北京市冬季、春季PM10和PM2.5中元素地球化学特征
王的, 冯海艳*, 景慧敏
中国地质大学(北京)地球科学与资源学院,北京 100083
*通信作者:冯海艳(1974-),女,山东济宁人,副教授,主要从事环境和生态地球化学的研究.E-mail:haiyan@cugb.edu.cn
摘要

使用TH1500C智能中流量(80~120 L/min)大气采样器采集了北京市区5个功能区和郊区的大气颗粒物(TSP/PM10/PM2.5)样品,利用电感耦合等离子体质谱仪和原子荧光谱仪分析测试了大气颗粒物中Al,Fe,Mn,As,Hg,Cd,和Cr等21种元素,并通过计算元素的富集因子探讨了大气颗粒物中元素的来源。结果表明,冬季大气颗粒物PM10中Cd,Cr,As,Hg的浓度比春季的分别增幅233%,306%,298%和141%;在PM2.5中的增幅分别为442%,309%,310%和256%。Cd,Cr,As,Hg和Se等元素均表现出在PM2.5中富集的趋势,并且其在冬季的浓度明显高于春季。认为冬季燃煤取暖对大气颗粒物中的污染元素贡献较大,主要贡献元素为Cd,As和Hg。

关键词: PM10; PM2.5; 春季; 冬季; 燃煤取暖
中图分类号:P595 文献标志码:A 文章编号:1001-8166(2017)08-0850-09
Elements’ Geochemical Characteristics of PM10 and PM2.5 in Beijing During Winter and Spring
Wang Di, Feng Haiyan*, Jing Huimin
School of Geosciences and Resources,China University of Geosciences,Beijing 100083,China

*Corresponding author:Feng Haiyan(1974-),female,Jining City, Shandong Province, Associate professor. Research areas include environmental geochemistry and ecological geochemistry.E-mail:haiyan@cugb.edu.cn

First author:Wang Di(1993-), male,Nanxian County,Hu’nan Province,Master student. Research areas include environmental geochemistry.E-mail:wangdiwonder@qq.com

作者简介:王的(1993-),男,湖南南县人,硕士研究生,主要从事环境地球化学的研究.E-mail:wangdiwonder@qq.com

Abstract

From 2012 to 2013, heavy haze frequently hit Beijing in spring and winter. The fine atmospheric particulates can be inhaled by people, and remain in the respiratory tract and lung for quite a long time. The heavy metal elements in the particles are harmful, and even carcinogenic to human bodies. Therefore, it is necessary to master the geochemical characteristics and the temporal and spatial distribution of the heavy metal elements in atmospheric particles. The atmospheric particulates (TSP/PM10/PM2.5) were collected by using TH1500C intelligent medium volume (80~120 L/min) air samplers in the five functional areas and suburbs of Beijing, respectively in January 2013 (heating period) and April 2013 (non-heating period). The five functional areas were: building materials factory area, residential area, education area, business area and recreation area, each functional area having three sampling sites, and five in suburbs. The sampling height was 1.5 m above the ground and the distance of the sampling sites to roads exceeded 50 m so as to avoid excessive impact of vehicle exhaust emissions. These samples were analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectrometer(ICP-OES)and Atomic Fluorescence Spectrometer (AFS), by which 21 elements including Al, Fe, Mn, As, Hg, Cd, Cr were tested. Based on the comparisons of the concentration and element content variation of atmospheric particulates of these functional areas in and after the heating period, the spatial distribution of atmospheric particulates and the influence of coal combustion on the concentration and composition of atmospheric particulates were revealed. The elements sources of atmospheric particulates were also discussed by computing the enrichment factor of the elements, providing a scientific basis for the air contaminant treatment in Beijing. The results showed that the total concentration of the 21 elements of PM10 and PM2.5 in the functional areas of Beijing in winter was higher than that in spring, the most marked among them being the business area. In winter, the concentration of pollution elements in the building materials factory area and the business area in Beijing was extremely high, and the residential area, education area, recreation area and suburbs where people live were much better, among which the education area was the best. The concentration change of particulates in suburbs was quite smaller in winter and spring than that of the urban area. It also showed that the concentrations of Cd, Cr, As and Hg in PM10 increased by 233%,306%,298%,141%,respectively and the increase in PM2.5 was 442%、309%、310%、256%, respectively. These abovementioned elements show a tendency to accumulate mainly in PM2.5 whose concentrations in winter were significantly higher than those in spring. It indicates that coal heating during winter makes great contributions to the polluting elements in atmosphere and the main polluting particulates are Cd, As and Hg.

Keyword: PM10; PM2.5; Spring; Winter; Coal heating.
1 引言

雾霾是一种“ 细粒子” 污染, 是悬浮在大气中的大量小尘粒、烟粒、盐粒的集合体, 使空气混浊, 水平能见距离降到10 km以下的一种天气现象。霾一般呈乳白色, 其使物体的颜色减弱使远处光亮物体微带黄色, 而黑色物体微带蓝色[1~3]。悬浮颗粒物的颗粒大小、浓度以及组成元素特征是由来源、气象、地理环境等因素综合决定的[4]

大量流行病学研究证明, 小于10 μ m的大气颗粒物可以被人体吸入, 长时间累积沉积于上、下呼吸道和肺泡中, 从而诱发鼻炎、支气管炎、哮喘病、器官扩张出血, 肺心病等呼吸道病症, 长期处于这种环境下还会诱发肺癌的危险[5~9]。究其原因是悬浮颗粒物中的有害重金属或者有机物质浓度严重超标对人体造成的伤害。如As, Cr, Ni, Pb和Cd具有一定的致癌能力, As和Cd对人体有潜在致畸作用, 而Pb和Hg对生殖机能有一定的不利影响, 甚至可能导致流产或胎儿畸形[10~14]。有害重金属元素在大气可吸入颗粒物(小于10 μ m)中含量更高, 并且主要富集在PM2.5中, 具有远距离迁移的特点, 可导致区域性污染, 危害人体的健康[15]。北京市大气颗粒物浓度基本呈现出城区高于郊区的趋势[16, 17], 来源主要为煤燃烧、扬尘和工业污染源等[16, 18~20]

前人在对北京大气颗粒物的空间分布和重金属元素来源方面已有大量的研究。但针对不同功能区的大气颗粒物对比研究较少。本文通过测定冬季(供暖期间)和春季(停止供暖后)北京市区和郊区不同功能区采集的大气可吸入颗粒物及其重金属元素的浓度, 分析各功能区大气颗粒物中元素浓度以及元素富集因子, 以揭示大气颗粒物空间分布规律以及燃煤供暖对大气颗粒物浓度和成分的影响, 解析大气可吸入颗粒物中重金属元素的来源, 为北京市大气污染治理提供科学依据。

2 样品采集和分析方法
2.1 样品采集

采样地点分别布设于北京市内15个点和郊区5个点(图1)。北京市内分为建材厂区、居民区、教育区、商业区和休闲区5个功能区, 每个功能区有3个采样点, 北京郊区则在南郊有2个采样点, 北郊3个。采样高度为地面以上1.5 m, 采样点距离道路大于50 m, 以避免车辆尾气排放的过度影响。大气颗粒物采样仪器为武汉天虹仪表有限公司生产的TH1500C智能中流量(80~120 L/min)大气采样器, 其粒子采样直径分别为小于100 μ m(TSP)、小于10 μ m(PM10)和小于2.5 μ m(PM2.5), 采样滤膜为英国生产的Whatman超纯石英滤膜。冬季, 2013年1月12~28日, 每次采样时间为9:00~17:00; 春季, 4月4~24日, 每次采样时间为9:00~17:00, 分别完成20处采样点采样; 北京供暖时间为2012年11月3日到2013年3月15日。本次试验共取得40组115件样品。

图1 北京市大气颗粒物采样点分布图Fig.1 Distribution map of sampling sites for atmospheric particulate matter in Beijing

2.2 样品分析

采集的样品利用电感耦合等离子体质谱仪(ICP-MS)、电感耦合等离子体光谱仪(ICP-OES)和原子荧光谱仪分析, 得到Ca, Na, P, Al, Mg, Zn, Fe, K, Cu, Mn, Ti, As, Hg, Sc, Se, Co, Th, Cd, Ni, Pb和Cr等21种元素的浓度。

3 结果分析
3.1 可吸入颗粒物中元素的浓度

北京市2012年冬季和2013年春季可吸入颗粒物(PM10和PM2.5)中21种元素总浓度分布特征(图2)表明, 2种粒径的可吸入颗粒物都表现为春季的浓度低于冬季, 主要原因可能是冬季燃煤取暖增加了大气颗粒物的来源, 同时冬季的低温也不利于污染物的扩散[21]。2种粒径的颗粒物中PM10中元素的总浓度冬季比春季增加34%, PM2.5增加46%。可见PM2.5中元素的总浓度冬季比春季的增长幅度大于PM10, 这可能与颗粒物粒径越小重金属越富集有关。

北京市不同功能区可吸入颗粒物中21种元素的总浓度特征(图3)和每一个功能区反映的整体趋势均表现出冬季的浓度高于春季。冬季商业区PM10和PM2.5中21种元素总浓度最高, 其中冬季PM10中的元素总浓度比春季高出85%, PM2.5高出124%。原因可能是商业区的人口密集和道路交通压力大。较大的交通流量和车辆频繁的减速、制动会直接影响大气颗粒物的积累及其重金属的含量[22], 且商业区的建筑密集, 冬季气温低, 不利于大气颗粒物扩散。居民区、教育区和休闲区PM10中21种元素的总浓度冬季和春季相差不大, 冬季比春季分别高13%, 24%和24%, 而郊区相差较大, 冬季的比春季的高49%。除郊区和教育区外, 北京市其他功能区PM2.5冬季比春季的增长幅度都大于PM10, 建材厂区、居民区、教育区、休闲区和郊区增长幅度分别为16%, 78%, 18%, 46%和24%。

图2 北京市PM10和PM2.5中21种元素总浓度Fig.2 Total concentrations of 21 elements in PM10 and PM2.5

图3 不同功能区PM10和PM2.5中21种元素总浓度Fig.3 Total concentrations of 21 elements in PM10and PM2.5 at the different functional sites

北京市冬季和春季不同粒径大气颗粒物中元素的浓度较高(表1)。方凤满[23]将大气颗粒物中金属元素的来源分为地壳元素和污染元素两大类。地壳元素主要来自一些与地表的分化作用关系密切的途径, 例如, 土壤分化、建筑工地地面扬尘、沙尘等, 主要包括Al, Fe, Mn, Ca, Mg, Na, Ti, K等元素。污染元素主要由于人类的工业活动、矿业活动、汽车尾气等人为污染造成, 包括Hg, Cu, Pb, Cr, As, Zn, Se和Cd等[23]表1中地壳元素Al, Fe, Ca, Mn, Ti, P 和Mg在TSP中的浓度都表现为春季高于冬季, 这是因为春季多为沙尘天气, 沙尘暴主要增加大气中粒径大于8 μ m的大颗粒的浓度, 而小于2 μ m的颗粒物受沙尘天气影响较小, 几乎不受影响[24]。其中Fe, Mn, Ca在可吸入颗粒物中冬季浓度高于春季, 尤其是在PM2.5中增幅更高, 分别为105%, 70%和84%, 这是因为这3种元素不仅有自然来源, 也有人为来源, Fe和Mn工业排放和交通排放贡献也较大, 且主要存在于细粒中[25~27], Ca主要来自建筑粉尘和交通引起的道路灰尘再悬浮, 主要存在于亚微米粒子中[28, 29]。Na和K整体浓度都表现为冬季高于春季, 因为受春季沙尘天气影响, 同时影响着颗粒物中金属的分布情况, 与木拉提等[30]的研究结果一致, 即北京市Na和K在沙尘天气浓度低。

表1 北京市冬季和春季不同粒径大气颗粒物中元素的浓度 Table 1 Concentrations of the elements for atmospheric particulate matter in different sizes in Beijing during winter and spring

表1还可以看出, 元素Cu, Pb, Zn, Cd, Cr, Ni, As, Hg和Se在冬季可吸入颗粒物中的浓度比春季浓度的增幅都超过了100%, Pb, Zn在PM10中的增幅大于PM2.5, Cu, Cd, Cr, Ni, As, Hg和Se在PM2.5中的增长幅度较大, 其中Cd, Cr, As, Hg在PM10中冬季浓度比春季的增幅分别为233%, 306%, 298%和141%; 在PM2.5中分别为442%, 309%, 310%和256%。冬季污染元素的浓度大幅度升高与冬季燃煤取暖有着密切关系, 同时也受天气等因素的影响。机动车辆尾气排放是大气Pb, Zn, Cu 和Cd 含量升高的重要因素[22]。除此之外车辆行驶引起的二次扬尘, 也是大气Pb, Zn 和Cu 的重要来源。煤燃烧是As的一个非常重要的人为来源[31, 32]。石油和煤的燃烧过程是Ni的主要排放过程, 冶炼镍矿石以及其他含镍金属矿石(特别是冶炼钢铁)时, 部分矿粉会随气流进入大气。Cr及其化合物在冶金、电镀、皮革、颜料等工业上有着广泛的应用, 这些行业是大气环境中Cr的重要来源[6]。化石燃料的燃烧主要贡献还有Hg[28]。除煤和石油燃烧外, 冶炼行业重金属排放也不容忽视, 如熔炼、钢铁生产是建材厂区Pb, Cd, As和Cr的主要来源(工厂锅炉燃烧燃料主要是煤), 其排放的重金属通过大气输送成为城市空气中重金属的主要来源[33]。粒径越小, 其中金属含量越高, 粒径越小在空气中停留的时间越长, 对人类的健康威胁越大, 应该引起重视。

3.2 可吸入颗粒物中元素的分布

在不同功能区, 元素的浓度与组合随粒径变化能一定程度地反映元素的来源。图4是Al, Fe, Mn, Cu, Pb, Zn, Cd, Cr, Ni, As, Hg和Se等元素的浓度在不同功能区的分布。地壳元素Al 和Fe的高浓度值都出现在PM10中, 而其他元素的高浓度值出现在PM2.5中, PM2.5中这2种元素都显示出冬季的浓度高于春季, 表明自然贡献的Al和Fe主要是在PM10中, 人为原因贡献到大气颗粒物中的主要是在细粒子中, 这跟杨新兴等[34]的研究结果一致, 大气颗粒物中细颗粒主要来自化石燃料和生物质的燃烧过程。建材厂区PM10中的Mn的浓度在春季和冬季最高, 而PM2.5中的最高值出现在冬季商业区, PM10中Mn在冬季和春季基本无差别, 而PM2.5中的表现为冬季取暖期高于春季。PM10中Cu和Pb的浓度在春季和冬季基本无差别, PM2.5中的浓度明显表现出冬季较高, 尤其是商业区和建材厂区。冬季PM10和PM2.5中Zn的浓度都高于春季, 且差距比较大。Cd, Cr, Ni, As, Hg和Se等元素表现出主要富集在PM2.5中的趋势, 且冬季的浓度明显高于春季的。冬季的高值出现在建材厂区和商业区, 可能是由于锅炉燃烧和冬季燃煤取暖对大气颗粒物贡献很大, 尤其是细粒子。由于冬季的低温, 再加上商业区人口密集不利于颗粒物的扩散, 所以商业区也出现了峰值, 居民区、教育区和休闲区情况相对好一些。郊区Al, Fe, Mn, Cu, Pb, Zn, Cd, Cr, Ni, As, Hg和Se等元素的浓度冬季和春季相差幅度不大, 市区内冬季PM2.5中这几种元素明显异常偏高, 可见燃煤取暖是这几种元素的主要贡献源, 并且对小粒径颗粒物贡献更大; 郊区冬季与春季的颗粒物元素浓度变化幅度相对于市区来说很小, 可能是因为郊区建筑相对市区稀疏很多, 人口也较少, 大气颗粒物易于扩散[35]。总的来看, 冬季北京市内除建材厂区和商业区污染元素浓度异常高外, 人类居住和生活的居民区、教育区、休闲区和郊区相对较好, 其中教育区最好; 春季北京市污染元素的浓度由低到高顺序:休闲区< 教育区< 商业区< 居民区< 郊区< 建材厂区。

图4 不同功能区PM10和PM2.5中元素的浓度
1.建材厂区; 2.居民区; 3.教育区; 4.商业区; 5.休闲区; 6.郊区
Fig.4 Different functional areas of PM10 and PM2.5 concentrations of elements
1.Building materials factory area; 2.Residential area; 3.Education area; 4.Business area; 5.Recreation area; 6.Suburb

3.3 可吸入颗粒物中元素富集因子的变化

国际上常用富集因子(Enrichment Factor, EF)表示大气中微量元素的分布、传输、富集, 判断元素的来源, 分析大气污染状况[36], 其计算公式如下:

EF=[Xi/XR]a/[Xi/XR]b

式中:[Xi/XR]a代表颗粒物中元素i与元素R的质量浓度比, [Xi/XR]b代表地壳中元素i与元素R的质量浓度比。富集因子计算中作为归一元素多采用Fe, Al和Si[37], 地壳丰度多采用Mason或者Taylor的数据, 本文研究以Fe作为归一元素, 地壳丰度采用Taylor的数据。

富集因子值越大, 富集程度就越高, 说明人为源的贡献越大。如果某种元素的EF值小于10, 则可认为相对地壳而言没有富集, 其主要由进入大气中的土壤或岩石风化的尘埃形成[38]表2给出的是北京市冬季和春季可吸入颗粒物中元素的富集因子, Al, Mg, Mn, Cr和Ni富集因子小于10, 表明这几种元素主要是自然源, 但是在冬季的PM2.5中Cr的EF值大于10, 说明冬季燃煤取暖同时贡献Cr, 且主要贡献小于2.5 μ m的颗粒; 冬季PM10中Cr的EF值是春季的3倍, 可见Cr既有人为源又有自然源; 春季PM2.5中Mg的EF值也大于10, 燃煤工厂、土壤风沙、道路扬尘都是大气颗粒物中Mg的重要贡献源[39]。垃圾焚烧和锅炉(燃煤为主)的底灰中Mg含量较高[40], 由于春季沙尘暴天气扬起引起的冬季燃煤遗留的残渣可能是造成Mg的EF值偏大的原因之一。地壳元素Al和Mg春季的EF值都高于冬季, 可见地壳元素受天气影响比较大(春季多沙尘天)。元素Cu, Pb, Zn, Cd, As, Hg和Se等, 富集因子值远大于10, 且明显表现出冬季的富集程度要高于春季, 其中Cu, Pb和Zn富集因子都比较高, 但PM10中春冬差别比较大, 而PM2.5春冬富集程度差别不大, 这是因为城市中Cu, Pb和Zn主要是由车辆排放引起[41]。Cd, As和Hg无论是在PM10中还是PM2.5中冬季富集程度都要高于春季, 这是因为这几种元素主要是取暖燃煤排放的。

表2 北京市冬季和春季PM10和PM2.5中元素的富集因子 Table 2 Enrichment factors of elements in PM10 and PM2.5 in Beijing during winter and spring
4 结论

北京市冬季的PM10和PM2.5中21种元素总浓度高于春季, 其中商业区最显著, 冬季PM10比春季高出85%, PM2.5高出124%。冬季人类居住和生活的居民区、教育区、休闲区和郊区相对较好, 其中教育区最好; 春季北京市可吸入颗粒物中元素浓度由低到高顺序为:休闲区< 教育区< 商业区< 居民区< 郊区< 建材厂区。

冬季可吸入颗粒物中Cu, Pb, Zn, Cd, Cr, Ni, As, Hg和Se元素的浓度比春季浓度的增幅都超过了100%。其中Cd, Cr, As, Hg在PM10中的浓度冬季比春季的增幅分别为233%, 306%, 298%和141%; 在PM2.5中分别为442%, 309%, 310%和256%。郊区相对于市区内元素Al, Fe, Mn, Cu, Pb, Zn, Cd, Cr, Ni, As, Hg和Se等浓度冬季比春季增幅相对较小, 推测燃煤取暖排放的废气是这几种元素的主要贡献源, 并且对PM2.5中的元素贡献更大。

富集因子的研究结果表明:Al, Mg, Mn, Cr和Ni富集因子小于10, 主要是自然源; 元素Cu, Pb, Zn, Cd, As, Hg和Se等, 富集因子值远大于10, 且明显地表现出冬季的富集程度要高于春季, 冬季燃煤取暖增加了大气颗粒物中的有毒有害元素的浓度。

The authors have declared that no competing interests exist.

参考文献
[1] Zhou L, Chen H T, Zhang F. Experimental examination of the effects of atmospheric wet deposition on primary production in the Yellow Sea[J]. Journal of Experimental Marine Biology and Biology, 2000, 249: 111-121. [本文引用:1]
[2] Li Hong, Yang Xiaoming. Study of the formation and harm of haze[J]. Science & Technology Information, 2012, (25): 41-143.
[李洪, 杨小明. 灰霾的形成及其危害探讨[J]. 科技资讯, 2012, (25): 41-143. ] [本文引用:1]
[3] Yang Xinxing, Wei Peng, Feng Lihua. Atmospheric particulate matter PM2. 5 and its controlling countermeasures and measures[J]. Frontier Science, 2013, (3): 20-29.
[杨新兴, 尉鹏, 冯丽华. 大气颗粒物PM2. 5及其控制对策与措施[J]. 前沿科学, 2013, (3): 20-29. ] [本文引用:1]
[4] Wang Anpu, Yang Shulan, Liu Lijun. Comparison of elemental characteristics of atmospheric particulates in Southwest China and Beijing[J]. Environmental Science, 1991, 12(4): 79-85.
[汪安璞, 杨淑兰, 刘丽君. 西南和北京地区大气颗粒物中元素特征的比较[J]. 环境科学, 1991, 12(4): 79-85. ] [本文引用:1]
[5] Wang Wei, Tang Dagang, Liu Hongjie, et al. Characteristics of PM2. 5 in China[J]. Research of Environmental Science, 2000, (1): 1-6.
[王玮, 汤大钢, 刘红杰, . 中国PM2. 5污染状况和污染特征的研究[J]. 环境科学研究, 2000, (1): 1-6. ] [本文引用:1]
[6] Thomas L D K, Hodgson S, Nieuwenhuijsen M, et al. Early kidney damage in a population exposed to cadmium and other heavy metals[J]. Environmental Health Perspectives, 2009, 117(2): 181-184. [本文引用:1]
[7] Limin S H, Takahashi H, Usup A D, et al. Impacts of haze in 2002 onsocial activity and human health in Palangka Raya[J]. Tropics, 2007, 16: 275-282. [本文引用:1]
[8] Li Yilin. The Relation Between Respiratory Diseasesand Heavy Metals in Air Particulate in Chengdu Area[D]. Chengdu: Chengdu University of Technology, 2009.
[李奕霖. 成都经济区居民呼吸道疾病与大气尘重金属元素的相关性[D]. 成都: 成都理工大学, 2009. ] [本文引用:1]
[9] Wang C H, Hsiao C K, Chen C L, et al. A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular disease[J]. Toxicology & Applied Pharmacology, 2007, 43: 321-326. [本文引用:1]
[10] Wang Xuetao. Melting Characteristics and Occurrence and Transference of Heavy Metals During Melting Process of Fly Ashes from Municipal Solid Waste Incinerator[D]. Nanjing: Southeast University, 2005.
[王学涛. 城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究[D]. 南京: 东南大学, 2005. ] [本文引用:1]
[11] Schaumann F, Borm P J A, Herbrich A, et al. Metal-rich ambient particles (particulate matter 2. 5) cause airway inflammation in healthy subjects[J]. American Journal of Respiratory and Critical Care Medicine, 2004, 170: 898-903. [本文引用:1]
[12] Tan Jihua, Duan Qingchun. Heavy metals in aerosol in China: Pollution, sources, and control strategies[J]. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(2): 145-155.
[谭吉华, 段菁春. 中国大气颗粒物重金属污染、来源及控制建议[J]. 中国科学研究生院学报, 2013, 30(2): 145-155. ] [本文引用:1]
[13] Fang G C, Chang C N, Chu C C, et al. Characterization of particulate metallic elements of TSP, PM2. 5 and PM2. 5-10 aerosols at a farm sampling site in Taiwan, Taichung[J]. Science of the Total Environment, 2003, 308(1/3): 57-166. [本文引用:1]
[14] Hu Qingjie, Wang Lixia. Effects of lead on female reproductive[J]. Chinese Journal of Primary Medicine and Pharmacy, 2012, (23): 3 595-3 596.
[胡清杰, 王丽霞. 铅对女工生殖影响的研究[J]. 中国基层医药, 2012, (23): 3 595-3 596. ] [本文引用:1]
[15] Hu Z, Shi Y, Niu H, et al. Synthetic musk fragrances and heavy metals in snow samples of Beijing urban area, China[J]. Atmospheric Research, 2012, 104: 302-305. [本文引用:1]
[16] Zheng Xiaoxia, Zhao Wenji, Guo Xiaoyu. Spatial variations of airborne dust trace elements in Beijing[J]. China Environmental Science, 2015, 35(8): 2 251-2 260.
[郑晓霞, 赵文吉, 郭逍宇. 北京大气降尘中微量元素的空间变异[J]. 中国环境科学, 2015, 35(8): 2 251-2 260. ] [本文引用:2]
[17] Zhao Chenxi, Wang Yunqi, Wang Yujie, et al. Temporal and spatial distribution of PM2. 5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing[J]. Environmental Science, 2014, 35(2): 418-427.
[赵晨曦, 王云琦, 王玉杰, . 北京地区冬春 PM2. 5和PM10污染水平时空分布及其与气象条件的关系[J]. 环境科学, 2014, 35(2): 418-427. ] [本文引用:1]
[18] Zhou Xueming, Zheng Naijia, Li Yinghong, et al. Chemical characteristics and source of heavy metals in the fine particle in Beijing during 2011-2012[J]. Environmental Science, 2017, 10, doi: 1013227/j. hjkx. 201612115.
[周雪明, 郑乃嘉, 李英红, . 2011—2012北京大气PM2. 5中重金属的污染特征[J]. 环境科学, 2017, 10, doi: 10.13227/j.hjkx.201612115. ] [本文引用:1]
[19] Zhang Linlin, Wang Chao, Dao Xu, et al. Characterization of elements in air particulate matters in Beijing-Tianjin-Hebei megacities, China[J]. China Environmental Science, 2014, 34(12): 2 993-3 000.
[张霖琳, 王超, 刀谞, . 京津冀地区城市环境空气颗粒物及其元素特征分析[J]. 中国环境科学, 2014, 34(12): 2 993-3 000. ] [本文引用:1]
[20] Zhang Chaolin, Jin Qihua, Zhou Shengzhen. An introduction of the projects managed by division of atmospheric sciences, Department of Earth Sciences, National Natural Science Foundation of China in 2016[J]. Advances in Earth Science, 2016, 31(12): 1 279-1 284.
[张朝林, 金啟华, 周声圳. 2016年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2016, 31(12): 1 279-1 284. ] [本文引用:1]
[21] Lang Fengling, Yan Weiqi, Zhang Quan, et al. Size distribution of atmospheric particle number in Beijing and association with meteorological conditions[J]. China Environmental Science, 2013, 7(33): 1 153-1 159.
[郎凤玲, 闫伟奇, 张泉, . 北京市颗粒物浓度粒径分析特征与气象条件相关性[J]. 中国环境科学, 2013, 7(33): 1 153-1 159. ] [本文引用:1]
[22] Li Haiyan, Shi Anbang. Distribution characteristics and their influencing factors of heavy metals in urban road sediments[J]. Ecology and Environmental Sciences, 2014, 23(11): 1 852-1 860.
[李海燕, 石安邦. 城市地表颗粒物重金属分布特征及其影响因素分析[J]. 生态环境学报, 2014, 23(11): 1 852-1 860. ] [本文引用:2]
[23] Fang Fengman. Research on environmental geochemistry of metal elements in atmospheric particles in China[J]. Ecology and Environment Sciences, 2010, 19(4): 979-984.
[方凤满. 中国大气颗粒物中金属元素环境地球化学行为研究[J]. 生态环境学报, 2010, 19(4): 979-984. ] [本文引用:2]
[24] Zhang Renjian, Xu Yongfu, Han Zhiwei. A comparison analysis of chemical composition of aerosols in the dust and non-dust periods in Beijing[J]. Advances in Atmospheric Sciences, 2004, 2(21): 300-305. [本文引用:1]
[25] Shaheen N, Shah M H, Jaffar M. A study of airborne selected metals and particle size distribution in relation to climatic variables and their source identification[J]. Water, Air & Soil Pollution, 2013, 164(1/4): 275-294. [本文引用:1]
[26] Hui Zhang. An assessment of heavy metals contributed by industy in urban atmosphere from Nanjing, China[J]. Environmental Monitoring & Assessment, 2009, 154(1/4): 451-458. [本文引用:1]
[27] Pereira PA de P, Lopes A, Carvalho L S, et al. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil[J]. Atmospheric Environment, 2007, 41(36): 7 837-7 850. [本文引用:1]
[28] Yang F, Ye B, He K, et al. Characterization of atmospheric mineral components of PM2. 5 in Beijing and Shanghai, China[J]. Science of the Total Environment, 2005, 343: 221-230. [本文引用:2]
[29] Lough G C, Schauer J J, Park J S, et al. Emissions of metals associated with motor vehicle roadways[J]. Environmental Science and Technology, 2005, 39(3): 826-836. [本文引用:1]
[30] Mu Tila, Wang Jiajia, Li Na, et al. Feature analysis of metal components of PM2. 5 and PM10 during sand dust weather[J]. Journal of Environment and Health, 2010, 9(27): 755-759.
[木拉提, 王佳佳, 丽娜, . 沙尘天气期间大气PM2. 5和PM10中部分元素浓度的变化特征[J]. 环境与健康杂志, 2010, 9(27): 755-759. ] [本文引用:1]
[31] Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333(6 169): 134-139. [本文引用:1]
[32] Mand al B K, Suzuki K T. Arsenic round the world: A review[J]. Talanta, 2002, 58(1): 201-235. [本文引用:1]
[33] Lv W, Wang Y X, Querol X, et al. Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China[J]. Environmental Geology, 2006, 51(1): 121-132. [本文引用:1]
[34] Yang Xinxing, Wei Peng, Feng Lihua. Atmospheric particulate matter PM2. 5 and its sources[J]. Frontier Science, 2013, (2): 12-19.
[杨新兴, 尉鹏, 冯丽华. 大气颗粒物PM2. 5及其源解析[J]. 前沿科学, 2013, (2): 12-19. ] [本文引用:1]
[35] Zhou Kai, Ye Youhua, Peng Shaolin, et al. Variations of Total Suspended Particulate (TSP) levels and its relationships with the meteorologieal factors in typical functional regions of Guangzhou, China[C]∥The Fifth Symposium on Young Ecological Workers in China. Guangzhou, 2008.
[周凯, 叶有华, 彭少麟, . 广州市不同功能区大气总悬浮颗粒物浓度变化及其与气象因子关系的研究[C]∥第五届中国青年生态学工作者学术研讨会. 广州, 2008. ] [本文引用:1]
[36] Bi Mutian. Enrichment factor and its application[J]. Environmental Science, 1984, 5(5): 68-70.
[毕木天. 关于富集因子及其应用问题[J]. 环境科学, 1984, 5(5): 68-70. ] [本文引用:1]
[37] Wang Lin. Determination of particulate matter in the atmosphere by enrichment factor method[C]∥The 2008 Annual Meeting of the Chinese Society for Environmental Science. Beijing, 2008.
[汪林. 富集因子法判定大气中颗粒物来源[C]∥中国环境科学学会2008年学术年会. 北京, 2008. ] [本文引用:1]
[38] Song Yu, Tang Xiaoyan, Fang Chen, et al. Source apportionment on fine particles in Beijing[J]. Environmental Science, 2002, 23(6): 11-16.
[宋宇, 唐孝炎, 方晨, . 北京市大气细粒子的来源分析[J] . 环境科学, 2002, 23(6): 11-16. ] [本文引用:1]
[39] Ma Zhaohui, Liang Yunping, Zhang Jian, et al. PM2. 5 profiles of typical sources in Beijing[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4 043-4 052.
[马召辉, 梁云平, 张健, . 北京市典型排放源PM2. 5成分谱研究[J]. 环境科学学报, 2015, 35(12): 4 043-4 052. ] [本文引用:1]
[40] Kang Yanhong, Tian Peng, Zhu Yongchun, et al. Wet-digest method for determination of trace elements in ash and its application[J]. Journal of Shenyang Normal University (Natural Science), 2007, 25(3): 357-360.
[康艳红, 田鹏, 朱永春, . 灰渣的湿法消化法及其利用[J]. 沈阳师范大学学报: 自然科学版, 2007, 25(3): 357-360. ] [本文引用:1]
[41] Han Lihui, Zhuang Guoshun, Cheng Shuiyuan, et al. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing[J]. Atmospheric Environment, 2007, 41: 7 485-7 499. [本文引用:1]