干旱区包气带土壤水分运移及其对地下水补给研究进展
赵文智, 周宏, 刘鹄
中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站,中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000

作者简介:赵文智(1966-),男,陕西定边人,研究员,主要从事生态水文学研究.E-mail:zhaowzh@lzb.ac.cn

摘要

包气带是指地表到地下水之间垂直剖面中土壤孔隙没有被水充满、水分处于非饱和状态的区域,是地表水进入地下水的通道。包气带土壤水分运移过程不仅影响到地下水补给,而且与相邻景观之间存在水力联系。评述了干旱区包气带土壤水分运移模拟、地球化学示踪技术、地球物理技术在包气带土壤水分运移研究中的应用、影响包气带土壤水分运移及对地下水补给的因素、包气带水分运移对景观间水分交换的影响等方面的研究进展,提出在未来的研究中,应加强包气带土壤水分运移参数的试验观测及数据库建立、加强包气带土壤水分运移及其对地下水补给的研究,应借鉴地球关键带研究的思路,开展包气带土壤水分运移、溶质运移、地下水补给耦合研究。

关键词: 干旱区; 包气带; 土壤水分运移; 地下水补给
中图分类号:P641.131 文献标志码:A 文章编号:1001-8166(2017)09-0908-11
Advances in Moisture Migration in Vadose Zone of Dryland and Recharge Effects on Groundwater Dynamics
Zhao Wenzhi, Zhou Hong, Liu Hu
Northwest Institute of Eco-Environment and Resources, CAS, Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Key Laboratory of Ecohydrology of Inland River Basin, Lanzhou 730000, China

First author:Zhao Wenzhi (1966-), male, Dingbian County, Shannxi Province, Professor. Research areas include ecological hydrology.E-mail:zhaowzh@lzb.ac.cn

Abstract

The vadose zone is the zone in between the land surface and above the groundwater table at vertical profile with partial water saturation and under the unsaturation condition, which constitutes the connections among atmospheric water, surface water and groundwater. Soil moisture migration in the vadose zone is a rather complicate process, which controls the rates of groundwater depletion and recharge, and has close hydraulic connections with highly frequent water transfers on the interfaces among the irrigation farmland, sand dunes, wetlands, lakes, and other landscape types. Recent development on soil moisture migration simulations and the application of tracer techniques, geophysical techniques and other geological methods in the vadose zone research, the factors affecting soil moisture migration and groundwater recharge,and soil moisture migration effects on moisture exchange between different landscapes were reviewed in this paper. Several suggestions on the future research were presented here: ① An intense field observation and research database should be initiated and constructed to determine the soil hydraulic parameters, and quantify the influence of moisture migration in vadose zone on the groundwater recharge; ② The proposed observations and researches should learn from the “Critical Zone Observatory”, and focus on the coupling of the soil moisture migration, solute transport and groundwater recharge.

Keyword: Dryland; Vadose zone; Soil moisture migration; Groundwater recharge.
1 引言

包气带(vadose zone)是指地表到地下水之间垂直剖面中土壤孔隙没有被水充满、水分处于非饱和状态的区域[1]。包气带中大气水、地表水、地下水相互作用频繁, 是地表水进入地下水的通道[2, 3]。包气带土壤水分运移过程不仅影响到地下水补给, 而且与相邻景观之间存在水力联系。据报道, 全球存储于河流的水量约为2 000 km3, 远低于每年抽取的地下水量(3 800 km3), 约有15 亿人直接依赖地下水作为生活用水[4]。在过去的50 年, 全球许多地区的地下水埋深下降严重甚至枯竭, 这种变化已从孤立的水文单元向区域扩展, 严重威胁着社会经济的可持续发展[5]。因此, 维持地下水的采补平衡是水资源管理迫切解决的科学问题。

在干旱荒漠绿洲区, 降水和灌溉水在包气带主要有3种去向:一是通过扩散补给地下水; 二是通过径流汇集在低洼地段再局地补给地下水; 三是存贮在土壤中[6~8]。包气带土壤水分运移过程决定着雨养和灌溉条件下降水和灌溉水的入渗及其对地下水的补给, 也影响着地下水通过毛管上升后被植物吸收利用的程度。近年来, 由于绿洲农业节水技术的推广, 局地水循环格局发生了改变, 对地下水补给的速率和程度也在发生变化。因此, 如何调节农田节水与补给地下水之间的矛盾是干旱区水资源开发利用中亟待解决的问题。

在干旱区, 包气带水分运移及其对地下水的补给量、补给速率不仅取决于降水和灌溉, 而且还受耕作、地下水位、土壤结构、质地、蒸散发等因素的影响。在垂直方向上的核心问题是水分在地下水— 土壤— 植被— 大气连续体系(Ground Water-Soil-Plant-Atmosphere Continuum, GSPAC)中的运移, 在水平方向上的核心问题是景观内部和景观界面上的水分交换。本文对干旱区包气带土壤水分运移、不同景观间的水分交换、同位素及化学物质示踪技术、地球物理技术在包气带水分运移监测中的应用、包气带土壤水分与地下水相互作用及其影响因素等若干问题的研究进展予以评述, 并提出未来研究的方向, 旨在推动我国相关研究的深入开展。

2 包气带土壤水分运移模拟研究

包气带土壤水分运移是GSPAC水循环中重要的组成部分, 其实质是降水和灌溉水在土壤中的运动过程[9~11]。灌溉方式、降水格局、土壤类型和景观异质性都会导致包气带水分时空分异[12~15]。包气带水分运移是土壤水势驱动的毛管水运移, 其内在动力是水势梯度, 即土壤水从水势高处往水势低处流动, 涉及到水、空气、水汽在水势梯度、温度梯度、浓度梯度、渗透梯度等影响下的动态过程。Darcy[16]通过实验提出了描述饱和土壤水分运动的基本规律, 由此开始了水分运动的土壤物理学研究。Sadeghi等[17]对达西定律进行了修正, 认为其适用于非饱和条件, 提出了目前普遍采用的非饱和土壤水分运动的连续方程, 即 Richards方程。非饱和导水率、土壤水分扩散率和比水容量等参数十分关键, 它们的准确性决定了土壤水分运动模型的可靠性。测定土壤水分运动基本参数的方法有直接法和间接法[10, 18]。由于土壤水分运动基本方程的非线性特征、土壤的非均质性以及初始边界条件的复杂性, 特别是包气带各种参数的空间异质性导致参数获取上存在较大难度, 因此复杂情景下的土壤水分运动问题往往是如何对Richards方程进行简化求解。目前在农田水利研究中一般通过对相关参数进行具体的修正, 形成特定条件下的水分运动模型[19, 20]。数值计算模拟方法能实现对土壤水流、溶质、温度动态变化规律和根系吸水等过程的模拟, 并取得了较好的结果, 是目前解决复杂条件下土壤水分运动问题的有效途径, 主要包括有限差分法和有限元法, 例如, SWMS-2D/3D[21, 22]和HYDRUS-2D/3D等模型[23~25], 这种方法不仅成功地应用于农田土壤水分动态变化过程的预测和评估, 也成功地应用在灌溉水分深层渗漏和土壤氮素淋溶风险的评价中[24, 25]。与传统的田间试验相比, 此方法可以减少劳力和时间, 避免田间土壤、作物和气象等因素影响的不确定性, 实现田间管理的优化。但是在荒漠地带, 降雨稀少且蒸发强烈导致降雨对地下水的补给量较小[26], 土壤水分长期处于较低水平, 传统的水动力学模型和数值模拟的应用受到参数化和真实性的挑战[27]。此外, Richards方程在描述低含水量条件下毛管水、薄膜水和水汽3种形式的水分运动特征也可能存在不确定性[28]

3 包气带土壤水分运移研究技术应用
3.1 地球化学示踪技术

同位素和化学物质示踪技术的应用为干旱区土壤水分运移研究提供了较为理想的方法[29, 14]。包气带中的Cl-不仅包含了定量分析降水入渗速率的信息, 还包含了降水历史补给速率变化的信息。因此, 自1969年Eriksson和Khunakasem 提出氯元素质量守恒法(The Chloride Mass Balance Technique, CMB)以来, 该方法已得到广泛应用[2, 30~33]。Edmunds 等[30]利用 CMB 法估算发现民勤地区降水补给地下水速率小于3 mm/a, 约占年降水量的1.5%。Gates[34]估算的巴丹吉林沙漠地下水补给率为1.4 mm/a, 约占年降水量的1.7%。应用 CMB 法也可以揭示几十年至千年尺度的地下水补给规律[35]。Ma等[36]基于巴丹吉林沙漠沙丘包气带深度22 m和30 m的钻孔岩心分别模拟和重建了过去1 185年和2 050年的气候变化过程, 表明该沙漠的降水平均补给速率为0.9~1.33 mm/a。

降水格局也会影响包气带土壤水分的运移过程。Mathieu等[37]研究发现降水量差异会导致土壤剖面水同位素的差异, 提出存在活塞流和优先流2种降水入渗途径, 其中以活塞流形式的下渗通过土壤基质与浅层自由水完全混合, 并因蒸发而富集重同位素; 而优先流则是通过土壤大孔隙形成深层渗漏。干旱半干旱区脉冲式的降水输入、剧烈的蒸散发以及前期土壤中的水分储量都会直接影响降水在包气带中的入渗过程[38~40]。利用稳定同位素技术可以了解降水的入渗机制和地下水的补给来源[41~43]。Edmunds等[44]利用非饱和土壤水中的惰性示踪剂Cl-结合其他化学元素和同位素示踪剂研究了气候变化信息和历史补给速率。Yuan等[45]通过对比分析土壤水稳定同位值和Cl-浓度, 结合土壤粒度分析等手段交叉验证了土壤水活塞流的假设, 为利用CMB 法恢复历史降水补给数据的研究奠定了基础。土壤质地的异质性以及农药和化肥造成的元素干扰等因素给精确估算包气带水分补给量带来了一定的困难[46], 采用多方法结合交叉验证是解决该问题的一种有效途径。例如, 张志杰等[47]采用实验研究和数值模拟相结合的方法, 估算了内蒙古河套平原作物生长期灌溉补给的地下水的比例; Lin 等[48]利用 F-, Cl-和 S O42-3种环境示踪剂相互验证的方法, 估算了华北平原灌溉农田的入渗补给量; Qin等[49]用氯氟烃(CFCs), 结合氚(3H)、稳定同位素(18O 和 2H)以及电导率确定了张掖盆地灌溉水对地下水的补给。此外, 利用六氟化硫(SF6)气体可以测定地下水年龄, 获取地下水在区域的历史补给变化[50]。这些技术的成功应用为包气带水分运移及对地下水补给机理研究和模拟验证提供了可行的方法。

3.2 地球物理技术

高密度电阻成像法、探地雷达(Ground Penetrating Radar, GDR)、电阻层析成像技术(Electrical Resistance Tomography, ERT)、核磁共振成像(Magnetic Resonance Imaging, MRI)等地球物理技术因其具有非破坏性、采集速度快、易于在大尺度应用的优点, 逐渐被用于观测饱和带和包气带水流过程。Thony等[51]通过电极测定含水量和压力水头, 发现电位梯度与流量之间有很好的线性关系。Doussan等[52]通过在土壤中埋设电极以及含水量测定装置, 发现流动点位信号与降雨和蒸发有很强的联系。杨磊等[53]基于流动电位正演模型分析包气带水流过程, 发现流动电位能够指示水流方向, 并根据不同位置电位对降雨入渗响应的时刻差, 可直接获取入渗面推进速度。GDR从20世纪90年代开始被广泛应用于含水量的空间变化测量和土壤质地测量等方面[54~56]。Vanderborght等[57]借助ERT方法, 利用人造蓄水层研究了土壤渗透系数和二维平面内染色剂迁移特性的空间关系。但是, 地球物理技术的应用存在投入代价高、信号解译难度大的弊端, 未来如何在包气带土壤水分运移研究中应用和推广相关技术仍然存在一定困难。

4 影响包气带土壤水分运移及对地下水补给的因素
4.1 降水和灌溉

降水和灌溉影响着包气带土壤水分的运移及其对地下水的补给量, 因为降雨/灌溉强度、降雨量/灌溉量, 降雨/灌溉历时等都会对土壤水分的再分布产生影响。Rose[58]认为降雨或灌溉结束后, 上下土层的含水率差异较大, 水分在重力势和基质势梯度驱动下会继续向下运移, 在自然状态下, 运移过程时间的长短和雨强、雨量有很大关系; 研究表明干旱区部分小于50 mm的单个降雨事件对地下水几乎无补给作用, 但连续的降雨(足量的灌溉)则可能补给地下水。此外, 也有通过径流汇集在低洼地段再在局地补给地下水的现象发生[6~8]。由于降雨的不连续和随机性, 很多试验仍然只停留在人工模拟的层面, 因此现有的研究结论仍然有一定的不确定性。

4.2 土壤物理性质

土壤质地和包气带结构是决定土壤水分变化的重要因素, 而非饱和导水率、土壤水分扩散率和比水容量等又是影响土壤特征的关键参数, 因此, 其准确性决定了土壤水分运动模型的可靠性。测定土壤水分运动基本参数的方法主要有直接法和间接法[10, 17]。不同质地土壤水分入渗和再分布差异明显。张光辉等[59]研究发现当包气带厚度小于潜水蒸发极限深度时, 随着包气带厚度变大, 入渗补给量减少; 当包气带厚度大于潜水蒸发极限深度时, 随着包气带厚度增加, 入渗补给量将趋于稳定。不同类型土壤中, 水分入渗能力也有显著的差异, 如在颗粒岩性土壤中水分入渗以活塞式为主, 而细颗粒岩性土壤中水流在初期以优势流的方式为主; 当土壤颗粒由粗变细时, 水力传导能力减弱, 入渗能力减小, 饱和渗透系数随深度呈指数递减。Beven等[60]考虑了土体固结对渗透性的影响, 发现饱和渗透系数随深度呈指数递减。冻土层作为存在于土壤包气带中特有的含冰土体, 其存在及生消过程同样影响土壤蒸发、入渗等过程[61]。常龙艳等[62]研究发现, 冻结条件下土壤水分会重新分布, 并在土壤水势的作用下由非冻结区向冻结区迁移。

4.3 土壤温度

包气带中土壤水分运动是土壤水势驱动的毛管水分运移, 其中很重要的驱动因素是温度控制下的热驱动, 温度变化变化对土壤水分运动的影响作用受到许多研究者的重视。早在19世纪初期国外一些土壤学家就开始研究了温度梯度对土壤中水分运移的影响, 发现土壤持水量受土壤温度的影响显著[63]。之后的研究发现, 土壤水分特征曲线及土壤导水率明显受到温度变化的影响:当温度升高, 土壤水吸力降低, 土壤水势增加, 水分特征曲线下移且变缓, 并在此基础上建立了土壤水热运移耦合方程[64~66]。Milly[67]对等温和存在温度梯度条件下的土壤含水量变化进行对比研究分析, 发现温度梯度是土壤水分运移的主要影响因素。曾亦键等[68]对深度0~30 cm的土壤温度研究发现, 温度梯度对水汽的运移起到主控作用。而在荒漠土壤中, 尤其在深层包气带, 温度驱动的气态水运移是土壤水分运移的重要组成部分, 也是非饱和带中水分运移的另一种重要形式, 尤其在温差较大的地区, 温度甚至可能成为控制水分分布的主导因素之一[69~72]。这些结论的得出为“ 土壤水分运移与保持受温度的影响” 研究提供了重要的数据支撑和理论依据, 对明确土壤水分与温度间的相互作用、建立地表能量平衡及相关模型具有重要参考意义。

4.4 植被覆盖

植被对包气带土壤水分入渗及运移的影响主要是土根系统, 而土根系统中根系吸水对土壤水分运动的影响规律研究已经受到国内外相关领域的关注, 一系列国际合作计划也都把植物根系吸水对地球陆地物质和能量传输/转化作为其重点研究领域之一[73]。植被通过多种因素综合影响土壤水分入渗性能, 由于土地利用方式、植被覆盖率、植物根系状况的不同, 土壤入渗性能也存在差异。植被或残留物能截留并消减雨滴的溅击侵蚀, 防止土壤结皮, 增加水分入渗; 此外, 地表植被类型、覆盖度及生长情况会在一定程度上影响土壤含水量。研究发现植被对土壤水分传导率的影响表现在:农田大于林地, 林地又大于草地[74]。在荒漠生态系统中, 植被对水文通量起到重要的调控作用, 对浅层荒漠土和深层包气带区域有显著影响[75~77], 荒漠植被通过限制根区水分积累而抑制深层渗漏, 与裸地相比能够降低10倍的蒸发损失[78, 79]

4.5 时空尺度

包气带土壤水分运移及其对地下水补给表现出很强的尺度依赖性[80, 81], 它不仅参与土体和环境之间水分的输入/输出, 而且在土体内部也有水平的扩散、壤中流和垂直方向上的水分传输等小范围的运动[82]。空间尺度上, 包气带岩性、厚度和结构都存在较大地域差异。王军等[83]、宗路平等[84]和Brocca等[85]研究了小流域不同空间尺度上土壤水分的空间变异规律及特征, 认为土地利用是诱发土壤水分空间变异的主要因素, 其次是地形因素, 且海拔影响大、坡度影响小。Bronstert 等[86]也认为区域尺度上土地利用变化、农业开发活动、地表植被变化等对土壤水文过程及水量平衡具有显著的影响。时间尺度上, 土壤水分循环一些要素也发生了改变, 如降水入渗补给量、潜水蒸发量等。孟素花等[87]利用华北平原降水资料研究发现, 近50多年来华北平原降水入渗系数和降水入渗量都呈现增加的趋势。伍永秋等[88]研究毛乌素沙地南缘不同活性沙丘土壤水分时空变化发现:土壤水分含量垂直变异系数总体变化趋势为从春季到夏季增加, 从夏季到秋季减小。Yoo等[89]评价了地形、土壤、植被等因素对田间土壤水分时空变异的相对重要性。总体而言, 在田块尺度上, 入渗过程主要受土壤质地和结构的影响; 在流域尺度上, 主要受地形和地貌影响; 在区域尺度上, 主要受植被覆盖的影响; 在全球陆地尺度上, 主要受气候因子的影响。

4.6 土壤优先流

优先流是一种普遍存在的土壤水文现象, 已经通过染色示踪技术、离子显色示踪技术、地下雷达探测技术等手段证明[90~92]。优先流的存在能够使土壤水分通过大孔隙快速到达深层土壤, 从而改变降雨在地表和地下的分配。Kracht等[93]在西班牙半干旱区研究发现, 由于优先流存在, 水分最初并不使大孔隙周围土壤变湿, 而是在几小时或几天后, 大孔隙中水分的横向运动才使得其周围土壤变得湿润。Bouma[94]研究发现优先流路径对在其中流动的土壤水流产生毛细屏蔽作用。Oswald等[95]和Wang等[96]研究了异质土壤的水分迁移及其与土壤大孔隙优先流之间的关系, 认为优先流会影响土壤水分入渗途径以及入渗速率。

可见, 土壤优先流对包气带水分运移的影响体现在许多方面。同时优先流又受到土壤大孔隙、土壤结构、土壤质地、土壤初始含水量等多重因素的控制, 表现形式多样, 其快速非平衡特征明显[97]。因此如何量化优先流对土壤水分运移的影响, 采取何种手段是未来研究面临的重要问题。

5 包气带水分运移对景观间水分交换的影响

在干旱区尤其是荒漠绿洲景观单元之间存在着水力联系, 这也是系统可持续的关键[98]。有关海岸沙丘、湿地、草地相邻景观间水分传输国内外已经开展了一些工作, 例如, 在英格兰和威尔士海岸开展了沙丘生态水文过程及水力联系研究, 发现主要景观内水分首先是通过垂直运移与地下水进行交换, 然后再通过浅层地下水的水平运移而发生水力联系[99]。Miller 等[100]建立的系统动力学模型较好地模拟了热带稀疏草原景观间的水力联系过程。

在荒漠绿洲, 以往的研究主要侧重于独立景观单元内的水循环过程, 包括荒漠[101, 102]、农田[103, 104]、林地[28]、草地[105]等。例如, 研究发现河西荒漠绿洲农田中灌溉水补给深层土壤水分量高达20%~43%[15, 104], 镶嵌在绿洲中的林带和荒漠绿洲过渡带内生长的许多灌木植被对土壤水分利用强度较大, 几乎没有深层土壤水分补给[106~108]。在荒漠绿洲区, 对景观单元之间水文联系的认识取得了一些进展, 包括根系在毗邻景观单元内的延伸以及土壤水的变化[15]、农田— 林带过渡带的生态水文联系与水循环过程[109, 110]等。研究发现, 在农田与林带镶嵌系统中, 当距离林地越近时, 农田中浅层土壤含水量越低[111, 112], 说明绿洲内林带可从附近农田中吸收水分[106, 110, 113], 有数据表明吸收量可达50%左右[109]。以上研究在思路和方法上提供了一些借鉴, 但总体上看, 由于对景观单元间水力联系认知的模糊, 导致很难获得真实的水量平衡关系[114~117], 所以景观之间的水文过程及其水力联系在研究方法上仍存在挑战。

6 包气带水分运移对地下水补给的影响

降水和灌溉水通过包气带对地下水的补给是实现水资源持续管理和水循环的重要环节。灌溉水和降水在包气带存贮还是补给地下水不仅取决于降水量和降水格局等气象因素, 还受到灌溉模式、土壤、植被、地形条件等因素的影响[118]。刘秀花等[119]研究发现灌溉量和灌溉历时是控制包气带水分滞留和进入地下水水量比例的关键。Mooney等[120]研究发现田间土壤在机械作用下, 土壤结构发生变化, 其固结作用会加速灌溉水或降雨入渗补给地下水。同时水分传输滞后效应也是影响土壤水分补给地下水的重要因素[121]。优先流也是土壤水分运移补给地下水的一种重要形式:长期的优先流作用, 改变了降雨入渗在土壤中的分布, 使其快速进入地下水[122], 齐登红等[123]通过地中渗透仪定量评价了优先流在土壤水入渗补给地下水的比重; Rodriguez-Iturbe等[124]提出了基于土壤物理性质、水分状况、植物根系吸水等水分运移参数的地下水补给模型; 卢小慧等[125]综合考虑了非饱和带土壤水与地下水之间的动态联系, 建立了丹麦Skjern流域的地表水— 地下水耦合模型, 研究了地下水补给过程对降雨、入渗的响应。总之, 关于包气带水分迁移过程对地下水补给及其调控因素研究已经取得了一些进展。

此外, 在干旱区受土壤带和渗滤带结构、厚度、渗透性等因素影响, 降雨可能影响不到地下水。尤其当土壤带和渗滤带较厚时, 降雨直接通过垂向渗滤过程补给地下水将变的十分微弱, 此时, 地下水补给、山前侧向补给和河流入渗补给会占重要比重。黄天明等[126]研究发现, 巴丹吉林沙漠地下水很可能是更新世晚期至全新世早期周边的雅布赖山区降水径流及发源于祁连山的河流古河道补给的古水。马金珠等[127]利用同位素研究发现巴丹吉林沙漠南缘浅层地下水部分接受河流的侧向补给。同时应针对干旱区特殊的地域性包气带土壤结构和气候特征, 继续开展土壤带和渗滤带结构对降雨入渗和地下水补给过程影响等方面研究。

7 结论与展望

干旱区约占陆地面积的1/3, 涉及全球20多个国家, 是陆地生态系统的重要组成部分, 对区域乃至全球气候变化和生态功能的维持具有重要作用。中国干旱区在广义上既包括分布在35° N以北、106° E以西的广大内陆河流域, 也包括分布在北方农牧交错带降水量为300~400 mm的半干旱地区。流域是干旱区的基本单元, 冰川、冻土、森林、草原、荒漠、绿洲、农田、湿地、沙丘、河岸林是流域的重要组成部分, 地表水和地下水频繁转换是流域水循环的显著特点, 包气带在水循环、溶质运移等方面具有重要作用。今后应在以下方面加强研究:

(1) 加强地球物理技术在包气带土壤水分运移研究中的探索和应用

由于包气带的特殊的垂向结构和强烈的空间异质性, 土壤水分运移受到多重因素的调控和影响。有必要借助地下雷达探测、电阻率层析成像法、声波探测、非侵入式影像获得等地球物理技术突破传统的破坏性土壤结构取样和分析方法。尤其是加强地球物理技术在土壤优先流研究中的应用, 实现在较大尺度上的水流观测和模拟, 综合提升干旱区包气带水分运移规律研究水平。

(2) 包气带土壤水分运移参数的试验观测及数据库建立

干旱区景观类型多样、土壤异质性很强, 应针对森林、草原、荒漠、绿洲、农田、湿地、沙丘、河岸林等景观类型, 通过钻孔和开挖剖面, 结合土柱试验, 获取包气带剖面的水力传导度、土壤颗粒组成、容重、孔隙度、紧实度、田间持水量、水分氢氧同位素、Cl-含量等基础数据, 为构建包气带土壤水分垂直运移模型建立数据库, 提高对干旱区包气带土壤水分运移的模拟水平。

(3) 加强包气带土壤水分运移及其对地下水补给的研究

地下水在维持干旱区生产和生态方面具有不可替代的作用, 地下水位下降已经威胁到对干旱区社会经济的可持续发展。因此, 选择合理的用水方式和策略维系地下水平衡是干旱区乃至全球水资源管理面临的重大问题。应明确包气带水分运移和地下水补给关系是什么、不同尺度包气带土壤水分运移及其对地下水补给规律是什么、降水和灌溉水补给地下水的过程和条件是什么等科学问题, 回答干旱区雨养条件下典型降水事件后扩散补给、局地补给和存储于土壤中水分的比例及其影响因素; 确定荒漠绿洲灌溉农田、相邻沙丘、湿地和湖泊景观界面上的水分交换过程及水文连通关系及其对地下水埋深的影响, 评估包气带水分运移及其对地下水变化的影响, 确定适宜的农田节水度。

(4) 借鉴地球关键带研究的思路, 开展包气带土壤水分运移、溶质运移、地下水补给耦合研究

包气带土壤水分运移也伴随着溶质的运移, 也会导致土壤中的一些物质如硝态氮等进入地下水中。因此, 开展包气带土壤水分运移、溶质运移、地下水补给耦合研究将为选择科学灌溉方式, 防止地下水污染提供理论依据。地球关键带最早由美国国家研究理事会(National Research Council, NRC)2001年提出, 是指陆地生态系统中土壤圈及其与大气圈、生物圈、水圈和岩石圈物质迁移和能量交换的交汇区域, 也是维持地球生态系统功能与人类生存的关键区域, 被认为是21世纪基础科学研究的重点领域。关键带控制着土壤的发育、水的质量和运移及化学循环, 因此应借鉴地球关键带的思路和方法, 加强包气带土壤水分运移、溶质运移、地下水补给耦合研究。

The authors have declared that no competing interests exist.

参考文献
[1] Lei Zhidong, Yang Shixiu, Xie Senchuan. Soil Water Dynamics[M]. Beijing: Tsinghua University Press, 1988.
[雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1988. ] [本文引用:1]
[2] Cook P G, Edmunds W M, Gaye C B. Estimating paleorecharge and paleoclimate from unsaturated zone profiles[J]. Water Resources Research, 1992, 28(10): 2 721-2 731. [本文引用:2]
[3] Edmunds W, Tyler S. Unsaturated zones as archives of past climates: Toward a new proxy for continental regions[J]. Hydrogeology Journal, 2002, 10(1): 216-228. [本文引用:1]
[4] Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072. [本文引用:1]
[5] Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5 575): 1 985-1 990. [本文引用:1]
[6] Lerner D N, Issar A S, Simmers I. Groundwater Recharge: A Guide to Understand ing and Estimating Natural Recharge[M]. Hannover: Heise, 1990. [本文引用:2]
[7] Sophocleous M. Groundwater recharge estimation and regionalization: The Great Bend Prairie of central Kansas and its recharge statistics[J]. Journal of Hydrology, 1992, 137(1): 113-140. [本文引用:1]
[8] Favreau G, Leduc C, Marlin C, et al. Estimate of recharge of a rising water table in semiarid Niger from 3H and 14C modeling[J]. Groundwater, 2002, 40(2): 144-151. [本文引用:2]
[9] Gong Z N, Gong H L, Deng W, et al. An overview of water movement in groundwater-soil-plant-atmosphere continuum with shallow water table[J]. Journal of Agro-Environment Science, 2006, 25: 365-373. [本文引用:1]
[10] Shao Ming’an, Wang Quanjiu, Huang Mingbin. Soil Physics[M]. Beijing: Higher Education Press, 2006.
[邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006. ] [本文引用:2]
[11] Ji X B, Kang E S, Zhao W Z, et al. Simulation of heat and water transfer in a surface irrigated, cropped sand y soil[J]. Agricultural Water Management, 2009, 96(6): 1 010-1 020. [本文引用:1]
[12] Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5 575): 1 985-1 990. [本文引用:1]
[13] Hamerlynck E P, McAuliffe J R, McDonald E V, et al. Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics[J]. Ecology, 2002, 83(3): 768-779. [本文引用:1]
[14] Bachmair S, Weiler M, Nützmann G. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone[J]. Journal of Hydrology, 2009, 369(3): 241-252. [本文引用:1]
[15] Shen Q, Gao G Y, Fu B J, et al. Soil water content variations and hydrological relations of the cropland -treebelt-desert land use pattern in an oasis-desert ecotone of the Heihe River Basin, China[J]. Catena, 2014, 123: 52-61. [本文引用:3]
[16] Darcy H. Les Fontaines Publiques de La Ville De Dijon: Distribution d’Eau et Filtrage Des Eaux, Appendice-Note D[M]. Paris: Victor Dalmont, 1856. [本文引用:1]
[17] Sadeghi M, Ghahraman B, Ziaei A N, et al. Invariant solutions of Richards’ equation for water movement in dissimilar soils[J]. Soil Science Society of America Journal, 2012, 76(1): 1-9. [本文引用:2]
[18] Williamson T N, Lee B D, Schoeneberger P J, et al. Simulating soil-water movement through Loess-Veneered land scapes using nonconsilient saturated hydraulic conductivity measurements[J]. Soil Science Society of America Journal, 2014, 78(4): 1 320-1 331. [本文引用:1]
[19] Kang Shaozhong, Liu Xiaoming, Gao Xinke, et al. Computer simulation of water transport in soil-plant-atmosphere continuum[J]. Journal of Hydraulic Engineering , 1992, (3): 1-12.
[康绍忠, 刘晓明, 高新科, . 土壤—植物—大气连续体水分传输的计算机模拟[J]. 水利学报, 1992, (3): 1-12. ] [本文引用:1]
[20] Kang S Z, Zhang F C, Zhang J H. A simulation model of water dynamics in winter wheat field and its application in a semiarid region[J]. Agricultural Water Management, 2001, 49(2): 115-129. [本文引用:1]
[21] Nie Weibo, Ma Xiaoyi, Wang Shuli. Infiltration model and numerical simulation of the soil water movement in furrow irrigation[J]. Advance in Water Science, 2009, 20(5): 668-676.
[聂卫波, 马孝义, 王术礼. 沟灌土壤水分运动数值模拟与入渗模型[J]. 水科学进展, 2009, 20(5): 668-676. ] [本文引用:1]
[22] Yao W W, Ma X Y, Li J, et al. Simulation of point source wetting pattern of subsurface drip irrigation[J]. Irrigation Science, 2011, 29(4): 331-339. [本文引用:1]
[23] Šimunek J, van Genuchten M T, Šejna M. The HYDRUS-2D Software Package for Simulating the Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media[M]. Prague, Czech Republic: US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, 1999. [本文引用:1]
[24] Mailhol J C, Crevoisier D, Triki K. Impact of water application conditions on nitrogen leaching under furrow irrigation: Experimental and modeling approaches[J]. Agricultural Water Management, 2007, 87(3): 275-284. [本文引用:1]
[25] Ebrahimian H, Liaghat A, Parsinejad M, et al. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation[J]. Irrigation Science, 2013, 31(3): 301-316. [本文引用:2]
[26] Allison G B, Gee G W, Tyler S W. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions[J]. Soil Science Society of America Journal, 1994, 58(1): 6-14. [本文引用:1]
[27] Vereecken H, Huisman J A, Bogena H, et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008, 44(4): 1-21. [本文引用:1]
[28] Wang Y Q, Ma J Z, Zhang Y L, et al. A new theoretical model accounting for film flow in unsaturated porous media[J]. Water Resources Research, 2013, 49(8): 5 021-5 028. [本文引用:2]
[29] Aggarwal P K, Froehlich K F O, Gat J R. Isotopes in the Water Cycle[M]. Dordrecht: Springer, 2005. [本文引用:1]
[30] Edmunds W M, Ma J Z, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, Northwest China[J]. Applied Geochemistry, 2006, 21(12): 2 148-2 170. [本文引用:2]
[31] Scanlon B R, Reedy R C, Tachovsky J A. Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the Southern High Plains, United States[J]. Water Resources Research, 2007, 43(6), doi: 10.1029/2006WR005769. [本文引用:1]
[32] Scanlon B R, Reedy R C, Gates J B. Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas[J]. Water Resources Research, 2010, 46(9), doi: 10.1029/2009WR008427. [本文引用:1]
[33] Scanlon B R, Gates J B, Reedy R C, et al. Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the Southern High Plains, Texas[J]. Water Resources Research, 2010, 46(9), doi: 10.1029/2009WR008428. [本文引用:1]
[34] Gates J B. Conceptual model of recharge to southeastern Badain Jaran desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry, 2008, 23(12): 3 519-3 534. [本文引用:1]
[35] Scanlon B R, Keese K E, Flint A L, et al. Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes, 2006, 20(15): 3 335-3 370. [本文引用:1]
[36] Ma J Z, Edmunds W M, He J H, et al. 2000 years geochemical record of palaeoclimate and hydrology derived from dune sand moisture[J]. Paleogeography, 2009, 276(1/4): 38-46. [本文引用:1]
[37] Mathieu R, Bariac T. An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate[J]. Water Resources Research, 1996, 32(4): 779-789. [本文引用:1]
[38] Hubbell J M, Nicholl M J, Sisson J B, et al. Application of a darcian approach to estimate liquid flux in a deep vadose zone[J]. Vadose Zone Journal, 2004, 3(2): 560-569. [本文引用:1]
[39] West L J, Truss S W. Borehole time domain reflectometry in layered sand stone: Impact of measurement technique on vadose zone process identification[J]. Journal of Hydrology, 2006, 319(1/4): 143-162. [本文引用:1]
[40] Timms W A, Young R R, Huth N. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment Australia[J]. Hydrology and Earth System Sciences, 2012, 16(4): 1 203-1 219. [本文引用:1]
[41] Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advance in Water Science, 2009, 20(4): 495-501.
[王仕琴, 宋献方, 肖国强, . 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4): 495-501. ] [本文引用:1]
[42] Brooks J R, Barnard H R, Coulombe R, et al. Ecohydrologic separation of water between trees and streams in a Mediterranean climate[J]. Nature Geoscience, 2010, 3(2): 100-104. [本文引用:1]
[43] Cheng Liping, Liu Wenzhao. Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland [J]. Chinese Journal of Applied Ecology, 2012, 23(3): 651-658.
[程立平, 刘文兆. 黄土塬区几种典型土地利用类型的土壤水稳定同位素特征[J]. 应用生态学报, 2012, 23(3): 651-658. ] [本文引用:1]
[44] Edmunds W, Tyler S. Unsaturated zones as archives of past climates: Toward a new proxy for continental regions[J]. Hydrogeology Journal, 2002, 10(1): 216-228. [本文引用:1]
[45] Yuan R, Song X, Han D, et al. Rate and historical change of direct recharge from precipitation constrained by unsaturated zone profiles of chloride and oxygen-18 in dry river bed of North China Plain[J]. Hydrological Processes, 2012, 26(9): 1 291-1 301. [本文引用:1]
[46] Scanlon B R, Mukherjee A, Gates J, et al. Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India[J]. Hydrogeology Journal, 2010, 18(4): 959-972. [本文引用:1]
[47] Zhang Zhijie, Yang Shuqing, Shi Haibin, et al. Irrigation infiltration and recharge coefficient in Hetao irrigation district in Inner Mongolia[J]. Chinese Society of Agricultural Engineering, 2011, 27(3): 61-66.
[张志杰, 杨树青, 史海滨, . 内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数[J]. 农业工程学报, 2011, 27(3): 61-66. ] [本文引用:1]
[48] Lin D, Jin M, Liang X, et al. Estimating groundwater recharge beneath irrigated farmland using environmental tracers: Fluoride, chloride and sulfate[J]. Hydrogeology Journal, 2013, 21(7): 1 469-1 480. [本文引用:1]
[49] Qin D J, Qian Y P, Han L F, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology, 2011, 405(1): 194-208. [本文引用:1]
[50] Busenberg E, Plummer L N. Dating young groundwater with sulfur hexafluoride: Natural and anthropogenic sources of sulfur hexafluoride[J]. Water Resources Research, 2000, 36(10): 3 011-3 030. [本文引用:1]
[51] Thony J L, Morat P, Vachaud G, et al. Field characterization of the relationship between electrical potential gradients and soil water flux[J]. Comptes Rendus de l'Académie des Sciences—Series IIA—Earth and Planetary Science, 1997, 325(5): 317-321. [本文引用:1]
[52] Doussan C, Jouniaux L, Thony J L. Variations of self-potential and unsaturated water flow with time in sand y loam and clay loam soils[J]. Journal of Hydrology, 2002, 267(3): 173-185. [本文引用:1]
[53] Yang Lei, Zhou Qiyou. Monitoring water flow process based on streaming potential forward model in unsaturated zone[J]. Advances in Water Science, 2012, 23(5): 673-679.
[杨磊, 周启友. 基于流动电位正演模型的非饱和带水流过程监测[J]. 水科学进展, 2012, 23(5): 673-679. ] [本文引用:1]
[54] Doolittle J A, Collins M E. Use of soil information to determine application of ground penetrating radar[J]. Journal of Applied Geophysics, 1995, 33(1/3): 101-108. [本文引用:1]
[55] Boll J, Van Rijn R P G, Weiler K W, et al. Using ground-penetrating radar to detect layers in a sand y field soil[J]. Geoderma, 1996, 70(2/4): 117-132. [本文引用:1]
[56] Schmalz B, Lennartz B. Analyses of soil water content variations and GPR attribute distributions[J]. Journal of Hydrology, 2002, 267(3): 217-226. [本文引用:1]
[57] Vand erborght J, Kasteel R, Herbst M, et al. A set of analytical benchmarks to test numerical models of flow and transport in soils[J]. Vadose Zone Journal, 2005, 4(1): 206-221. [本文引用:1]
[58] Rose D A. The dynamics of soil water following single surface wettings[J]. European Journal of Soil Science, 1996, 47(1): 21-31. [本文引用:1]
[59] Zhang Guanghui, Fei Yuhong, Shen Jianmei, et al. Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater[J]. Journal of Hydraulic Engineering, 2007, 38(5): 611-617.
[张光辉, 费宇红, 申建梅, . 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617. ] [本文引用:1]
[60] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research, 1982, 18(5): 1 311-1 325. [本文引用:1]
[61] Tanasienko A A, Yakutina O P, Chumbaev A S. Snowmelt runoff parameters and geochemical migration of elements in the dissected forest-steppe of West Siberia[J]. Catena, 2009, 78(2): 122-128. [本文引用:1]
[62] Chang Longyan, Dai Changlei, Shang Yunhu, et al. Analysis of the frozen soil moisture profile changes in aeration zone under the conditions of freezing-thawing and non-freezing-thawing[J]. Journal of Glaciology and Geocryology, 2014, 539(4): 1 031-1 041.
[常龙艳, 戴长雷, 商允虎, . 冻融和非冻融条件下包气带土壤墒情垂向变化的试验与分析[J]. 冰川冻土, 2014, 36(4): 1 031-1 041. ] [本文引用:1]
[63] Boucoyous G T. Effect of temperature on the movement of water vapor and capillary moisture in soils[J]. Journal of Agricultural Engineering Research, 1915, 5: 141-172. [本文引用:1]
[64] Haridasan M, Jensen R D. Effect of temperature on pressure head-water content relationship and conductivity of two soils[J]. Soil Science Society of America Journal, 1972, 36(5): 703-708. [本文引用:1]
[65] Novak V. Non-isothermal flow of water in unsaturated soils[J]. Journal of Hydrology, 1975, 2: 37-52. [本文引用:1]
[66] Haverkamp R T, Parlange J Y, Haverkamp R, et al. Predicting the water-retention curve from particle-size distribution[J]. Soil Science, 1986, 142(6): 325-339. [本文引用:1]
[67] Milly P C D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20(8): 1 087-1 098. [本文引用:1]
[68] Zeng Yijian, Wan Li, Su Zhongbo, et al. The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis[J]. Earth Science Frontier, 2008, 15(5): 329-343.
[曾亦键, 万力, 苏中波, . 浅层包气带水汽昼夜运移规律及其数值模拟研究[J]. 地学前缘, 2008, 15(5): 329-343. ] [本文引用:1]
[69] Scanlon B R, Milly P C D. Water and heat fluxes in desert soils: 2. Numerical simulations[J]. Water Resources Research, 1994, 30(3): 721-733. [本文引用:1]
[70] Andraski B J, Stonestrom D A, Michel R L, et al. Plant-based plume-scale mapping of tritium contamination in desert soils[J]. Vadose Zone Journal, 2005, 4(3): 819-827. [本文引用:1]
[71] Saito H, Šimûnek J, Mohanty B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800. [本文引用:1]
[72] Garcia C A, Andraski B J, Stonestrom D A, et al. Interacting vegetative and thermal contributions to water movement in desert soil[J]. Vadose Zone Journal, 2011, 10(2): 552-564. [本文引用:1]
[73] Si Jianhua, Feng Qi, Li Jianlin, et al. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest[J]. Chinese Journal of Ecology, 2007, 26(1): 1-4.
[司建华, 冯起, 李建林, . 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1): 1-4. ] [本文引用:1]
[74] Kellner E, Hubbart J A. Continuous and event-based time series analysis of observed floodplain groundwater flow under contrasting land -use types[J]. Science of the Total Environment, 2016, 566: 436-445. [本文引用:1]
[75] Fischer J M. Sediment Properties and Water Movement Through Shallow Unsaturated Alluvium at an Arid Site for Disposal of Low-Level Radioactive Waste Near Beatty, Nye County, Nevada[R]. Nevada: US Department of the Interior, US Geological Survey, 1992. [本文引用:1]
[76] Andraski B J. Soil-water movement under natural-site and waste-site conditions: A multiple-year field study in the Mojave Desert, Nevada[J]. Water Resources Research, 1997, 33(8): 1 901-1 916. [本文引用:1]
[77] Scanlon B R, Keese K, Reedy R C, et al. Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0-90 kyr): Field measurements, modeling, and uncertainties[J]. Water Resources Research, 2003, 39(7): 303-303. [本文引用:1]
[78] Gee G W, Wierenga P J, Andraski B J, et al. Variations in water balance and recharge potential at three western desert sites[J]. Soil Science Society of America Journal, 1994, 58(1): 63-72. [本文引用:1]
[79] Scanlon B R, Levitt D G, Reedy R C, et al. Ecological controls on water-cycle response to climate variability in deserts[J]. Proceedings of the National academy of Sciences, 2005, 102(17): 6 033-6 038. [本文引用:1]
[80] Corwin D L, Lesch S M, Oster J D, et al. Monitoring management-induced spatial-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity[J]. Geoderma, 2006, 131(3): 369-387. [本文引用:1]
[81] Bormann H, Klaassen K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils[J]. Gendarme, 2008, 145(3): 295-302. [本文引用:1]
[82] Duan Zhenghu. Effect, status quo and development orientation of soil water research in the eco-hydrological processes of catchment[J]. Advances in Earth Science, 2008, 23(7): 682-684.
[段争虎. 土壤水研究在流域生态—水文过程中的作用, 现状与方向[J]. 地球科学进展, 2008, 23(7): 682-684. ] [本文引用:1]
[83] Wang Jun, Fu Bojie, Qiu Yang, et al. Spatiotemporal variability of soil moisture in small catchment on Loess Plateau—Semivariograms[J]. Journal of Geographical Sciences, 2000, 55(4): 428-438.
[王军, 傅伯杰, 邱扬, . 黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J]. 地理学报, 2000, 55(4): 428-438. ] [本文引用:1]
[84] Zong Luping, Jiao Yuanmei, Li Shihua, et al. Spatial and temporal variability of soil moisture in water source region of Hani terrace land scape[J]. Chinese Journal of Ecology, 2015, 34(6): 1 650-1 659.
[宗路平, 角媛梅, 李石华, . 哈尼梯田景观水源区土壤水分时空变异性[J]. 生态学杂志, 2015, 34(6): 1 650-1 659. ] [本文引用:1]
[85] Brocca L, Tullo T, Melone F, et al. Catchment scale soil moisture spatial-temporal variability[J]. Journal of Hydrology, 2012, 422: 63-75. [本文引用:1]
[86] Bronstert A, Niehoff D, Bürger G. Effects of climate and land -use change on storm runoff generation: Present knowledge and modeling capabilities[J]. Hydrological Processes, 2002, 16(2): 509-529. [本文引用:1]
[87] Meng Suhua, Fei Yuhong, Zhang Zhaoji, et al. Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China Plain[J]. Advances in Earth Science, 2013, 28(8): 923-929.
[孟素花, 费宇红, 张兆吉, . 50 年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929. ] [本文引用:1]
[88] Wu Yongqiu, Zhang Jianfeng, Du Shisong, et al. Temporal and spatial variation of soil moisture in dunes with different vegetation coverage in Southern Margin of the Mu Us Sand y Land [J]. Journal of Desert Research, 2015, 35(6): 1 612-1 619.
[伍永秋, 张健枫, 杜世松, . 毛乌素沙地南缘不同活性沙丘土壤水分时空变化[J]. 中国沙漠, 2015, 35(6): 1 612-1 619. ] [本文引用:1]
[89] Yoo C, Kim S. EOF analysis of surface soil moisture field variability[J]. Advances in Water Resources, 2004, 27(8): 831-842. [本文引用:1]
[90] Kung K J, Donohue S V. Improved solute-sampling protocol in a sand y vadose zone using ground-penetrating radar[J]. Soil Science Society of America Journal, 1991, 55(6): 1 543-1 545. [本文引用:1]
[91] Sollins P, Radulovich R. Effects of soil physical structure on solute transport in a weathered tropical soil[J]. Soil Science Society of America Journal, 1988, 52(4): 1 168-1 173. [本文引用:1]
[92] Harari Z. Ground-Penetrating Radar ( GPR) for imaging stratigraphic features and groundwater in sand dunes[J]. Journal of Applied Geophysics, 1996, 36(1): 43-52. [本文引用:1]
[93] Kracht O, Gresch M, Gujer W. Innovative tracer methods for sewer infiltration monitoring[J]. Urban Water Journal, 2008, 5(3): 173-185. [本文引用:1]
[94] Bouma J. Influence of soil macroporosity on environmental quality[J]. Advances in Agronomy, 1991, 46: 1-37. [本文引用:1]
[95] Oswald S, Kinzelbach W, Greiner A, et al. Observation of flow and transport processes in artificial porous media via magnetic resonance imaging in three dimensions[J]. Geoderma, 1997, 80(3/4): 417-429. [本文引用:1]
[96] Wang K, Zhang R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine[J]. Journal of Hydrology, 2011, 397(1): 105-117. [本文引用:1]
[97] Sheng Feng, Zhang Liyong, Wu Dan. Review on research theories and observation techniques for preferential flow in unsaturated soil[J]. Chinese Society of Agricultural Engineering, 2016, 32(6): 1-10.
[盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1-10. ] [本文引用:1]
[98] Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland , riparian and groundwater-based ecosystems Preface[J]. Ecohydrology, 2011, 4(4): 477-480. [本文引用:1]
[99] Stratford C J, Robins N S, Clarke D, et al. An ecohydrological review of dune slacks on the west coast of England and Wales[J]. Ecohydrology, 2013, 6(1): 162-171. [本文引用:1]
[100] Miller G R, Cable J M, McDonald A K, et al. Understand ing ecohydrological connectivity in savannas: A system dynamics modeling approach[J]. Ecohydrology, 2012, 5(2): 200-220. [本文引用:1]
[101] Danierhan S, Abudu S, Donghai G. Coupled GSI-SVAT model with groundwater-surface water interaction in the Riparian Zone of Tarim River[J]. Journal of Hydrologic Engineering, 2012, 18(10): 1 211-1 218. [本文引用:1]
[102] Curreli A, Wallace H, Freeman C, et al. Eco-hydrological requirements of dune slack vegetation and the implications of climate change[J]. Science of the Total Environment, 2013, 443: 910-919. [本文引用:1]
[103] Hu S, Zhao R, Tian C, et al. Empirical models of calculating phreatic evaporation from bare soil in Tarim River Basin, Xinjiang[J]. Environmental Earth Sciences, 2009, 59(3): 663-668. [本文引用:1]
[104] Zhao L W, Zhao W Z. Water balance and migration for maize in an oasis farmland of northwest China[J]. Chinese Science Bulletin, 2014, 59: 4 829-4 837. [本文引用:2]
[105] Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin, 2013, 58: 3 088-3 097. [本文引用:1]
[106] Kizito F, Sène M, Dragila M I, et al. Soil water balance of annual crop-native shrub systems in Senegal’s Peanut Basin: The missing link[J]. Agricultural Water Management, 2007, 90: 137-148. [本文引用:2]
[107] Kizito F, Dragila M I, Senè M, et al. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems[J]. Journal of Arid Environments, 2012, 83: 69-77. [本文引用:1]
[108] Wu Y, Zhou H, Zheng X J, et al. Seasonal changes in the water use strategies of three co-occurring desert shrubs[J]. Hydrological Processes, 2014, 28: 6 265-6 275. [本文引用:]
[109] Karray J A, Lhomme J P, Masmoudi M M, et al. Water balance of the olive tree-annual crop association: A modeling approach[J]. Agricultural Water Management, 2008, 95: 575-586. [本文引用:2]
[110] Campi P, Palumbo A D, Mastrorilli M. Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment[J]. European Journal of Agronomy, 2009, 30: 220-227. [本文引用:2]
[111] Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry systems. 3. Soil water distribution and dynamics[J]. Plant and Soil, 2004, 264: 129-139. [本文引用:1]
[112] Ellis T, Hatton T, Nuberg I. An ecological optimality approach for predicting deep drainage from tree belts of alley farms in water-limited environments[J]. Agricultural Water Management, 2005, 75: 92-116. [本文引用:1]
[113] Yi J, Zhao Y, Shao M A, et al. Hydrological processes and eco-hydrological effects of farmland -forest-desert transition zone in the middle reaches of Heihe River Basin, Gansu, China[J]. Journal of Hydrology, 2015, 529: 1 690-1 700. [本文引用:1]
[114] Brooksbank K, Veneklaas E J, White D A, et al. Water availability determines hydrological impact of tree belts in dryland cropping systems[J]. Agricultural Water Management, 2011, 100(1): 76-83. [本文引用:1]
[115] Cerdán C R, Rebolledo M C, Soto D, et al. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems[J]. Agricultural Systems, 2012, 110: 119-130. [本文引用:1]
[116] Campi P, Palumbo A D, Mastrorilli M. Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region[J]. Agricultural Water Management, 2012, 104: 153-162. [本文引用:1]
[117] Thomas Z, Ghazavi R, Merot P, et al. Modelling and observation of hedgerow transpiration effect on water balance components at the hillslope scale in Brittany[J]. Hydrological Processes, 2012, 26(26): 4 001-4 014. [本文引用:1]
[118] Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5 575): 1 985-1 990. [本文引用:1]
[119] Liu Xiuhua, Wang Rui. Research on impact process of irrigation amount on moisture migration and retention in vadose zone[J]. Agricultural Research in the Arid Areas, 2016, 34(5): 262-268.
[刘秀花, 王蕊. 灌水量对包气带水分运移与滞留影响过程研究[J]. 干旱地区农业研究, 2016, 34(5): 262-268. ] [本文引用:1]
[120] Mooney S J, Nipattasuk W. Quantification of the effects of soil compaction on water flow using dye tracers and image analysis[J]. Soil Use and Management, 2003, 19(4): 356-363. [本文引用:1]
[121] Liu Xianzhao, Kang Shaozhong. A model of water exchange for hillslope with hysteresis considered[J]. Acta Pedologica Sinica, 2000, 37(1): 16-23.
[刘贤赵, 康绍忠. 黄土区考虑滞后作用的坡地水量转化模型[J]. 土壤学报, 2000, 37(1): 16-23. ] [本文引用:1]
[122] Bundt M, Albrecht A, Froidevaux P, et al. Impact of preferential flow on radionuclide distribution in soil[J]. Environmental Science and Technology, 2000, 34(18): 3 895-3 899. [本文引用:1]
[123] Qi Denghong, Jin Menggui, Liu Yanfeng. Determination of preferential flow in precipitation infiltration recharges[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(3): 420-424.
[齐登红, 靳孟贵, 刘延锋. 降水入渗补给过程中优先流的确定[J]. 地球科学——中国地质大学学报, 2007, 32(3): 420-424. ] [本文引用:1]
[124] Rodriguez-Iturbe I, D'Odorico P, Laio F, et al. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research, 2007, 43(9), doi: 10.1029/2007WR006073. [本文引用:1]
[125] Lu Xiaohui, Li Qilong. Analysis of hydrology response of groundwater using MIKE SHE Model[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(1): 11-15.
[卢小慧, 李奇龙. 基于 MIKE SHE 模型的流域地下水水文响应[J]. 长江科学院院报, 2015, 32(1): 11-15. ] [本文引用:1]
[126] Huang Tianming, Pang Zhonghe. Groundwater recharge in Badain Jaran Desert and Gurinai Oasis based on environmental tracers[J]. Geoscience, 2007, 21(4): 624-631.
[黄天明, 庞忠和. 应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J]. 现代地质, 2007, 21(4): 624-631. ] [本文引用:1]
[127] Ma Jinzhu, Huang Tianming, Ding Zhenyu. Environmental isotopes as the indicators of the groundwater recharge in the south Badain Jaran Desert[J]. Advances in Earth Science, 2007, 22(9): 922-930.
[马金珠, 黄天明, 丁贞玉. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930. ] [本文引用:1]