中下部与

深水盆地结合部位

[50]
黄山—泾县局限滞留的缺氧环境(大陆边缘)[52]
宣城水东靠近大陆边缘[51]
热液成因泾县昌桥板内引张,海底热泉[37]
南京湖山
宿松座山
秭归白马岭

滞流还原环境

碳酸盐台地内部盆地或台沟

[43]
铜陵花树坡古水温49~249 ℃[45]

热液

(含生物)成因

湘黔桂地区边缘海盆[7]
重庆石柱

台盆相(火山活动及断裂)

古水温34~89 ℃

[58]
上升流—生物成因巢湖庵门口

低通气半封闭次氧化—缺氧,

硫化还原环境(大陆边缘)

[6]
上升流—热液成因扬子北缘大陆边缘(上升流及同沉积断裂)[10]

新窗口打开| 下载CSV


3 硅质岩地球化学特征

3.1  样品及数据处理

作者基于Murray[5]建立硅质岩成因及沉积环境判别标准时的研究思路,尝试通过搜集中下扬子北缘孤峰组硅质岩地球化学分析原始数据以建立数据库,正向论证硅质岩成因及沉积环境,其中微量元素指标由于不同作者在不同地区所测试的种类不尽相同,无法统一。因此最终只统一了大多数地区的稀土及主量元素(表2),整理出关于扬子地台北缘孤峰组包括主量和稀土元素均齐全的11篇文献所报道的9条剖面(依次编号为1~4,5,5*,5**,6~9,其中巢湖平顶山地区研究程度最高,有3组数据编号为5,5*,5**分别对应3篇不同文献[46,47,48]),共计74件样品,以期对硅质岩地球化学特征进行系统性分析。

表2   硅质岩主量元素、稀土元素含量、指标及数据来源

Table 2  Major, rare Earth elements content, index and data source of cherts

元素含量 及指标

采样地

秭归白马岭1贵池唐田2铜陵花树坡3巢湖庵门口4巢湖平顶山5巢湖平顶山5*巢湖平顶山5**鄂西猫儿山6恩施田风坪7宣城水东8黄山—泾县9
主量元素/%SiO289.8589.6068.5292.9995.1291.8293.2487.0285.2497.1992.60
TiO20.060.190.220.040.100.060.040.070.090.050.13
Al2O31.183.455.331.241.622.671.081.621.801.133.03
TFe2O31.933.611.660.620.582.141.400.522.220.611.12
MnO0.020.620.540.000.020.010.020.010.020.000.00
MgO0.140.280.960.060.110.050.090.280.170.060.23
CaO0.460.1717.100.210.130.320.290.280.240.120.01
Na2O0.040.050.440.130.070.780.040.040.03<0.010.03
K2O0.220.583.700.200.080.210.120.310.300.160.47
Al2O3/(Al2O3+Fe2O3)0.380.490.760.670.740.560.440.760.450.650.73
Fe2O3/TiO232.1219.507.5315.325.6037.1638.147.6825.6011.698.78
MnO/TiO20.283.352.450.050.160.220.430.150.190.010.03
稀土元素/(×106)La5.519.3216.004.695.696.493.725.928.613.5813.42
Ce8.6213.0023.208.2111.1161.245.506.059.415.0225.34
Pr1.121.783.661.121.491.470.841.141.830.813.31
Nd4.828.6514.604.736.976.083.274.267.253.5311.90
Sm0.922.592.670.961.451.080.690.801.500.692.30
Eu0.170.640.500.190.320.240.140.160.290.130.47
Gd1.043.203.021.011.711.140.660.901.500.562.01
Tb0.160.500.440.150.280.190.130.140.250.060.30
Dy0.923.162.880.891.731.130.660.881.510.401.79
Ho0.220.730.600.190.320.260.160.200.330.070.34
Er0.641.971.780.540.890.730.430.590.950.190.95
Tm0.100.290.290.080.120.120.090.090.140.030.13
Yb0.571.730.320.490.670.640.410.560.940.200.85
Lu0.080.271.830.080.090.110.090.090.140.030.13
LREE21.1635.9660.6319.9027.0376.6014.1618.3328.9013.7656.74
HREE9.8111.8430.863.4217.564.302.613.455.761.546.51
LREE/HREE2.163.121.966.742.0822.374.955.715.2710.348.91
∑REE24.8947.8091.4923.3244.5980.9016.7721.7834.6615.3063.25
LaN/CeN1.311.361.421.231.040.231.892.041.831.671.14
LaN/YbN0.910.504.700.990.980.980.781.000.912.031.41
δCe0.800.850.700.810.906.870.600.540.560.650.87
δEu0.770.970.780.880.900.961.490.860.870.890.90
参考文献[43][44][45][6][46][47][48][49][50][51][52]

新窗口打开| 下载CSV


关于样品处理,则对每个地区同一种元素对应的所有样品取平均值(其中恩施田凤坪地区样品PM233/10-1因硅质含量为4.3%[50]而未参与相关计算),对主量元素中的Fe2O3及(或)FeO指标均统一转化为TFe2O3,并以此进行相关计算和地球化学特征分析,计算公式为TFe2O3%≈Fe2O3%+FeO%×1.1113;关于Al-Fe-Mn图解,则通过氧化物含量进行转化求得;关于稀土元素相关指标(表2),依据LREE=La~Eu,HREE=Gd~Lu,∑REE=LREE+HREE;δEu=EuN/Eu*,Eu*=(SmN+GdN)/2;δCe=CeN/Ce*,Ce*=(LaN+PrN)/2,其中“N”代表标准化(包括LaN/CeN、LaN/YbN[1,2,3,4,5]:样品/北美页岩组合样[13,14,15]

关于硅质岩沉积环境,作者对本文建立的数据库(表2)进行了分析,各地样品中SiO2平均含量为68.52%~97.19%,均值为89.38%;不同地区Fe2O3含量为0.52%~3.61%,均值为1.49%;Al2O3含量为1.08%~5.33%,均值为2.19%;MnO含量为0~0.62%,均值为0.11%,其中贵池唐田约为0.62%、铜陵花树坡约为0.54%,为锰富集区;中下扬子北缘地区稀土元素含量差异较大:低至宣城水东地区的15.30×10-6,高至安徽铜陵花树坡地区的91.49×10-6

3.2 沉积环境

依据表3,MnO/TiO2为0.01~3.35,均值为0.67,排除贵池唐田3.35、铜陵花树坡2.45为锰元素富集区,其余总体为大陆边缘环境;Mn/Ti为0.02~4.33,均值为0.86。研究区硅质岩的δCe为0.54~0.90(去除异常高值6.87),均值为0.73,指示沉积环境主体为大陆边缘,局部地区过渡到远洋盆地;LaN/CeN为1.04~2.04(去除异常低值0.23),平均值为1.49,指示大陆边缘—远洋盆地的过渡环境;研究区LaN/YbN值为0.50~4.70,平均值为1.38,指示主体为大陆边缘,个别地区如贵池唐田、巢湖平顶山(5**)指示大陆边缘—洋中脊过渡环境。

表3   硅质岩沉积环境元素判别指标[2,5,59,60]

Table 3  Chemical criteria to identify the depositional environments of chert[2,5,59,60]

判别指标沉积环境
大陆边缘远洋盆地洋中脊
δCe

0.65~1.35

均值1.09

0.50~0.76

均值0.60

0.22~0.38

均值0.30

MnO/TiO2<0.50.5~3.5>3.5
LaN/CeN≈12~3>3.5
LaN/YbN1.1~1.40.3~1.1≈0.3

新窗口打开| 下载CSV


在Fe2O3/TiO2—Al2O3/(Al2O3+Fe2O3)、LaN/CeN—Al2O3/(Al2O3+Fe2O3)图解中(图2),大多数地区显示为大陆边缘及远洋盆地环境,局部受到热液活动的影响表现为“洋中脊”附近环境,这与δCe、δEu、LaN/CeN及LaN/YbN判别结果相符。

图2

图2   硅质岩沉积环境判别图解

(a)Fe2O3/TiO2—Al2O3/(Al2O3+Fe2O3)图解;(b)LaN/CeN—Al2O3/(Al2O3+Fe2O3)图解(洋中脊、远洋盆地和大陆边缘分区界线据参考文献[5]修改)

Fig. 2   Diagrams to Identify the Sedimentary environments of Cherts

(a)Fe2O3/TiO2—Al2O3/(Al2O3+Fe2O3) and (b) LaN/CeN—Al2O3/(Al2O3+Fe2O3) (ridge, pelagic and continental margin curves modified after reference [5])


3.3 硅质岩成因

Murray等[2]认为LaN/YbN值可以表示硅质岩的轻、重稀土相对富集程度,且正常海水生物沉积的硅质岩LaN/YbN值约为1,无重稀土富集,热水沉积硅质岩重稀土富集,LaN/YbN值小于1(表4),研究区内只有贵池唐田(2)、巢湖平顶山(5**)地区LaN/YbN值小于1,指示热水沉积硅质岩;而δEu为0.77~1.49,均值为0.93,指示多数地区为非热液成因,局部如贵池唐田[62]、巢湖平顶山[46,47]、黄山—泾县[52]等地区热水活动强烈,且相应的δCe值较高,以至指示为远洋盆地。

表4   硅质岩成因元素判别指标[2,5,59,60,61]

Table 4  Chemical criteria to identify the origin of cherts[2,5,59,60,61]

判别指标硅质岩成因
热液成因非热液成因
Al/(Al+Fe+Mn)0.01>0.60
LaN/YbN<1≈1
LREE/HREE<1>1
δEu>1<1

新窗口打开| 下载CSV


研究区硅质岩Al/(Al+Fe+Mn)为0.31~0.70,均值为0.53,无典型的热液成因(表4),结合Al-Fe-Mn图解(图3a)显示研究区硅质岩多数为非热液成因,而贵池唐田、秭归白马岭、巢湖平顶山(5**)和恩施田凤坪地区靠近热液成因。

图3

图3   硅质岩成因判别图解

(a) Al-Fe-Mn图解[59](热液及非热液成因分区界线引自参考文献[43]);(b)硅质岩稀土元素页岩标准化配分模式图[13,14,15](页岩标准化值引自北美页岩组合样(NASC)引自参考文献[13,14,15])

Fig. 3   Diagrams to Identify the Genesis of Cherts

(a) Al-Fe-Mn diagram of cherts[59] (hydrothermal curve and non-hydrothermal curve are after reference [43]); (b)Shale-normalized REE distribution patterns of cherts[13,14,15] [normalization values are from North American Shale Composite(NASC),after references[13~15]]


NASC标准化后的硅质岩REE配分模式如图3b所示,具有和北美页岩组合样相似的平坦型配分模式。一般认为明显的Ce亏损,不明显的Eu亏损或是正异常,以及呈平缓左倾(LREE/HREE<1)的配分曲线代表热液成因的硅质岩,而平缓的右倾(LREE/HREE>1)代表非热液成因的硅质岩[43,46]。而研究区内各地区均显示轻微的Ce亏损特征,多数地区显示Eu负异常,LREE/HREE值均大于1,标准化配分曲线呈平缓的右倾,总体指示非热液成因,热液活动仅局限于贵池唐田[62]和铜陵花树坡[45]两个锰富集区及巢湖平顶山地区[47]

3.4 硅质来源

Al2O3与∑REE含量的相互关系图表明两者之间存在着明显的正相关关系(图4a),即陆源物质对硅质岩的形成具有重要的控制作用;Al2O3和TiO2含量具有较高的相关性(R2=0.8204)(图4b),而且与SiO2含量存在负相关性(R2=-0.7528,-0.7082)(图4c,d),指示随陆源物质增多,硅质含量减少,即并不存在陆源物质对硅质岩的硅质贡献。

图4

图4   硅质岩硅质来源判别图解

(a) Al2O3与∑REE交汇图[8];(b) Al2O3与TiO2交汇图[63];(c) SiO2与Al2O3交汇图[63];(d) SiO2与TiO2交汇图[64]

Fig.4   Diagrams to identify the origin of cherts

(a) Plots show correlations between Al2O3and ∑REE[8];(b) Plots show correlations between TiO2and Al2O3[63]; (c),(d) Plots show correlations between Al2O3, TiO2and SiO2contents of bedded cherts[63,64]


4 硅质岩相关地质事件

二叠系G-LB(Guadalupian-Lopingian Boundary)和P-TB(Permian-Triassic Boundary)两次生物大灭绝事件的报道[29,30]引发了国内外学者对其成因的不断探讨,也使得二叠纪的研究程度得到不断提高。由此,笔者通过详细调研国内外最新研究成果,刻画出华南中二叠世主要地质事件格架(图5),以期对上述扬子北缘孤峰组层状硅质岩地球化学特征所指示的沉积环境、成因及硅质来源进行检验,从而获得规律性认识。

图5

图5   华南中二叠世主要地质事件格架[17,64,65,66]

Fig.5   The main geological events framework of middle Permian in south China[17,64,65,66]


4.1  峨眉山大火成岩省

目前,大多数学者认为二叠系大火成岩省(Large Igneous Province,LIP),如峨眉山大火成岩省(Emeishan Large Igneous Province,ELIP)及西伯利亚大火成岩省是导致G-LB及P-TB两次生物灭绝事件的主要原因[32,67,68,69]。关于ELIP的动力学机制研究,自“地幔柱引发的穹状隆起(Plume-Induced Domal Uplift,PIDU)[20,70]”模型提出至今仍存在较大争议。

4.1.1 峨眉地裂运动

20世纪70年代末,罗志立[71,72,73]基于我国区域构造特征及峨眉山玄武岩喷发背景的研究,认为上扬子地台自泥盆纪至中三叠世发生过一次强烈的拉张运动,并于1981年将其命名为“峨眉地裂运动(Emei Taphrogenesis)”,期间峨眉山玄武岩于中二叠世晚期开始喷发,至晚二叠吴家坪早期达到喷发高潮。峨眉山玄武岩的喷发也被认为是东吴运动在上扬子西缘最突出的表现,而中下扬子地块二叠纪的沉积作用主要受茅口期开始华夏古陆不断缓慢隆升的控制,并不存在东吴运动[74]

此后经过近30年的研究,罗志立[75]进一步将峨眉地裂运动的时间限制为中泥盆世—早三叠世末期,并结合其他学者对南方岩相古地理、华南构造史以及南方含油气盆地的研究成果,认为该运动不仅局限于中国西南川滇黔地区,而且在晚古生代整个华南板块均有体现。

4.1.2 PIDU模型的提出及论证

20世纪末我国地质学者参考世界上多数LIP的形成与地幔柱活动的关系,即地慢柱模型解释了在相对短的时间内(几百万年)产生巨量岩浆的可能性,从而开始考虑峨眉山玄武岩是否也与地慢柱活动有关[71]

通过不断论证,He等[20]基于喀斯特地貌、古风化带、残余的砾石或底砾岩等生物地层学及沉积学证据,证明茅口组碳酸盐岩不均一减薄的顶部被近地面的不整合覆盖,提出ELIP之前存在PIDU,并针对茅口组的剥蚀程度,将与峨眉山大火成岩省相关的的穹窿区分为内、中、外3个带,其中茅口组在内带剥蚀最为严重。Xu等[21]基于PIDU模型去检验ELIP中—晚二叠沉积学、火山序列地球化学、岩石圈地震构造,得到了很好的解释。之后又有许多研究成果相继发表且均支持PIDU模型[22,23,24,27,76,77,78]

4.1.3 PIDU模型的反对

Peate等[79]发现ELIP形成的初始和早期阶段具有大量的镁铁质热液岩浆活动和海底喷发活动的特征,认为ELIP的正地形更可能源自火山机构的形成和火山堆的快速堆积作用,且由于隆起的火山地层学证据的普遍缺乏,提出需重新考虑ELIP的构造演化。Sun等[26]认为峨眉山火山作用的最初阶段在海平面或以下,并提出地幔和地壳之间更复杂的相互作用及伴随的局部微小隆起和沉降可以取代PIDU模型。

以上观点的提出也引起了对支持PIDU模型的不整合证据的激烈讨论:即茅口组灰岩顶部与上覆玄武岩之间的风化壳和喀斯特地貌的成因及时间。Peate等[80]基于我国主要发育于古新世并沿云南、贵州和四川省分布的岩溶地貌,以及西南部贵州省贵阳北部德江县发育于侵蚀面之上的茅口组岩溶塌陷、漏斗和溶洞于新生代早期首次形成[81],丽江附近塔状喀斯特地貌的形成时间为1.6~0.9 Ma[82],认为其归因于渐新世以来持续炎热、潮湿的气候[24,80,83]

作为回应,He等[24,77]认为峨眉山地幔柱极其复杂,在内带、中带及外带分别有不同的影响,即包括了瞬时隆起之后LIP边缘的裂谷和沉降。且缺失的地层、古岩溶地貌、剥蚀特征及表层岩石鉴定如底砾岩、高岭土、铝土矿及含铁的硬壳均证明了ELIP喷发之前喀斯特岩溶地貌的存在。

此后,Zhu等[84]认为ELIP没有喷发前的隆起,火山岩序列的底部是一套厚的玄武质碎屑岩堆成的枕状熔岩,证明其初始喷发于深的海底环境,并提出大量岩浆渐进式喷发充填内带导致海底—近地面的过渡,而不是通过火山作用开始之前的地壳隆起。Shellnutt[85]认为PIDU的主要证据很难令人信服,但ELIP有可能源自一个相对短期的幔源岩浆的柱状上涌。Jerram等[86]认为ELIP起始于海下环境,ELIP侵位不能广泛地与喷发前的区域隆起相联系,尤其在地幔柱上方存在复杂岩石圈结构的地方。相比之下,作者更倾向于Wang等[28]认为相对稳定的扬子西部断块的形成受地幔上涌近场应力和板块运动远场构造应力的共同制约,这些系统共同作用导致地壳—岩石圈以线状裂缝形式的伸展,并将岩浆引至地表,形成峨眉山大火成岩省。

4.2  勉略洋的扩张

张国伟等[18,19]认为在东古特提斯洋盆扩张打开的区域构造动力学背景下,在秦岭等中央造山系原扬子板块北缘被动大陆边缘的扩张隆起带基础上,沿勉略带一线自西而东发生扩张裂陷,并发展转化为初始洋盆—勉略古洋盆,最终演化为现今的勉略构造带。且综合勉略带的同位素年代学及古生物学研究结果,认为勉略带主要演化过程包括:中—晚泥盆世—中二叠世(D2-P2)扩张打开,晚二叠世—中晚三叠世(P3-T2-3)洋壳消减俯冲及碰撞造山。

而近年来Li等[87]通过广泛收集普遍分布在110°E以西的秦岭造山带三叠系花岗岩的地质年代学(248~200 Ma)及地球化学数据,将其分为S型和I型花岗岩,其中I型花岗岩元素和同位素地球化学特征表明其具有向北的俯冲极性,认为秦岭造山带三叠系花岗岩侵位于一个与勉略洋向北俯冲有关的(南秦岭带)活动大陆边缘,而并非发育于同碰撞或后碰撞背景。且古特提斯洋(勉略洋)于三叠纪末期(约200 Ma)消失,随后发生碰撞,将勉略洋洋壳消减俯冲结束的时间延长到三叠纪末期(T3),认为勉略洋的存在时间为345~200 Ma。Cheng等[88]通过对南秦岭造山带镇安盆地二叠系碎屑岩中的锆石U-Pb及Hf同位素地质年代学研究,认为南秦岭带(South Qinling Belt,SQB)的二叠系沉积物主要来自华北地块(North China Block,NCB),部分来自北秦岭带(North Qinling Belt,NQB),而且南、北秦岭带与华北地块在二叠纪时期已经拼贴在一起,但与扬子地块(Yangtze Block,YZB)距离较远。

以上资料均表明二叠纪勉略洋的存在及不断扩张,并于早三叠世(约248 Ma)开始俯冲消减,至三叠纪末期(约200 Ma)俯冲结束开始碰撞。

4.3  伊拉瓦拉古地磁反转(Illawarra Reversal

放射虫作为古生代主要的海洋浮游生物,在穿过G-LB两个界限时发生了显著的区系重组。基于西德克萨斯州及华南生物地层学,放射虫Follicucullus scholasticus-F. ventricosus Zone和下伏的F. monacanthusZone及上覆的F. charvetiZone与卡匹敦阶有关,且F. charvetiZone顶部可能为G-LB[17,89]

在卡匹敦阶F. monacanthusZone,Pseudoalbaillella体型开始相对变小,数量也相对减少,但Follicucullus占据主导地位。而在卡匹敦阶F. charvetiZone的上部,Follicucullus优势地位下降。与整个石炭纪晚期到中二叠世的长期稳定谱系相比,卡匹敦期的阿尔拜虫(Albaillellaria)显著地迅速更替,表明放射虫在紧邻G-LB之前,面临了致命的环境改变[17]

此外,从二叠纪晚期到中三叠世早期,并于P-TB达到顶峰的深海缺氧(超缺氧)事件也被增积的深海远洋硅质岩所记录[17]

相比之下,沉积在海山中的增积环礁碳酸盐岩则清楚地记录了在G-L和P-T两个界限处纺锤虫类(晚古生代主要的浅海底栖生物)多样性的变化和稳定碳同位素比值的负转变,以及古生代卡匹敦期末最低的87Sr/86Sr同位素值和晚瓜德鲁普世沃德期—卡匹敦期界限处(265 Ma)发生的伊拉瓦拉古地磁反转(Illawarra Reversal)。其中,87Sr/86Sr同位素值的不断降低并在卡匹敦末期达到最低,可能是在中沃德期伊拉瓦拉古地磁反转所标志的潘吉亚超大陆(Pangea)从汇聚到裂解的转变之后,地球内部活动加剧,且随洋中脊大量岩浆的喷发使洋底扩张加剧的主要原因[16,17]

对于日本九州瑞崎(Kamura)剖面古环礁灰岩中稳定碳同位素的分析,发现其在G-LB和P-TB附近均存在着变化,在纺锤虫类定义的G-LB附近,碳酸盐岩碳同位素比值δ13C逐渐下降约5‰。在G-LB之下的“卡匹敦期间隔”,具有极高的正δ13C(+5‰~+7‰以上),而上覆的吴家坪期具有相对较低的正δ13C(+2‰~+3‰)。对于如此高的δ13C(+5‰~+7‰以上)在整个二叠纪都是不同寻常的,且只发生在卡匹敦期这个间隔,这种现象被定义为瑞崎事件(Kamura event),可能代表了中泛大洋里的一个高生产力事件以及G-LB之前紧邻的一个卡匹敦期短期变冷事件,即瑞崎变冷事件(Kamura cooling event)。而卡匹敦期地表环境的初始改变如瑞崎变冷事件及生物多样性的首次下降,可能是由于不稳定的磁偶极生磁导致地磁强度减弱所致[17]

4.4  海平面升降

Haq等[64]基于古陆边缘盆地及克拉通盆地地层剖面建立了整个古生代的海平面波动演化历史,伴随着ELIP在瓜德鲁普世末期的侵位,全球海平面下降到显生宙的最低点。而ELIP和全球海平面下降的共同作用,极有可能导致了大多数底栖动物群的灭绝,如纺锤虫类和四射珊瑚,以及其他种群不同程度的毁灭,如腕足类和菊石类[66,90,91]。作者特选取中二叠世海平面变化予以参考(图5)。

5 总结与展望

基于正向论证,本文搜集了前人已发表的华南扬子地区孤峰组层状硅质岩地球化学原始数据,建立了硅质岩主量、稀土元素数据库,进行了硅质岩沉积环境、成因及硅质来源分析;基于反向论证,建立了华南中二叠世构造演化序列,解释并检验了目前基于地球化学对硅质岩的分析结果并进行了系统厘定,获得以下认识:

5.1  硅质岩沉积环境、成因及硅质来源

结合华南中二叠世构造演化序列(图5),孤峰组底界代表了全球中二叠世起始年龄(272.95±0.11) Ma,此时地幔柱活动相对较弱,表现为古特提斯洋(勉略洋)的初始扩张及安徽巢湖地区孤峰组底部、下部火山岩夹层所代表的火山活动。对于孤峰组中的火山岩夹层,考虑到ELIP初始喷发于海底或海下环境以及目前许多数学者对于PIDU模型的种种质疑,笔者推测孤峰组中的火山岩夹层可能源自ELIP,并将限制其初始喷发年龄至孤峰组初始沉积期。此外,中二叠世华南扬子地台内部和边缘具有裂谷性质的沉积盆地和同沉积断裂极其发育[10,28,35,73,74,76],且扬子地区热液成因的硅质岩又往往沿同沉积断裂分布[10],因此作者认为中二叠世华南整体受南北向统一拉张应力场控制:一方面由断裂将岩浆引至海底,另一方面远源火山喷发物发生沉降及海解,二者共同作用,可能刺激了海洋生产力的提高并促进孤峰组硅质岩的沉积,导致了中下扬子北缘孤峰组层状硅质岩主体为非热液成因,包括生物成因及个别处于深水裂陷槽(基底断裂发育)中的地区如安徽贵池唐田、铜陵花树坡、巢湖平顶山和秭归白马岭向热液成因过渡,且多有火山岩夹层出现。结合以上讨论,笔者尝试建立了华南中二叠世动力学—沉积作用综合模式图(图6),指示南北向统一拉张应力场。

图6

图6   华南中二叠世动力学—沉积作用综合模式图[18,87,88]

Fig. 6   Dynamics-Sedimentary synthesis model of middle Permian in South China[18,87,88]


结合中二叠世全球海平面的变化,虽短期有波动,但总体处于下降状态,且在中二叠世末期下降到显生宙的最低点[65,66]图5)。由此导致的海陆变化,极有可能引发了大多数底栖动物群的灭绝及其他种群不同程度的毁灭[66,90,91]。同时解释了硅质岩陆源碎屑的输入,反对了Kametaka等[6]“上升流成因”,此外关于反对上升流成因的另外一个证据,即应考虑到岩浆作用及火山活动也能促使孤峰组底部磷酸盐结核的生成[92]而并非只有上升流作用。

而在整个二叠纪都不同寻常的卡匹敦期极高的正δ13C(+5‰~+7‰以上),可能代表磁异常所致的中泛大洋里的一个高生产力事件以及卡匹敦期地表环境的初始改变,如相应的瑞崎变冷事件及生物多样性的首次下降、放射虫谱系的频繁更替等[17],但其时间均晚于孤峰组沉积年龄,因此认为其与该时期硅质岩并无成因关系。

总体而言,中下扬子北缘孤峰组层状硅质岩主要为非热液成因,包括生物成因及个别地区如安徽贵池唐田、铜陵花树坡、巢湖平顶山向热液成因过渡。结合构造背景,认为该部分“热液成因”的属性主要受拉张背景下的火山活动及断裂影响。研究区孤峰组层状硅质岩沉积于被动大陆边缘深水环境,华夏古陆隆升及海平面升降控制了部分陆源物质的输入,但对硅质岩的硅质贡献并不明显。

5.2  ELIP初始喷发年龄

关于ELIP的喷发年龄:初始喷发—喷发高潮—喷发结束,目前已取得许多研究成果:峨眉山玄武岩的喷发时限最初被认为于中二叠世晚期开始喷发,至晚二叠吴家坪早期达到喷发高潮,在某些地区持续到晚二叠吴家坪中期结束[72,73,75]。此后,Sun等[26]认为确定峨眉山玄武岩最初喷发的时间对于评估生物大灭绝和火山作用之前—灰岩台地隆起至关重要,并通过研究牙形石生物地层学及其与地幔柱隆升模型的关系测得ELIP初始喷发年龄为中卡匹敦期Jinogondolella altudaensis Zone(约263 Ma),并于J. xuanhanensisZone(约262 Ma)达到喷发高潮。

但综合前人资料分析,如孔庆玉等[34]于安徽巢县龟山剖面孤峰组顶底部和江苏江宁排山剖面孤峰组中上部发现蚀变凝灰岩与凝灰质泥岩;夏邦栋等[93]进一步研究发现苏浙皖等下扬子地区孤峰组层状硅质岩中广泛产出火山岩夹层,其厚度小,但层数众多并几乎已全部泥化。

此后,杨水源等[46]依据巢湖平顶山孤峰组层状硅质岩中夹有少量的薄层状泥化火山岩和火山碎屑岩,且硅质岩中含有的大量放射虫、海绵骨针及其他硅质生物碎屑,提出孤峰组层状硅质岩形成机理:远源火山喷发物在海水中沉降并在碱性条件下发生海解,析出SiO2,致使海水中SiO2含量大增,促进了硅质生物的大量繁殖,而生物死亡后堆积于海底,骨骼与大量碎屑共同沉积形成硅质生物软泥,经过后期重结晶作用最终形成层状硅质岩。由此,硅质岩的成因是否与ELIP有关,值得深入探讨。

Zhu等[94]通过详细的野外考察,发现了安徽省巢湖平顶山地区(图7a)孤峰组地层剖面中至少4个火山灰夹层,并从孤峰组底部页岩层中的2个火山灰夹层A、C(图7b)中挑选出锆石进行LA-ICPMS分析,测得中二叠统孤峰组的起始年龄为272 Ma。何冰辉[96]通过系统总结前人对峨眉山玄武岩及相关岩石开展的大量锆石U-Pb及Ar-Ar等年代学研究成果,并结合地层层序时代分析,认为除主相喷发时间约为260 Ma已得到多数学者认可外,对峨眉山玄武岩的喷发时限仍存在较大争议。最近Wu等[95]同样在安徽省巢湖地区测定了孤峰组底部及下部火山灰夹层A、C(图7b)中锆石的SIMS及CA-ID-TIMS年龄,并依后者测得中二叠统孤峰组的起始年龄为(272.95±0.11) Ma(A火山灰层),至今沿用为国际年代地层表中二叠统和下二叠统的边界年龄。

图7

图7   孤峰组典型剖面及地理位置

(a)华南晚瓜德鲁普世古地理图[55];(b)安徽省巢湖平顶山剖面孤峰组地层柱状图及火山灰产出深度[95]

Fig. 7   Representative section and location of Gufeng Formation

(a) Late Guadalupian palaeogeographical reconstructions of South China[55];(b) Stratigraphic column and the volcanic ash beds depth in the Gufeng Formation at the Pingdingshan Section in Chaohu City, Anhui Province[95]


由此可以认为如果孤峰组产出的火山岩与EILP有关,则孤峰组硅质岩的成因一定受EILP影响,且ELIP初始喷发年龄将会更早,PIDU模型也将被彻底否定。因此对于孤峰组中火山岩夹层的来源分析至关重要。我们推测孤峰组部分硅质岩的偏“热液成因”属性与峨眉山玄武岩早期海底喷发有关,但目前为止,尚无相关研究成果发表。

展望未来,孤峰组中火山岩夹层的来源分析具有重要意义,不仅可以解释峨眉山玄武岩与孤峰组硅质岩沉积的关系,而且可以为峨眉山玄武岩的初始喷发年龄及动力学机制研究提供有力支持。此外,硅质岩的研究应注重以地层学、岩相学为基础并建立相应的区域构造或大地构造演化序列,然后再结合地球化学特征分析或其他新技术手段,以充分论证硅质岩的沉积环境、成因及硅质来源。

参考文献

Murray R W,Buchholtz ten Brink M R,Brumsack H,et al.

Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127

[J].Geochimica et Cosmochimica Acta,1991,55(9):2 453-2 466.

[本文引用: 2]

Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.

Rare earth, major, and trace elements in chert from the Franciscan complex and monterey group, California: Assessing REE sources to fine-grained marine sediments

[J].Geochimica et Cosmochimica Acta,1991,55(7):1 875-1 895.

[本文引用: 7]

Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.

Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record

[J].Geochimica et Cosmochimica Acta,1992,56(5):1 897-1 913.

[本文引用: 2]

Murray R W,Jones D L,Buchholtz ten Brink M R.

Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet

[J].Geology,1992,20(3):271-274.

[本文引用: 2]

Murray R W.

Chemical criteria to identify the depositional environment of chert: General principles and applications

[J].Sedimentary Geology,1994,90(3/4):213-232.

[本文引用: 10]

Kametaka M,Takebe M,Nagai H,et al.

Sedimentary environments of the Middle Permian phosphorite-chert complex from the Northeastern Yangtze Platform, China; the Gufeng Formation: A continental shelf radiolarian chert

[J].Sedimentary Geology,2005,174(3/4):197-222.

[本文引用: 8]

Qiu Zhen,Wang Qingchen.

Geochemistry and sedimentary back-ground of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region

[J].Acta Petrologica Sinica,2010,26(12):3 612-3 628.

[本文引用: 2]

邱振,王清晨.

湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景

[J].岩石学报,2010,26(12):3 612-3 628.

[本文引用: 2]

Yu Hao,Chen Daizhao,Wei Hengye,et al.

Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in Western Hubei Province

[J].Acta Petrologica Sinica,2012,28(3):1 017-1 027.

[本文引用: 3]

遇昊,陈代钊,韦恒业,.

鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理

[J].岩石学报,2012,28(3):1 017-1 027.

[本文引用: 3]

Yao Xu,Zhou Yaoqi,Li Su,et al.

Research status and advances in chert and Permian chert event

[J].Advances in Earth Science,2013,28(11):1 189-1 200.

[本文引用: 1]

姚旭,周瑶琪,李素,.

硅质岩与二叠纪硅质沉积事件研究现状及进展

[J].地球科学进展,2013,28(11):1 189-1 200.

[本文引用: 1]

Cheng Cheng,Li Shuangying,Zhao Daqian,et al.

Geochemical characteristics of the Middle-Upper Permian bedded cherts in the Northern Margin of the Yangtze Block and its response to the evolution of paleogeography and paleo-ocean

[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(1):155-166.

[本文引用: 7]

程成,李双应,赵大千,.

扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理、古海洋演化的响应

[J].矿物岩石地球化学通报,2015,34(1):155-166.

[本文引用: 7]

Yao Xu.

Research on Origin of Permian Cherts from Continental Marginal Sea of Eastern Paleo-Tethys Ocean

[D].Qingdao:China University of Petroleum,2016.

[本文引用: 3]

姚旭.

东古特提斯洋大陆边缘二叠纪硅质岩成因研究

[D].青岛:中国石油大学(华东),2016.

[本文引用: 3]

Haskin L A,Haskin M A,Frey F A,et al.

Relative and absolute terrestrial abundances of the rare earths

[M]//Origin & Distribution of the Elements.London:Pergamon Press,1968:889-912.

[本文引用: 1]

Gromet L P,Dymek R F,Haskin L A,et al.

The “North American Shale Composite”: Its compilation, major and trace element characteristics

[J].Geochimica et Cosmochimica Acta,1984,48(12):2 469-2 482.

[本文引用: 5]

Kawabe I.

Convex tetrad effect variations in REE abundances of "North American shale composite" and "Post-Archean Australian average shale"

[J].Geochemical Journal,1996,30(3):149-153.

[本文引用: 5]

Kawabe I,Toriumi T,Ohta A,et al.

Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect

[J].Geochemical Journal,1998,32(4):213-229.

[本文引用: 5]

Kani T,Fukui M,Isozaki Y,et al.

The Paleozoic minimum of87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic

[J].Journal of Asian Earth Sciences,2008,32(1):22-33.

[本文引用: 3]

Isozaki Y.

Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective

[J].Journal of Asian Earth Sciences,2009,36(6):459-480.

[本文引用: 10]

Zhang Guowei,Dong Yunpeng,Lai Shaocong,et al.

Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling Dabie orogenic belt

[J].Science in China (Series D),2003,33(12):1 122-1 135.

[本文引用: 4]

张国伟,董云鹏,赖绍聪,.

秦岭—大别造山带南缘勉略构造带与勉略缝合带

[J].中国科学:D辑,2003,33(12):1 121-1 135.

[本文引用: 4]

Zhang Guowei,Cheng Shunyou,Guo Anlin,et al.

Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie—With a discussion of the assembly of the main part of the continent of China

[J].Geological Bulletin of China,2004,23(9/10):846-853.

[本文引用: 2]

张国伟,程顺有,郭安林,.

秦岭—大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合

[J].地质通报,2004,23(9/10):846-853.

[本文引用: 2]

He B,Xu Y G,Chung S L,et al.

Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts

[J].Earth and Planetary Science Letters,2003,213(3):391-405.

[本文引用: 3]

Xu Y G,He B,Chung S L,et al.

Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province

[J].Geology,2004,32(10):917-920.

[本文引用: 2]

Xu Y G,He B,Huang X L,et al.

Late Permian Emeishan flood basalts in Southwestern China

[J].Earth Science Frontiers,2007,14(2):1-9.

[本文引用: 2]

Xu Y G,Chung S L,Shao H,et al.

Silicic magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis

[J].Lithos,2010,119(1):47-60.

[本文引用: 2]

He B,Xu Y G,Guan J P,et al.

Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism

[J].Lithos,2010,119(1/2):1-9.

[本文引用: 4]

He B,Xu Y G,Zhong Y T,et al.

The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism

[J].Lithos,2010,119(1/2):10-19.

[本文引用: 2]

Sun Y D,Lai X L,Wignall P B,et al.

Dating the onset and nature of the Middle Permian Emeishan Large Igneous Province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models

[J].Lithos,2010,119(1/2):20-33.

[本文引用: 3]

Zhu C Q,Hu S B,Qiu N S,et al.

Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China

[J].International Journal of Earth Sciences,2018,107(1):71-88.

[本文引用: 2]

Wang Y,Peate I U,Luo Z H,et al.

Rifting in SW China: Structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP

[J].Geological Magazine,2018,156(4):745-758.

[本文引用: 3]

Erwin D H.

The Permo-Triassic extinction

[J].Nature,1994,367(6 460):231-236.

[本文引用: 2]

Stanley S M,Yang X.

A double mass extinction at the end of the Paleozoic Era

[J].Science,1994,266(5 189):1 340-1 344.

[本文引用: 2]

Wignall P B.

Large igneous provinces and mass extinctions

[J].Earth Science Reviews,2001,53(1/2):1-33.

[本文引用: 1]

Chen Jun,Xu Yigang.

Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies

[J].Gondwana Research,2019,75:68-96.

[本文引用: 2]

Hu Shizhong.

New consideration of Gufong Formation by stratigraphy check up

[J].Volcanology & Mineral Resources2000,21(1):63-68.

[本文引用: 2]

胡世忠.

对孤峰组的新认识

[J].火山地质与矿产,2000,21(1):63-68.

[本文引用: 2]

Kong Qingyu,Gong Yujin.

The formation environment of radiolarian siliciliths in the Lower Permian in Giangsu-Anhui region

[J].Oil & Gas Geology,1987,8(1):86-89.

[本文引用: 2]

孔庆玉,龚与觐.

苏皖地区下二叠统放射虫硅质岩形成环境探讨

[J].石油与天然气地质,1987,8(1):86-89.

[本文引用: 2]

Zhu Hongfa,Qin Deyu,Liu Cuizhang.

On the origin, distributive pattern and tectonic control of Gufeng and siliceous rocks in Dalong Formations, South China

[J].Experimental Petroleum Geology,1989,11(4):341-348.

[本文引用: 2]

朱洪发,秦德余,刘翠章.

论华南孤峰组和大隆组硅质岩成因、分布规律及其构造机制

[J].石油实验地质,1989,11(4):341-348.

[本文引用: 2]

Qiu Weiting,Gu Hongxin.

Sedimentary environments of the chert (siliceous rocks) from the Lower Permian Gufeng Formation in Northeastern Sichuan

[J].Sedimentary Facies and Palaeogeography,1991, (6):1-8.

[本文引用: 1]

邱威挺,古鸿信.

试论川东北地区下二叠统孤峰组燧石(硅质岩)的沉积环境

[J].岩相古地理,1991, (6):1-8.

[本文引用: 1]

Xia Bangdong,Zhong Lirong,Fang Zhong,et al.

The origin of cherts of the early Permian Gufeng Formation in the Lower Yangtze area, Eastern China

[J].Acta Geologica Sinica1995,69(2):125-137.

[本文引用: 2]

夏邦栋,钟立荣,方中,.

下扬子区早三叠世孤峰组层状硅质岩成因

[J].地质学报,1995,69(2):125-137.

[本文引用: 2]

Yang Yuqing,Feng Zengzhao.

Formation and significance of the bedded siliceous rocks of the Lower Permian in South China

[J].Acta Petrologica Sinica,1997,13(1):111-120.

[本文引用: 2]

杨玉卿,冯增昭.

华南下二叠统层状硅岩的形成及意义

[J].岩石学报,1997,13(1):111-120.

[本文引用: 2]

Takebe M,Kametaka M,Takayanagi Y,et al.

Origin and deposition of organic matter in continental chert of the Middle Permian Gufeng Formation in the Northeastern Yangtze Platform

[J].Sedimentary Geology,2007,201(1):141-148.

[本文引用: 1]

Zhang B L,Yao S P,Wignall P B,et al.

Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation

[J].Marine and Petroleum Geology,2018,97:113-126.

[本文引用: 3]

Wu Kan.

Geobiological Composition and Geological Characters of Shale Gas from the Middle Permian Gufeng Formation in the North Margin of Yangtze

[D].Wuhan:China University of Geosciences,2013.

[本文引用: 1]

吴勘.

扬子北缘中二叠统孤峰组地球生物学构成及页岩气地质特征

[D].武汉:中国地质大学,2013.

[本文引用: 1]

Wu Kan,Ma Qiangfen,Feng Qinglai.

Stratigraphic division and spatial distribution of the Middle Permian Kuhfeng Formation in the Northren Yangtze Block

[J].Journal of Stratigraphy,2015,39(1):33-39.

[本文引用: 3]

吴勘,马强分,冯庆来.

扬子板块北缘孤峰组地层划分及空间分布特征

[J].地层学杂志,2015,39(1):33-39.

[本文引用: 3]

Lei Bianjun,Que Hongpei,Hu Ning,et al.

Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in Western Hubei

[J].Sedimentary Geology and Tethyan Geology2002,22(2):70-79.

[本文引用: 7]

雷卞军,阙洪培,胡宁,.

鄂西古生代硅质岩的地球化学特征及沉积环境

[J].沉积与特提斯地质,2002,22(2):70-79.

[本文引用: 7]

Xu Wei,Yue Shucang,Du Jianguo,et al.

The geologic characteristics of Tangtian manganese ore deposit of Guichi, Anhui Province

[J].Contributions to Geology and Mineral Resources Research2002,17(4):240-245.

[本文引用: 3]

许卫,岳书仓,杜建国,.

安徽省贵池唐田锰矿床地质特征

[J].地质找矿论丛,2002,17(4):240-245.

[本文引用: 3]

Zeng Pusheng,Meng Yifeng,Yang Zhusen,et al.

Hydrothermal sedimentary rocks of Sedex-Type Massive Sulfide Depositsin Tongling ore cluster area, Anhui Province

[J].Mineral Deposits,2004,22(3):334-343.

[本文引用: 5]

曾普胜,蒙义峰,杨竹森,.

安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩

[J].矿床地质,2004,22(3):334-343.

[本文引用: 5]

Yang Shuiyuan,Yao Jing.

Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui Province

[J].Geological Journal of China Universities,2008,14(1):39-48.

[本文引用: 8]

杨水源,姚静.

安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因

[J].高校地质学报,2008,14(1):39-48.

[本文引用: 8]

Han Zongzhu,Xiao Nan,Li Anlong,et al.

Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng Formation of Lower Permian in Chaohu Region, Anhui Province

[J].Periodical of Ocean University of China,2014,44(4):78-85.

[本文引用: 7]

韩宗珠,肖楠,李安龙,.

安徽巢湖下二叠统孤峰组硅质岩沉积地球化学特征与沉积环境分析

[J].中国海洋大学学报:自然科学版,2014,44(4):78-85.

[本文引用: 7]

Li Hongjing,Lin Zhengliang,Xie Xinong.

Geochemical characteristics and origin of Palaeozoic siliceous rocks in Lower Yangtze area

[J].Lithologic Reservoirs,2015,27(5):232-239.

[本文引用: 5]

李红敬,林正良,解习农.

下扬子地区古生界硅岩地球化学特征及成因

[J].岩性油气藏,2015,27(5):232-239.

[本文引用: 5]

Sun Xiufeng,Wang Guoqing.

Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng Formation of Lower Permian in Chaohu Region, Anhui Province

[J].Uranium Geology,2016,32(1):23-30.

[本文引用: 4]

孙秀凤,王国庆.

鄂西二叠系孤峰组层状硅质岩及硅质结核成因

[J].铀矿地质,2016,32(1):23-30.

[本文引用: 4]

Li Peng,Hu Zhengxiang,Zong Wei,et al.

Geochemistry and ore potential of the Gufeng Formation Enshi, Western Hubei Province

[J].Journal of Stratigraphy,2017,41(3):344-350.

[本文引用: 5]

李朋,胡正祥,宗维,.

鄂西恩施地区孤峰组岩石地球化学特征及含矿性分析

[J].地层学杂志,2017,41(3):344-350.

[本文引用: 5]

Wang Cunzhi,Huang Zhizhong,Song Shiming,et al.

Geochemical characteristics of siliceous rocks in the Middle Permian Gufeng Formation at Shuidong area, Xuancheng City and its implication for genesis and sedimentary environment

[J].Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(4):687-695.

[本文引用: 4]

王存智,黄志忠,宋世明,.

宣城水东地区中二叠统硅质角砾岩地球化学特征及其成因环境研究

[J].矿物岩石地球化学通报,2018,37(4):687-695.

[本文引用: 4]

Xu Jinlong,Wang Yafei,Ge Haiying,et al.

Genesis and organic matter enrichment mode of the Permian marine black rock series in South Anhui Province

[J].Chinese Journal of Geology,2019,54(3):953-972.

[本文引用: 5]

徐锦龙,汪雅菲,葛海影,.

皖南二叠纪海相暗色岩系成因及有机质富集模式

[J].地质科学,2019,54(3):953-972.

[本文引用: 5]

Shi Lei,Feng Qinglai,Shen Jun,et al.

Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: Evidence from the Gufeng Formation of Western Hubei Province

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,444:1-14.

[本文引用: 1]

Yao X,Zhou Y Q,Hinnov L A.

Astronomical forcing of a Middle Permian chert sequence in Chaohu, South China

[J].Earth and Planetary Science Letters,2015,422:206-221.

[本文引用: 1]

Zhang B L,Yao S P,Wignall P B,et al.

New timing and geochemical constraints on the Capitanian (Middle Permian) extinction and environmental changes in deep-water settings: Evidence from the Lower Yangtze Region of South China

[J].Journal of the Geological Society,2019,176(3):588-608.

[本文引用: 3]

Ito T,Takahashi K,Matsuoka A,et al.

The Guadalupian (Permian) Gufeng Formation on the north margin of the South China Block: A review of the lithostratigraphy, radiolarian biostratigraphy, and geochemical characteristics

[J].Paleontological Research,2019,23(4):261-280.

[本文引用: 1]

Feng Qinglai,Zhong Changting.

A new research method of sedimentary environments of bedded siliceous rocks, with discussions on sedimentary environments of the Gufeng Formation in the Wuchang area, Hubei

[J].Sedimentary Facies and Palaeogeography,1994,14(5):45-55.

[本文引用: 1]

冯庆来,钟长汀.

层状硅质岩沉积环境研究的一种新方法(酸溶蚀法)──兼论武昌地区孤峰组沉积环境

[J].岩相古地理,1994,14(5):45-55.

[本文引用: 1]

Lin Liangbiao,Chen Hongde,Zhu Lidong,et al.

The origin and geochemical characteristics of Maokou Formation silicalites in the Eastern Sichuan Basin

[J].Acta Geologica Sinica.,2010,84(4):500-507.

[本文引用: 1]

林良彪,陈洪德,朱利东.

川东茅口组硅质岩地球化学特征及成因

[J].地质学报,2010,84(4):500-507.

[本文引用: 1]

Adachi M,Yamamoto K,Sugisaki R.

Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity

[J].Sedimentary Geology,1986,47(1/2):125-148.

[本文引用: 6]

Boström K,Kraemer T,Gartner S.

Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments

[J].Chemical Geology,1973,11(2):123-148.

[本文引用: 4]

Yamamoto K.

Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes

[J].Sedimentary Geology,1987,52(1/2):65-108.

[本文引用: 2]

Xie Jiancheng,Du Jianguo,Xu Wei,et al.

The geological and geochemical characteristics of manganese-bearing sequences of Guichi, Anhui Province, East China

[J].Geological Review,2006,52(3):396-408.

[本文引用: 2]

谢建成,杜建国,许卫,.

安徽贵池地区含锰岩系地质地球化学特征

[J].地质论评,2006,52(3):396-408.

[本文引用: 2]

Qiu Zhen,Wang Qingchen,Yan Detian.

Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Penglaitan section, Laibin, Guangxi Province

[J].Acta Petrologica Sinica,2011,27(10):3 141-3 155.

[本文引用: 4]

邱振,王清晨,严德天.

广西来宾蓬莱滩剖面中上二叠统硅质岩的地球化学特征及沉积背景

[J].岩石学报,2011,27(10):3 141-3 155.

[本文引用: 4]

Haq B U,Schutter S R.

A chronology of Paleozoic sea-level changes

[J].Science,2008,322(5 898):64-68.

[本文引用: 5]

Shen S Z,Zhang H,Zhang Y C,et al.

Permian integrative stratigraphy and timescale of China

[J].Science in China(Series D),2019,62(1):154-188.

[本文引用: 3]

Zhao T Y,Algeo T J,Feng Q L,et al.

Tracing the provenance of volcanic ash in Permian-Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,516:190-202.

[本文引用: 5]

Martindale R C,Foster W J,Velledits F.

The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,513:100-115.

[本文引用: 1]

Hong H L,Zhao L L,Fang Q,et al.

Volcanic sources and diagenetic alteration of Permian-Triassic boundary K-bentonites in Guizhou Province, South China

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,519:141-153.

[本文引用: 1]

Wang X D,Cawood P A,Zhao L S,et al.

Convergent continental margin volcanic source for ash beds at the Permian-Triassic boundary, South China: Constraints from trace elements and Hf-isotopes

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,519:154-165.

[本文引用: 1]

He Bin,Xu Yigang,Xiao Long,et al.

Generation and spatial distribution of the Emeishan Large Igneous Province: New evidence from stratigraphic records

[J].Acta Geologica Sinica,2003,77(2):194-202.

[本文引用: 1]

何斌,徐义刚,肖龙,.

峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据

[J].地质学报,2003,77(2):194-202.

[本文引用: 1]

Luo Zhili.

The influence of Taphrogenesis from late Paleozoic Era in Southern China on petroleum and other deposits

[J].Acta Geologica Sichuan,1981,2(1):1-22.

[本文引用: 2]

罗志立.

中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响

[J].四川地质学报,1981,2(1):1-22.

[本文引用: 2]

Luo Zhili.

Determination of the Emei Taphrogenesis and its significance

[J].Acta Geologica Sichuan,1989,9(1):1-17.

[本文引用: 2]

罗志立.

峨眉地裂运动的厘定及其意义

[J].四川地质学报,1989,9(1):1-17.

[本文引用: 2]

Luo Z L,Jin Y Z,Zhao X K.

The Emei Taphrogenesis of the Upper Yangtze Platform in South China

[J].Geological Magazine,1990,127(5):393-405.

[本文引用: 3]

He Bin,Xu Yigang,Wang Yazi,et al.

Nature of the Dongwu movement and its temporal and spatial evolution

[J].Earth Science,2005,30(1):89-96.

[本文引用: 2]

何斌,徐义刚,王雅玫,.

东吴运动性质的厘定及其时空演变规律

[J].地球科学,2005,30(1):89-96.

[本文引用: 2]

Luo Zhili.

Emei Taphrogenesis and natural gas prospecting practices in Sichuan Basin

[J].Xinjiang Petroleum Geology,2009,30(4):419-424.

[本文引用: 2]

罗志立.

峨眉地裂运动和四川盆地天然气勘探实践

[J].新疆石油地质,2009,30(4):419-424.

[本文引用: 2]

Xu Yigang,He Bin,Huang Xiaolong,et al.

The debate over mantle plumes and how to test the plume hypothesis

[J].Earth Science Frontiers,2007,14(2):1-9.

[本文引用: 2]

徐义刚,何斌,黄小龙,.

地幔柱大辩论及如何验证地幔柱假说

[J].地学前缘,2007,14(2):1-9.

[本文引用: 2]

He B,Xu Y G,Guan J P,et al.

Reply to comment on ‘Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism’ by Bin He, Yi-Gang Xu, Jun-Peng Guan & Yu-Ting Zhong,Lithos 119 1-9, 2010

[J].Lithos,2011,125(3/4):1 009-1 011.

[本文引用: 2]

Li J,Wang X C,Ren Z Y,et al.

Chemical heterogeneity of the Emeishan mantle plume: Evidence from highly siderophile element abundances in picrites

[J].Journal of Asian Earth Sciences,2014,79(Part A): 191-205.

[本文引用: 1]

Peate I U,Bryan S E.

Re-evaluating plume-induced uplift in the Emeishan Large Igneous Province

[J].Nature Geoscience,2008,1(9):625-629.

[本文引用: 1]

Peate I U,Bryan S E,Wignall P B,et al.

Comment on ‘Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism’

[J].Lithos,2011,125(3/4):1 006-1 008.

[本文引用: 2]

Song L H,Zhang Y G,Fang J F,et al.

Karst development and the distribution of karst drainage systems in Dejiang, Guizhou Province, China

[J].Journal of Hydrology,1983,61(1/3):3-17.

[本文引用: 1]

Williams P W,Lyons R G.

Interpretation of the Paleomagnetism of cave sediments from a Karst tower at Guilin

[J].Carsologica Sinica,1986,5(2):119-125.

[本文引用: 1]

He B,Xu Y G,Campbell I.

Pre-eruptive uplift in the Emeishan?

[J].Nature Geoscience,2009,2(8):530-531.

[本文引用: 1]

Zhu B,Guo Z J,Liu R C,et al.

No pre-eruptive uplift in the Emeishan Large Igneous Province: New evidences From its ‘inner Zone’, Dali area, Southwest China

[J].Journal of Volcanology and Geothermal Research,2014,269:57-67.

[本文引用: 1]

Shellnutt J G.

The Emeishan Large Igneous Province: A synthesis

[J].Geoscience Frontiers,2014,5(3):369-394.

[本文引用: 1]

Jerram D A,Widdowson M,Wignall P B,et al.

Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume-lithosphere interaction during the Capitanian, Middle Permian (‘end Guadalupian’) extinction event

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,441(Part1):65-73.

[本文引用: 1]

Li N,Chen Y J,Santosh M,et al.

Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost Paleo-Tethys

[J].Gondwana Research,2015,27(1):244-257.

[本文引用: 3]

Cheng C,Li S Y,Xie X Y,et al.

U-Pb detrital zircon geochronology and Hf isotopic composition of Permian clastic rocks, Zhen’an basin, South Qinling belt: Implications for the Paleozoic tectonic evolution of the Qinling orogenic belt

[J].International Geology Review,2019,61(12):1 462-1 478.

[本文引用: 3]

Sun D Y,Xia W C.

Identification of the Guadalupian-Lopingian boundary in the Permian in a bedded chert sequence, South China

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,236(3/4):272-289.

[本文引用: 1]

Wang X,Sugiyama T.

Diversity and extinction patterns of Permian coral faunas of China

[J].Lethaia,2000,33(4):285-294.

[本文引用: 2]

Groves J R,Wang Y.

Timing and Size Selectivity of the Guadalupian (Middle Permian) Fusulinoidean Extinction

[J].Journal of Paleontology,2013,87(2):183-196.

[本文引用: 2]

Gao P,He Z L,Li S J,et al.

Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,505:381-397.

[本文引用: 1]

Xia Bangdong,Zhong Lirong,Fang Zhong,et al.

Early Permian Gufengian argillized volcanics in the Lower Yangtze region

[J].Geological Review,1994,40(1):64-73.

[本文引用: 1]

夏邦栋,钟立荣,方中,.

下扬子区早二叠世孤峰期泥化火山岩

[J].地质论评,1994,40(1):64-73.

[本文引用: 1]

Zhu Z Y,Jiang S Y,Liu G X,et al.

Precise dating of the Middle Permian: Zircon U-Pb geochronology from volcanic ash beds in the basal Gufeng Formation, Yangtze region, South China

[J].Gondwana Research,2013,23(4):1 599-1 606.

[本文引用: 1]

Wu Q,Ramezani J,Zhang H,et al.

Calibrating the Guadalupian Series (middle Permian) of South China

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:361-372.

[本文引用: 3]

He Binghui.

Research progress on some issues on the Emeishan Large Igneous Province

[J].Advances in Earth Science,2016,31(1):23-42.

[本文引用: 1]

何冰辉.

关于峨眉山大火成岩省一些问题的研究现状

[J].地球科学进展,2016,31(1):23-42.

[本文引用: 1]