喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例
王晓先1,2, 张进江2, 王佳敏2,3
1.中国地震局地壳应力研究所 地壳动力学重点实验室,北京 100085
2.北京大学地球与空间科学学院 造山带与地壳演化教育部重点实验室,北京 100871
3.中国科学院地质与地球物理研究所,北京 100029

作者简介:王晓先(1986-),男,山东青岛人,助理研究员,主要从事构造地质研究.E-mail:xiaoxianwang@pku.edu.cn

摘要

喜马拉雅造山带中段的吉隆和聂拉木地区出露一套眼球状片麻岩,其矿物组成为石英、钾长石、斜长石、黑云母和少量的白云母。片麻岩中锆石发育典型的岩浆韵律环带,LA-ICP-MS锆石U-Pb测年显示,2件样品中岩浆锆石的加权平均年龄分别为(488.5±1.1) Ma,(475.1±0.7) Ma和(468.1±2.5) Ma,代表研究区早古生代早期的岩浆作用。现有的早古生代地质记录表明,喜马拉雅地体存在早古生代造山事件,这一事件可与青藏高原南部和东南部的拉萨、羌塘、保山和腾冲地体内同一时代的构造热事件对比,指示区域早古生代造山作用。早古生代早期的造山作用是冈瓦纳大陆聚合之后,原特提斯洋岩石圈沿冈瓦纳大陆北缘俯冲调整的安第斯型造山作用的产物,而非超大陆内部块体拼合过程中陆—陆碰撞为主要特征的泛非造山作用。

关键词: 眼球状片麻岩; 锆石U-Pb年代学; 早古生代; 吉隆—聂拉木地区; 喜马拉雅造山带
中图分类号:P588.3 文献标志码:A 文章编号:1001-8166(2016)04-0391-12
Early Paleozoic Magmatism in Himalayan Orogen: The Geochronological Study on Augen Gneisses from Gyirongand Nyalam Areas, Southern Tibet
Wang Xiaoxian1,2, Zhang Jinjiang2, Wang Jiamin2,3
1.Key Laboratory of Crustal Dynamics,Institute of Crustal Dynamics,China Earthquake Administration, Beijing 100085,China
2.MOE Key Laboratory of Orogenic Belts and Crustal Evolution,School of Earth and Space Sciences,Peking University,Beijing 100871,China
3.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China

First author:Wang Xiaoxian (1986-), male, Qingdao City, Shandong Province, Research Assistant. Research areas include structural geology and tectonics.E-mail:xiaoxianwang@pku.edu.cn

Abstract

In the Gyirong and Nyalam areas, a massive amount of augen gneisses are extensively exposed in the middle Himalayan orogen. They consist of quartz, K-feldspar, plagioclase, biotite and minor muscovite. Zircons from augen gneisses have magmatic rims indicated by concentric oscillatory zoning. LA-ICP-MS zircon U-Pb dating gave weighted mean ages of (488.5±1.1) Ma ( MSWD=0.6)、(475.1±0.7) Ma ( MSWD=1.5) and (468.1±2.5) Ma ( MSWD=4.2), hinting early Paleozoic magmatism in the Greater Himalayan Crystalline complex (GHC). The data in this study and other published geochronological results of Cambrian-Ordovician magmatites demonstrated that early Paleozoic orogenesis existed in the Himalayas. Early Paleozoic tectonic events preserved in Himalayas are well compared with the contemporaneous ones in the Lhasa terrane, Qiangtang terrane, Baoshan terrane and Tengchong terrane located in the south and southeast of Tibet Plateau. Integrating previous studies, we suggested an Andean-type orogeny corresponding to dynamic adjusting of the plates by subduction of the Proto-Tethys Ocean lithosphere along the northern margin of Gondwana, instead of Pan-African orogeny that was characterized by the continent-continent collisions during Gondwana assembly.

Keyword: Augen gneisses; Zircon U-Pb geochronology; Early Paleozoic; Gyirong and Nyalam areas; Himalayan orogen.
1 引言

新元古代晚期, 罗迪尼亚超大陆进入拉张— 裂谷阶段, 并于750~600 Ma逐渐裂解[1], 其中非洲、南美、澳大利亚、印度、阿拉伯和南极等陆块向南漂移, 在新元古代末期至早古生代初期与以不同方向交叉的泛非造山带(570~510 Ma)相联接, 汇聚拼合成冈瓦纳大陆。随着泛非汇聚造山的结束, 超大陆进行调整, 原特提斯洋岩石圈沿冈瓦纳大陆周缘俯冲并发生增生造山作用[2]。此时, 分布于冈瓦纳大陆北缘的地体(如喜马拉雅、拉萨、羌塘、腾冲和保山地体等)记录了与该期造山作用相关的地质事件, 主要包括:①在喜马拉雅、拉萨和保山地体中识别出的寒武系— 奥陶系地层之间的角度不整合和奥陶系底砾岩[3~14]; ②喜马拉雅、拉萨、羌塘、保山和腾冲地体中出露大量早古生代早期的岩浆岩和变质岩[2, 7, 9, 10, 14~45]。随着越来越多的早古生代地质记录被逐渐揭露, 更多学者倾向于将这些事件归因于原特提斯洋岩石圈向冈瓦纳大陆北缘俯冲导致的安第斯型造山作用[2, 36, 40]。但是, 由于新生代造山作用强烈的构造叠加、改造[46]以及造山带隆升剥蚀[47], 多数地体中早古生代地质标志被“ 掩盖” 或抹失而难以识别, 尤其是处于造山前缘的喜马拉雅地体, 严重制约了我们认识喜马拉雅造山带早古生代地质过程和重塑冈瓦纳大陆北缘的演化历史。

本研究通过对喜马拉雅造山带中段的吉隆和聂拉木地区最新识别出的早古生代眼球状片麻岩进行LA-ICP-MS锆石U-Pb年代学分析, 旨在进一步确定早古生代岩浆作用在喜马拉雅地体的存在, 并结合与相邻地体中同时代构造热事件的对比, 进一步加深对早古生代早期冈瓦纳大陆北缘构造演化的认识。

2 区域地质背景和样品描述

狭义的喜马拉雅造山带指夹持于雅鲁藏布江缝合带与主前锋逆冲断裂(MFT)之间、由新生代印度— 欧亚大陆碰撞形成的强烈变形、变质带[48]。造山带自北向南发育的岩石— 构造单元依次为特提斯喜马拉雅沉积岩系(THS)、藏南拆离系(STDS)、大喜马拉雅结晶杂岩(GHC)、主中央逆冲断裂(MCT)、小喜马拉雅沉积系(LHS)、主边界逆冲断裂(MBT)、Siwalik群前陆盆地沉积(SS)和MFT(图1)。其中, 最北部的THS南北分别以STDS和雅鲁藏布江缝合带为界, 主要由早古生代到始新世经历极低级变质的碎屑岩和碳酸岩组成[50], 在中部自西向东散布一系列片麻岩穹窿— — 北喜马拉雅片麻岩穹窿(NHGD), 是北喜马拉雅重要的伸展构造[51]。GHC介于MCT和STDS之间, 发育原岩时代为古元古代— 奥陶纪的中高级变质结晶杂岩[52], 上部靠近STDS处出露大量的淡色花岗岩, 呈东西向展布, 形成大喜马拉雅淡色花岗岩带。LHS位于MBT和MCT之间, 由低级变质沉积岩和碎屑沉积岩组成[50]。最南部的SS位于MFT和MBT之间, 主要为一套中新世— 早更新世的前陆盆地沉积。

本文的研究区位于喜马拉雅造山带中段的吉隆和聂拉木地区(图1), 在两地区GHC中各识别出一套眼球状片麻岩。其中吉隆眼球状片麻岩分布于藏南拆离系剪切带中, 与上部糜棱岩化淡色花岗岩共同构成过渡性剪切带, 其与下部的斜长片麻岩为断层接触关系(图2a)。野外露头上, 岩石发育片麻状、眼球状构造(图3a), 眼球体主要由钾长石和斜长石构成, 粒径可达15 cm(图3b)。显微镜下观察, 岩石主要矿物组成为石英、钾长石、斜长石、黑云母和少量白云母, 其中石英发生塑性变形, 呈现波状消光, 黑云母呈片状, 沿斑晶定向排列(图3c), 为后期构造变形所致。聂拉木眼球状片麻岩分布于GHC内的变质岩带内, 与围岩含夕线石黑云二长副片麻岩呈侵入接触关系(图2b)。野外露头上, 岩石发育片麻状、眼球状构造(图3d), 眼球体主要成分为钾长石和斜长石, 粒径可达20 cm(图3e)。显微镜下观察, 岩石主要由石英、钾长石、斜长石、黑云母和白云母组成, 其中石英和长石发生塑性变形, 石英具有波状消光, 局部亚颗粒化, 黑云母呈片状排列(图3f)。

图1 喜马拉雅造山带中东段地质简图(据参考文献[49]修改)
GCT:大反冲断层; STDS:藏南拆离系; MCT:主中央逆冲断裂; MBT:主边界逆冲断裂; MFT:主前锋逆冲断裂; THS:特提斯喜马拉雅沉积岩系; GHC:大喜马拉雅结晶杂岩; LHS:小喜马拉雅沉积系; SS:西瓦里克前陆盆地沉积; NHGD:北喜马拉雅片麻岩穹窿
Fig.1 Sketch geological map of the middle and east Himalayan orogen (modified after reference[49])
GCT:Great Counter Thrust; STDS:South Tibet Detachment System; MCT:Main Central Thrust; MBT:Main Boundary Thrust; MFT:Main Frontier Thrust; THS:Tethyan Himalayan Sedimentary Sequence; GHC:Greater Himalayan Crystalline Complex; LHS:Lesser Himalayan Sequence; SS:Siwalik Foreland Basin Sedimentary; NHGD:Northern Himalayan Gneiss Domes

图2 吉隆(a)和聂拉木地区(b)跨大喜马拉雅和特提斯喜马拉雅地质剖面图(剖面位置见图1)Fig.2 Geological cross-sections of the GHC and THS in Gyirong and Nyalam regions (See Fig. 1 for the locations of the cross-sections)

图3 藏南吉隆(a, b, c)和聂拉木地区(d, e, f)眼球状片麻岩露头和显微照片
(a), (b)吉隆眼球状片麻岩露头; (c)吉隆眼球状片麻岩矿物组合, 正交偏光; (d), (e)聂拉木眼球状片麻岩露头; (f)聂拉木眼球状片麻岩矿物组合, 正交偏光。Qtz.石英; Pl.斜长石; Kfs.钾长石; Mus.白云母; Bi.黑云母
Fig.3 Photographs and photomicrographs of augen gneisses in Gyirong (a, b, c) and Nyalam (d, e, f), southern Tibet
(a), (b)Outcrop of augen gneiss from Gyirong; (c)Mineral assemblage of augen gneiss from Gyirong, crossed nicols; (d), (e)Outcrop of augen gneiss from Nyalam; (f)Mineral assemblage of augen gneiss from Nyalam, crossed nicols. Qtz.Quartz; Pl.Plagioclase; Kfs.K-feldspar; Mus.Muscovite; Bi.Biotite

3 分析方法

从样品GY-01和NY-01中挑选出锆石单矿物, 对其进行LA-ICP-MS U-Pb定年。采用常规方法分选出锆石颗粒, 在双目镜下挑纯并将其置于环氧树脂靶上, 然后磨制约一半暴露出锆石内部, 用于阴极发光研究及随后的锆石内部结构分析。锆石阴极发光成像(CL)在北京大学造山带与地壳演化教育部重点实验室的扫描电镜上完成。LA-ICP-MS锆石U-Pb同位素测试在中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室的激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上进行。激光剥蚀系统为美国NewWave公司生产的UP193FX型193 nm ArF准分析系统, ICP-MS采用Agilent 7500a。测试过程中激光束斑直径约为35 μ m, 频率为5 Hz, He作为剥蚀物质的载气, Ar为辅助气。采用Plesovice和Qinghu作为标样, 采样方式为单点剥蚀, 每完成7个测试点的样品测点, 加测标样1次。数据处理使用软件GLITTER 4.4.2和Isoplot/Ex_3.0[53]完成。

4 分析结果
4.1 吉隆眼球状片麻岩U-Pb定年

吉隆眼球状片麻岩样品GY-01的锆石CL图像显示, 大部分锆石呈长柱状, 自形— 半自形, 棱角较清晰。锆石晶粒长度为150~200 μ m, 长宽比为2∶ 1~3∶ 1。多数锆石发育清晰的核— 边结构, 核部锆石色调较亮, 显示岩浆韵律环带; 核部外围发育一层色调较暗、较窄的生长边, 与新生代构造热事件有关; 部分锆石具有暗色的继承锆石核(图4a)。对样品GY-01共进行了38个点位分析, 全部分析点均位于锆石的岩浆韵律环带上, 测试数据列于表1。38个分析点的U和Th含量分别为218.1× 10-6~855.2× 10-6和57.7× 10-6~184.6× 10-6, Th/U比值为0.13~0.43, 多数比值高于0.2, 且均发育清晰的韵律环带, 表明为岩浆成因锆石。206Pb/238U表观年龄范围为490~471 Ma。38个分析点的年龄数据可划分为2组:第一组共8个分析点, 206Pb/238U表观年龄范围为490~486 Ma, 加权平均年龄为(488.5± 1.1)Ma(MSWD=0.6)。第二组为剩余30点, 206Pb/238U表观年龄范围为480~471 Ma, 加权平均年龄为(475.1± 0.7) Ma(MSWD=1.5)(图4b)。这2组年龄都较谐和, 表明研究区在早古生代早期存在2期岩浆作用。

4.2 聂拉木眼球状片麻岩U-Pb定年

聂拉木眼球状片麻岩样品NY-01的锆石CL图像显示, 大部分锆石呈长柱状, 较自形, 棱角清晰。锆石晶粒长度范围为100~200 μ m, 长宽比为3∶ 2~2∶ 1。多数锆石发育清晰的核— 幔— 边结构, 核部锆石色调较暗, 形状不规则, 为继承锆石核; 幔部锆石色调较亮, 显示岩浆韵律环带; 边部锆石为色调较暗、较窄的生长边, 与新生代造山事件有关; 部分锆石仅发育岩浆韵律环带核和暗色生长边(图4c)。

图4 藏南吉隆和聂拉木地区眼球状片麻岩代表性锆石CL图像(a, c)和U-Pb谐和图(b, d)Fig.4 CL images of representative zircons (a, c) and U-Pb concordia diagrams (b, d) for zircons from augen gneisses in Gyirong and Nyalam areas, southern Tibet

表1 藏南吉隆和聂拉木地区眼球状片麻岩样品GY-01和NY-01 LA-ICP-MS锆石U-Pb同位素测试数据 Table 1 LA-ICP-MS zircon U-Pb isotopic data of augen gneisses from Gyirong and Nyalam, southern Tibet

对样品NY-01共进行了27个点位分析, 全部分析点均位于锆石的岩浆韵律环带上, 测试数据列于表1。27个分析点的U和Th含量分别为226.5× 10-6~712.1× 10-6和65.2× 10-6~286.0× 10-6, Th/U比值为0.14~0.58, 绝大多数值大于0.20, 且均发育清晰的韵律环带, 表明为岩浆成因锆石。206Pb/238U表观年龄范围为484~457 Ma, 加权平均年龄为(468.1± 2.5)Ma(MSWD=4.2)(图4d)。这组年龄较谐和, 代表花岗岩的结晶年龄, 表明研究区存在早古生代岩浆作用。

5 讨 论
5.1 原岩及源区属性

吉隆和聂拉木地区眼球状片麻岩样品的主要矿物组成为石英、钾长石、斜长石、黑云母和白云母, 岩石整体上具有花岗结构。样品中锆石发育清晰的韵律环带, Th/U比值较高, 均大于0.1, 为典型岩浆锆石的特征, 据此推测眼球状片麻岩的原岩为早古生代花岗岩。前人对喜马拉雅地体中早古生代花岗岩的地球化学研究表明, 其具有高的SiO2和Na2O含量, 高的A/CNK值(> 1.1)和K2O/Na2O比值, 为高钾钙碱性过铝质S型花岗岩。全岩的ISr值较高, ε Nd(t)值较低, 具有典型壳源成因的特征, 可以与GHC变质沉积岩的Sr和Nd同位素组成对比[36]。锆石原位的ε Hf(t)值(-13.6~-3.5)较低, 位于GHC变质沉积岩内碎屑锆石演化线上[31], 表明其源区为GHC变质沉积岩。而在早古生代早期, 喜马拉雅地体位于冈瓦纳大陆印度陆块的北缘, 这种古地理位置使得喜马拉雅地体很容易受到区域造山运动的影响, 导致GHC变质沉积岩发生重熔形成花岗岩, 再经后期构造变形的改造而形成眼球状片麻岩。

5.2 吉隆— 聂拉木眼球状片麻岩的形成时代

现有的资料表明, 在喜马拉雅造山带, GHC和THS中存在大量时代为寒武纪— 奥陶纪的花岗岩和花岗片麻岩(图5), 如在GHC西部, 尼泊尔Dadeldhura逆冲席体中Rura花岗岩年龄为512~474 Ma[10]; 在GHC中部的加德满都逆冲席体中, Mandu花岗片麻岩年龄为484~476 Ma[9], Simchar花岗岩年龄为478~477 Ma[2], Arga花岗岩年龄为480 Ma[17], Sheopuri花岗片麻岩年龄为471 Ma[54]; 藏南亚东地区花岗闪长岩年龄为499 Ma[28]; GHC东部南迦巴瓦地区花岗片麻岩年龄为499~490 Ma[55]。在THS中, 萨迦地区夏如花岗岩年龄为478~475 Ma[56]; 麻布迦穹窿内花岗片麻岩年龄为503~484 Ma[20]; 哈金桑惹穹窿内花岗片麻岩年龄为506 Ma[23]; 康马穹窿核部花岗片麻岩年龄为508~478 Ma[22, 36]; 雅拉香波穹窿核部眼球状片麻岩年龄为488 Ma[36]。本次研究中, 吉隆和聂拉木地区眼球状片麻岩样品(GY-01和NY-01)中锆石发育清晰的岩浆韵律环带, 显示岩浆型锆石的特征。样品中分析点具有一致的206Pb/238U年龄, 加权平均值分别为(488.5± 1.1)Ma(MSWD=0.6), (475.1± 0.7)Ma (MSWD=1.5)和(468.1± 2.5) Ma(MSWD=4.2), 表明其原岩花岗岩形成于早古生代早期。吉隆和聂拉木地区眼球状片麻岩年龄与上述其他地区的花岗岩和花岗片麻岩一致, 均为晚寒武世— 奥陶纪, 暗示喜马拉雅地体在早古生代早期存在广泛的岩浆作用。

5.3 冈瓦纳大陆北缘早古生代造山作用探讨

现有的研究资料表明, 喜马拉雅地体内广泛分布早古生代花岗质岩石, 它们的年龄集中在512~468 Ma(图5), 同时, 中西部地区也出露有早古生代的基性岩[7, 57], 反映了喜马拉雅存在早古生代的岩浆作用。此外, 相同时期的变质和变形事件在其他地区均有报道, 如在巴基斯坦[58]、印度西北部[15]、尼泊尔[10, 16]和中国藏南地区[56, 60]均获得了大量早古生代早期的变质年龄, 其时代集中在515~460 Ma(图5); 寒武系— 奥陶系地层之间的不整合现象也普遍存在于上述地区[3~9, 11](图5)。这些早古生代早期的地质事件一致表明喜马拉雅地体存在早古生代造山作用。

近年来, 随着对青藏高原地质研究的深入, 与早古生代早期造山作用有关的地质记录在与喜马拉雅相邻的地体(如拉萨、羌塘、保山和腾冲地体)被相继披露。如在拉萨地体[20, 28~30, 40, 41, 44, 61]、羌塘地体[27, 30, 61, 62]、保山地体[19, 20, 26, 32, 35, 37~39, 45]和腾冲地体[14, 34, 37, 42]中发现大量晚寒武世— 奥陶纪的火山岩和花岗岩(图5); 在拉萨和保山地体中还识别出奥陶统底砾岩和不整合现象[12~14]。这些地质记录可以与喜马拉雅地体内同时代的地质事件对比, 它们统一地指示了早古生代早期的造山作用。

图5 青藏高原南部早古生代造山事件汇总(数据来自参考文献[2~45, 54~62])Fig.5 Sketch map showing Early Paleozoic tectonic events in the southern part of Tibet Plateau (data from references[2~45, 54~62])

青藏高原南部各地体存在早古生代早期的造山作用, 对于该期造山作用的机制, 主要有泛非造山作用[59]和安第斯型造山作用[2, 36, 40]2种观点。泛非造山运动是指发生于570~510 Ma, 东、西冈瓦纳陆— 陆碰撞、聚合并最终形成冈瓦纳大陆的造山过程, 而青藏高原南部各地体中的早古生代年龄记录(515~460 Ma)明显滞后于泛非造山事件的时间。而且, 根据古地理重建, 各地体在早古生代早期分布于冈瓦纳大陆北缘, 很少遭受冈瓦纳大陆内部块体碰撞为主的泛非造山作用影响, 这些事件在时空格局上均与泛非造山作用矛盾。相反, 与冈瓦纳大陆周缘造山作用相吻合, 可能代表了安第斯型造山作用。这一推断得到了地球化学研究的证实:①Garanti等[3]在喜马拉雅地体西北部发现形成于火山弧环境的早古生代低钾拉斑玄武岩, 其地球化学特征指示汇聚板块边缘的构造背景; ②张泽明等[55]研究发现, 南迦巴瓦地区490 Ma的花岗片麻岩地球化学特征与岩浆弧环境的花岗岩一致; ③Wang等[36]对藏南早古生代眼球状片麻岩的地球化学研究表明, 其原岩花岗岩形成于俯冲相关的弧后背景; ④Zhu等[40]在拉萨地体中发现492 Ma的双峰式火山岩, 认为其形成与原特提斯洋俯冲板块断离导致的软流圈上涌有关; ⑤Liu等[26]在滇西保山地体中发现了形成于岛弧环境的I型花岗岩(约500 Ma)。综上所述, 发生在青藏高原南部各地体内的早古生代造山作用应该是安第斯型造山作用。

新元古代晚期, 非洲、南美、澳大利亚、印度、阿拉伯以及南极等陆块之间以泛非造山带(如东非造山带、Kuunga造山带和Pjnjarra造山, 570~520 Ma, 图6a)联接拼合为冈瓦纳大陆[2]。根据地球体积平衡原理, 超大陆内部汇聚的停止会通过其他地区的俯冲作用来进行调整, 这种俯冲作用以沿超大陆周缘形成新的俯冲带或增生造山作用的方式实现[63]。具体到冈瓦纳大陆, 内部各陆块聚合之后, 在南缘, 原太平洋岩石圈向冈瓦纳大陆发生俯冲, 沿南缘形成Terra-Australis造山带(530~480 Ma)和Ross-Delamerian造山带(520~490 Ma), 而在北缘, 原特提斯洋岩石圈向冈瓦纳大陆俯冲并形成Bhimphedian造山带(530~470 Ma)。保存于青藏高原南部各地体内的早古生代早期地质事件, 正是原特提斯洋岩石圈俯冲及后期微陆块拼贴到冈瓦纳大陆的安第斯型造山过程的体现(图6b)。

图6 喜马拉雅地体早古生代所处位置(a)及其构造演化模式图(b)(据参考文献[14, 63, 64]修改)Fig.6 Location (a) and schematic illustrations of tectonic evolution (b) of the Himalayan orogen during early Paleozoic (modified after references[14, 63, 64])

6 结 论

吉隆和聂拉木眼球状片麻岩中锆石结晶年龄分别为(488.5± 1.1) Ma (MSWD=0.6), (475.1± 0.7)Ma(MSWD=1.5)和(468.1± 2.5)Ma(MSWD=4.2), 代表喜马拉雅地体内早古生代早期岩浆作用。

眼球状片麻岩原岩为壳源成因的早古生代花岗岩, 源区为大喜马拉雅变质沉积岩。

青藏高原南部各地体存在早古生代早期的造山事件, 是原特提斯洋岩石圈沿冈瓦纳大陆北缘俯冲的安第斯型造山作用的地质记录。

The authors have declared that no competing interests exist.

参考文献
[1] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. [本文引用:1]
[2] Cawood P A, Johnson M R W, Nemchin A A. Early Paleozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84. [本文引用:6]
[3] Garzanti E, Casnedi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the Northwestern Himalaya[J]. Sedimentary Geology, 1986, 48(3/4): 237-265. [本文引用:3]
[4] Baig M S, Lawrence R D, Snee L W. Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya, Pakistan[J]. Geological Magazine, 1988, 125(1): 83-86. [本文引用:1]
[5] Valdiya K S. Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya[J]. Precambrian Research, 1995, 74(1/2): 35-55. [本文引用:1]
[6] Wiesmayr G, Grasemann B, Draganits E, et al. The main pre-Himalayan and Himalayan deformation phases in the Pin valley(Spiti, Tethyan Himalaya, NW India)[J]. Geological Bulletin of the University of Peschawar (Special Issue), 1998, 31: 212-213. [本文引用:1]
[7] Miller C, Thöni M, Frank W, et al. The early Paleozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3): 237-251. [本文引用:2]
[8] Liu Wencan, Liang Dingyi, Wang Keyou. The discovery of Ordovician and its significance in the Kangmar area, southern Tibet[J]. Earth Science Frontiers, 2002, 9(4): 247-248.
[刘文灿, 梁定益, 王克友. 藏南康马地区奥陶系的发现及其地质意义[J]. 地学前缘, 2002, 9(4): 247-248. ] [本文引用:1]
[9] Gehrels G E, DeCelles P G, Martin A, et al. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2003, 13(9): 4-9. [本文引用:3]
[10] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4/5/6): 385-408. [本文引用:3]
[11] Zhou Zhiguang, Liu Wencan, Liang Dingyi. Discovery of the Ordovician and its basal conglomerate in the Kangmar area, southern Tibet—With a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas[J]. Geological Bulletin of China, 2004, 23(7): 655-663.
[周志广, 刘文灿, 梁定益. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系[J]. 地质通报, 2004, 23(7): 655-663. ] [本文引用:1]
[12] Li Cai, Wu Yanwang, Wang Ming, et al. Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau—Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area, Tibet, China[J]. Geological Bulletin of China, 2010, 29(12): 1 733-1 736.
[李才, 吴彦旺, 王明, . 青藏高原泛非—早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非不整合的发现[J]. 地质通报, 2010, 29(12): 1 733-1 736. ] [本文引用:1]
[13] Huang Yong, Hao Jiaxu, Bai Long, et al. Stratigraphic and petrologic response to Late Pan-African movement in Shidian area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 306-313.
[黄勇, 郝家栩, 白龙, . 滇西施甸地区晚泛非运动的地层学和岩石学响应[J]. 地质通报, 2012, 31(2/3): 306-313. ] [本文引用:1]
[14] Cai Zhihui, Xu Zhiqin, Duan Xiangdong, et al. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2 123-2 140.
[蔡志慧, 许志琴, 段向东, . 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2 123-2 140. ] [本文引用:4]
[15] Marquer D, Chawla H S, Challand es N. Pre-Alpine high-grade metamorphism in High-Himalaya crystalline sequences: Evidence for Lower Paleozoic Kinnaur Kailash granite and surrounding rocks in the Sutlej Valley (Himacha Pradesh, India)[J]. Eclogae Geologiae Helvetiae, 2000, 93(2): 207-220. [本文引用:1]
[16] Godin L, Parrish R R, Brown R L, et al. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology[J]. Tectonics, 2001, 20(5): 729-747. [本文引用:1]
[17] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Th-Pb geochronology evidence for early Paleozoic tectonism in the Kathmand u thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 2006, 118(1/2): 185-198. [本文引用:1]
[18] Gehrels G, Kapp P, DeCells P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5): TC5016, doi: DOI:10.1029/2011TC002868. [本文引用:1]
[19] Chen F K, Li X H, Wang X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1 179-1 194. [本文引用:1]
[20] Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages[J]. Geology, 2007, 35(1): 45-48. [本文引用:3]
[21] Song Shuguang, Ji Jianqing, Wei Chunjing, et al. Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 2007, 52(8): 927-930.
[宋述光, 季建清, 魏春景, . 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义[J]. 科学通报, 2007, 52(8): 927-930. ] [本文引用:1]
[22] Lee J, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constrains[J]. Tectonics, 2000, 19(5): 872-895. [本文引用:1]
[23] Quigley M C, Yu L J, Gregory C, et al. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 2008, 446(1/4): 97-113. [本文引用:1]
[24] Dong Xin, Zhang Zeming, Wang Jinli, et al. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2009, 25(7): 1 678-1 694.
[董昕, 张泽明, 王金丽, . 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学和锆石U-Pb年代学[J]. 岩石学报, 2009, 25(7): 1 678-1 694. ] [本文引用:1]
[25] Ji Wenhua, Chen Shoujian, Zhao Zhenming, et al. Discovery of the Cambrian volcanic rocks in the Xainza area, Gand ese orogenic belt, Tibet, China and its significance[J]. Geological Bulletin of China, 2009, 28(9): 1 350-1 354.
[计文化, 陈守建, 赵振明, . 西藏冈底斯构造带申扎—带寒武系火山岩的发现及其地质意义[J]. 地质通报, 2009, 28(9): 1 350-1 354. ] [本文引用:1]
[26] Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Paleozoic I-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36(2/3): 168-182. [本文引用:2]
[27] Hu Peiyuan, Li Cai, Su Li, et al. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: Age records of Pan-African movement and Indo-China movement[J]. Geology in China, 2010, 37(4): 1 050-1 061.
[胡培远, 李才, 苏犁, . 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1 050-1 061. ] [本文引用:1]
[28] Shi Chao, Li Rongshe, He Shiping, et al. LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance[J]. Geological Bulletin of China, 2010, 29(12): 1 745-1 753.
[时超, 李荣社, 何世平, . 藏南亚东地区片麻状石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质通报, 2010, 29(12): 1 745-1 753. ] [本文引用:2]
[29] Xie Chaoming, Li Cai, Su Li, et al. LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 2010, 29(12): 1 737-1 744.
[解超明, 李才, 苏犁, . 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 2010, 29(12): 1 737-1 744. ] [本文引用:1]
[30] Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600. [本文引用:2]
[31] Wang Xiaoxian, Zhang Jinjiang, Yang Xiongying, et al. Zircon SHRIMP U-Pb ages, Hf isotopic features and their geological significances of the Greater Himalayan Crystalline complex augen gneiss in Gyirong area, south Tibet[J]. Earth Science Frontiers, 2011, 18(2): 127-139.
[王晓先, 张进江, 杨雄英, . 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 2011, 18(2): 127-139. ] [本文引用:1]
[32] Dong Meiling, Dong Guochen, Mo Xuanxue, et al. Geochronology and geochemistry of the Early Paleozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2012, 28(5): 1 453-1 464.
[董美玲, 董国臣, 莫宣学, . 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1 453-1 464. ] [本文引用:1]
[33] Guynn J, Kapp P, Gehrels G E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50. [本文引用:1]
[34] Lin Shiliang, Cong Feng, Gao Yongjuan, et al. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 258-263.
[林仕良, 丛峰, 高永娟, . 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 258-263. ] [本文引用:1]
[35] Liu Qisheng, Ye Peisheng, Wu Zhonghai. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 250-257.
[刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2/3): 250-257. ] [本文引用:1]
[36] Wang X X, Zhang J J, Santosh M, et al. Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 2012, 154: 248-262. [本文引用:6]
[37] Wang Y J, Xing X W, Cawood P A, et al. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J]. Lithos, 2013, 182/183: 67-85. [本文引用:2]
[38] Xiong Changli, Jia Xiaochuan, Yang Xuejun, et al. LA-ICP-MS zircon U-Pb dating of Ordovician Mengmao monzogranite in Longling area of western Yunnan Province and its tectonic setting[J]. Geological Bulletin of China, 2012, 31(2/3): 277-286.
[熊昌利, 贾小川, 杨学俊, . 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境[J]. 地质通报, 2012, 31(2/3): 277-286. ] [本文引用:1]
[39] Yang Xuejun, Jia Xiaochuan, Xiong Changli, et al. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 2012, 31(2/3): 264-276.
[杨学俊, 贾小川, 熊昌利, . 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 264-276. ] [本文引用:1]
[40] Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328: 290-308. [本文引用:4]
[41] Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77: 91-107. [本文引用:1]
[42] Li Zaihui, Lin Shiliang, Cong Feng, et al. Magmatism and geochemistry of the Early Paleozoic of the Tengchong-Baoshan block, western Yunnan, China: Implications for petrogenesis and tectonics[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 689-703.
[李再会, 林仕良, 丛峰, . 滇西腾冲-保山地块早古生代岩浆作用和地球化学: 岩石成因和构造背景[J]. 矿物岩石地球化学通报, 2013, 32(6): 689-703. ] [本文引用:1]
[43] Xie C M, Li C, Su L, et al. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent: Constraints from geochronology and geochemistry[J]. Science in China (Series D), 2013, 56(12): 2 066-2 079. [本文引用:1]
[44] Ding H X, Zhang Z M, Dong X, et al. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4): 1 616-1 629. [本文引用:1]
[45] Xing Xiaowan, Zhang Yuzhi, Wang Yuejun, et al. Zircon U-Pb geochronology and Hf isotopic composition of the Ordovician granitic gneisses in Ximeng area, west Yunnan Province[J]. Geotectonica et Metallogenia, 2015, 39(3): 470-480.
[邢晓婉, 张玉芝, 王岳军, . 西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义[J]. 大地构造与成矿学, 2015, 39(3): 470-480. ] [本文引用:2]
[46] Chen Hanlin, Chen Shenqiang, Lin Xiubin. A review of the Cenozoic tectonic evolution of Pamir syntax[J]. Advances in Earth Science, 2014, 29(8): 890-902.
[陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902. ] [本文引用:1]
[47] Deng Tao, Wang Xiaoming, Wang Shiqi, et al. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau[J]. Advances in Earth Science, 2015, 30(4): 407-415.
[邓涛, 王晓鸣, 王世骐, . 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415. ] [本文引用:1]
[48] Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4): 939-960. [本文引用:1]
[49] Wang Xiaoxian, Zhang Jinjiang, Yan Shuyu, et al. Structural characteristics and active time of the Kangmar detachment, southern Tibet[J]. Geotectonica et Metallogenia, 2015, 39(2): 250-259.
[王晓先, 张进江, 闫淑玉, . 藏南康马拆离断层的构造特征及其活动时代[J]. 大地构造与成矿学, 2015, 39(2): 250-259. ] [本文引用:1]
[50] Brookfield M E. The Himalayan passive margin from Precambrian to Cretaceous[J]. Sedimentary Geology, 1993, 84(1/4): 1-35. [本文引用:2]
[51] Zhang Jinjiang. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 2007, 26(6): 639-649.
[张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6): 639-649. ] [本文引用:1]
[52] Aikman A B, Harrison T M, Ding L. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 14-23. [本文引用:1]
[53] Ludwig K R. User’s Manual for Isoplot/Ex Version 3. 00: A geochronological took kit for Microsoft Excel version 3. 00[J]. Berkeley: Berkeley Centre, Special Publication, 2003, 4: 1-70. [本文引用:1]
[54] Johnson M R W, Oliver G J H, Parrish R R, et al. Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmand u Complex, Nepal[J]. Tectonics, 2001, 20(3): 394-415. [本文引用:1]
[55] Zhang Zeming, Wang Jinli, Shen Kun, et al. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 2008, 24(7): 1 627-1 637.
[张泽明, 王金丽, 沈昆, . 环东冈瓦纳大陆周缘的早古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24(7): 1 627-1 637. ] [本文引用:2]
[56] Zhang Shizhen, Li Fenqi, Li Yong, et al. Early Ordovician strongly peraluminous granite in the middle section of the Yalung Zangbo junction zone and its geological significance[J]. Science in China(Series D), 2014, 44(7): 1 388-1 402.
[张士贞, 李奋其, 李勇, . 雅鲁藏布江结合带中段早奥陶世强过铝质花岗岩的厘定及其地质意义[J]. 中国科学: D辑, 2014, 44(7): 1 388-1 402. ] [本文引用:2]
[57] Visonà D, Rubatto D, Villa I M. The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the greater Himalayan crystallines of central-eastern Himalaya[J]. Journal of Asian Earth Sciences, 2010, 38(1/2): 14-25. [本文引用:1]
[58] Foster G L. The Pre-Neogene Thermal History of the Nanga Parbat Haramosh Massif and the NW Himalaya[D]. Milton Keynes: The Open University, United Kingdom, 2000. [本文引用:1]
[59] Xu Zhiqin, Yang Jingsui, Liang Fenghua, et al. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages[J]. Acta Petrologica Sinica, 2005, 21(1): 1-12.
[许志琴, 杨经绥, 梁凤华, . 喜马拉雅地体的泛非—早古生代造山事件年龄记录[J]. 岩石学报, 2005, 21(1): 1-12. ] [本文引用:1]
[60] Li Cai, Dong Yongsheng, Zhai Qingguo, et al. Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence form SHRIMP U-Pb dating and its tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(1): 31-36.
[李才, 董永胜, 翟庆国, . 青藏高原羌塘早古生代蛇绿岩—堆晶辉长岩的锆石SHRIMP定年及其意义[J]. 岩石学报, 2008, 24(1): 31-36. ] [本文引用:1]
[61] Peng Zhimin, Geng Quanru, Wang Liquan, et al. Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2014, 59(26): 2 621-2 629.
[彭智敏, 耿全如, 王立全, . 青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 科学通报, 2014, 59(26): 2 621-2 629. ] [本文引用:2]
[62] Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the south Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220/223: 318-338. [本文引用:1]
[63] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82(3/4): 217-256. [本文引用:1]
[64] Li X H, Li Z X, Li W X. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis[J]. Gondwana Research, 2014, 25(3): 1 202-1 215. [本文引用:1]