新疆卡拉麦里地区早石炭世火山岩地球化学特征及构造意义
陈万峰1, 郭刚2, 苗秀全1, 王金荣1*,*, 胡万龙1, 赵斌斌3, 樊立飞4
1.兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
2.新疆维吾尔自治区有色地质勘查局地球物理探矿队,新疆 乌鲁木齐 830011
3.甘肃省地矿局第二地勘院,甘肃 兰州730020
4. 甘肃省有色地质调查院,甘肃 兰州 730000
*通信作者:王金荣(1958-),男,福建莆田人,教授,主要从事岩石大地构造学研究.E-mail:jrwang@lzu.edu.cn

作者简介:陈万峰(1990-),男,甘肃古浪人,博士研究生,主要从事岩石圈演化与成矿作用研究.E-mail:chenwf14@lzu.edu.cn

摘要

卡拉麦里断裂带西段南侧下石炭统山梁砾石组中基性火山岩分布广泛,呈夹层整合产出。岩石具有变化的SiO2(49.43%~59.08%)、MgO(3.81%~6.28%)、K2O(0.16%~1.55%)含量,高TiO2(1.18%~2.49%)、Na2O(2.89%~5.44%)、P2O5(0.21%~0.92%)含量,为玄武岩、玄武安山岩及安山岩,属钙碱性系列。样品具相对高的HFSE含量(Ti,Zr,Y)和高的La/Nb(1.96~2.98)、Zr/Y(3.65~9.36)比值,微量元素原始地幔标准化蛛网图显示岩石富集大离子亲石元素Rb,Ba,K和U,Pb,相对亏损高场强元素Nb,Ta和Ti,在球粒陨石稀土元素配分图上,LREE轻微富集,(La/Yb)N=2.04~10.11,弱的负Eu异常( δEu=0.87~0.95),显示出该火山岩兼有板内玄武岩和火山弧玄武岩的地球化学特征。结合区域地质背景研究认为,山梁砾石组中火山岩形成于后造山伸展的构造背景,是由先前被俯冲流体交代过的富集地幔发生部分熔融,并有俯冲沉积物参与,经历一定的结晶分异作用和地壳混染后喷出地表而形成,且该区在晚石炭世早期伸展运动最为强烈,火山活动达到顶峰。

关键词: 山梁砾石组; 早石炭世火山岩; 后造山; 卡拉麦里; 新疆
中图分类号:P59 文献标志码:A 文章编号:1001-8166(2016)02-0180-12
Geochemical Characteristics and Tectonic Significance of Early Carboniferous Volcanic Rocks of Kalamaili, Xinjiang
Chen Wanfeng1, Guo Gang2, Miao Xiuquan1, Wang Jinrong1,*, Hu Wanlong1, Zhao Binbin3, Fan Lifei4
1.Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences,Lanzhou University, Lanzhou 730000, China
2.Nonferrous Geological Prospecting Bureau of Geophysical Prospecting Team of Xinjiang, Urumqi 830011, China
3.No.2 Geology and Exploration Team, Gansu Provincial Bureau of Geology and Mineral Exploration and Development, Lanzhou 730020, China
4.Gansu Geological Survey Institute of Nonferrous Metal,Lanzhou 730000,China

First author:Chen Wanfeng(1990-), male, Gulang County, Gansu Province, Ph.D Candidate. Research areas include lithospheric evolution and mineralization.E-mail:chenwf14@lzu.edu.cn

Corresponding author:Wang Jinrong(1958-), male, Putian City, Fujian Province, Professor. Research area include petro-tectonic.E-mail:jrwang@lzu.edu.cn

Abstract

Shanlianglishi Formation strata volcanic rocks are widely distributed in western fault zone of Kalamaili. Studies show that the rocks are basalt, andesite and basaltic andesite, calc-alkaline series with SiO2 content of samples ranging from 49.43% to 59.08%, TiO2 (1.18%~2.49%), P2O5 (0.21%~0.92%) and MgO (3.81%~6.28%). Samples have relatively high HFSE content (Ti, Zr, Y) and also high La/Nb (2.98~1.96), Zr/Y (9.36~4.01) ratio. The primitive mantle normalized trace element spider shows samples enriched LILE (Rb, Ba, K, U) and Pb, but relatively depleted Nb, Ta and Ti. Rare earth element distribution of REE shows slightly enriched LREE, (La/Yb)N=1.93~9.59, and that Eu is weakly negative anomaly ( δEu=0.87~0.95). Combined with geochemical characteristics of WPB and VAB. Shanlianglishi Formation strata formed in the stretched after collision environmen. After partial melting of the enriched mantle that was previously metasomatized by the subduction fluid and with participation of the subduction sediment, magma experienced a certain degree of fractional crystallization and contamination by earth crust, and then erupted to form the Shanlianglishi Formation strata volcanic rocks. In eraly Late-Carboniferous, extensional movement was the most intense volcanic activity, which reached its peak in this area.

Keyword: Shanlianglishi Formation strata; Early-Carboniferous volcanic rocks; Post-collision; Kalamaili; Xinjiang.
1 引言

中亚造山带是古亚洲洋演化过程中通过一系列的岛弧、增生杂岩体以及少量的微陆块侧向增生形成的一条典型增生造山带[1~4], 夹持于西伯利亚板块、哈萨克斯坦板块和塔里木— 华北板块之间, 其构造演化复杂, 火山活动强烈、频繁, 多条构造岩浆带、变质带以及冲断— 褶皱带重叠在一起。东准噶尔卡拉麦里断裂带是中亚造山带的重要组成部分, 卡拉麦里地区石炭纪火山岩较为发育, 主要以中— 基性火山岩为主, 酸性火山岩较少。前人侧重对陆梁隆起中部、陆东五彩湾及扎河坝地区火山岩的岩石组合、年代学和地球化学特征进行研究[5~21], 但对该区火山岩的研究较为薄弱, 对其形成时代和构造环境仍存争议, 形成时代有早石炭世[10, 22]和晚石炭世[23, 24], 形成的构造背景有造山后伸展环境[8, 9, 11, 22, 25~30]、与洋壳俯冲消减有关的岛弧环境[13, 14, 29, 30]及裂谷环境[5]等不同认识。

本文在详尽的野外地质调查基础上, 对卡拉麦里地区整合产于下石炭统山梁砾石组中的中基性火山岩进行了岩石学和岩石地球化学研究, 试图揭示卡拉麦里地区石炭纪构造演化过程, 这对深入研究中亚造山带具有十分重要的科学意义。

2 地质背景

东准噶尔造山带是中亚造山带的一个重要构造单元, 处于西伯利亚板块和准噶尔哈萨克斯坦板块的结合部位[31~33], 由3条缝合带分隔为4个构造单元, 由北向南依次为:阿尔泰造山带、额尔齐斯布尔根断裂缝合带、都拉特复合岛弧带、扎河坝— 阿尔曼太蛇绿岩带、野马泉复合岛弧、卡拉麦里蛇绿岩带以及准噶尔哈萨克斯坦板块[34](图1a)。卡拉麦里蛇绿岩带走向为NWW, 全长约有400 km, 宽5~15 km, 呈西宽东窄的楔状[35]

前人对卡拉麦里蛇绿岩带的研究表明, 最老的蛇绿岩年龄为416 Ma[36], 认为卡拉麦里洋盆扩张始于晚志留世— 早泥盆世。其北侧主要由早泥盆世晚期— 中泥盆世中酸性火山岩以及碎屑岩构成, 南侧则以陆源碎屑岩为主, 并显示出被动陆缘的特质[37], 早泥盆世晚期该洋盆沿卡姆斯特— 苏吉泉一带向北俯冲[38], 但对其最终闭合时间目前还存在较大的争议, 有中泥盆世[39]、晚泥盆世— 早石炭世早期[40, 41]、早石炭世早期[10, 42, 43]、早石炭世杜内期[30]、早石炭世晚期[38, 44, 45]和二叠纪[29, 46]等多种观点。本文研究认为, 该区在早石炭世晚期就已进入后碰撞阶段, 岩浆活动强烈, 且后碰撞花岗岩由I型向A型过渡, 通过对其年代学特征研究(另文详述), 认为卡拉麦里洋盆闭合早于345 Ma, 且早石炭世— 晚石炭世早期, 研究区正在由碰撞后期地壳加厚向后碰撞的拉伸环境过渡, 岩浆活动于晚石炭世早期达到顶峰。

3 岩石学特征

卡拉麦里断裂带西段石炭纪火山岩最为发育, 主要产于下石炭统山梁砾石组、姜巴斯套组及石炭系巴塔玛依内山组中, 巴塔玛依内山组不整合覆盖于山梁砾石组之上。早石炭世山梁砾石组中的火山岩发育, 主要为基性— 中性, 具有明显的多期次、间歇性喷发的特点(图1c)。火山岩出露面积较小, 呈夹层整合产出, 厚约十几米, 走向近北西向, 与区域构造线一致。本文所采的玄武质岩石呈斑状结构, 致密块状构造(图2)。斑晶约有20%, 主要是拉长石, 半自形长板状、粒状(0.8 mm× 0.8 mm~3.2 mm× 0.8 mm), 聚片双晶发育, 见有绿泥石化, 硅化; 基质约80%, 具有间粒结构, 多为细板条状拉长石(0.03 mm× 0.05 mm~0.25 mm× 0.05 mm), 双晶发育, 其间隙分布了约25%的普通辉石微粒, 粒径小于0.1 mm。微量的磁铁矿、白钛石, 粒径小于0.06 mm, 岩石含有少量的杏仁体, 呈圆形、椭圆形, 0.5~5 mm均有分布, 为方解石和石英等(图2)。

图1 大地构造背景图(a, b)及实测剖面图(c)
(a)据新疆卡拉麦里山幅、卡姆期特幅、库普幅1∶ 20万地质图资料修编, 图中部分年龄据参考文献[14, 45]; (c)为(b)中用红线框圈出的剖面部分。(a):I. 阿尔曼太早古生代褶皱带; II. 将军庙古稳定陆缘; III. 阿尔曼太晚古生代岛弧; IV. 卡拉麦里古生代弧后盆地; V. 额尔齐斯晚古生代褶皱带。(b):1.泥盆系; 2.下石炭统姜巴斯套组; 3.下石炭统山梁砾石组; 4.下— 上石炭统巴塔玛依内山组; 5.上石炭统石钱滩组; 6.流纹斑岩; 7.花岗岩; 8.斜长花岗岩; 9.石英闪长岩; 10.蛇绿岩; 11.前人研究位置; 12.采样位置; 13.实测剖面; F1.卡拉麦里断裂; F2.清水— 苏吉泉断裂
Fig.1 Tectonic background map(a, b) and selected cross section(c)
(a) Revising after Xinjiang Kalamailishan geological map, Kamusite geological map and Kupu geological map(1∶ 200 000), part of the age in figure according to references [14, 45]; (c) is the frame circled in red in (b).(a): I. Early Paleozoic fold belts of Almantai; II. Ancient stable continental margin of Jiangjunmiao; III: Late Paleozoic island arc of Almantai; IV: Paleozoic arc basin of Kalamaili; V: Late Paleozoic fold belts of E'erqisi.(b).1.Devonian; 2.Lower Carboniferous Jiangbasitao Group; 3.Lower Carboniferous Shanlianglishi Group; 4.Upper-lower Carboniferous Batamayimeishan Group; 5.Upper Carboniferous Shiqiantan Group; 6.Rhyolite porphyry; 7.Granite; 8.Plagioclase granite; 9.Quartz diorite; 10.Ophiolite; 11.Previous research position; 12.Sample location; 13.Measured section; F1.Fault of Kalamaili; F2.Fault of Qingshui-Sujiquan

图2 镜下岩石薄片(10× 5)
(a)单偏光, (b)正交偏光; Pl: 斜长石; Cpx: 单斜辉石
Fig.2 Mirror rock slices (10× 5)
(a)Polarized light, (b)Orthogonal polarized light. Pl: Plagioclase; Cpx:Clinopyxene

4 样品采集与测试

本次研究在野外观察和岩石薄片鉴定的基础上, 在山梁砾石组采集不同层位(图1b五角星处)的13件新鲜玄武质岩石样品。全岩主量元素、微量和稀土元素分析测试在西安地质矿产研究所实验测试中心进行。

主量元素采用X射线荧光光谱(XRF)测试分析(FeO和LOI采用标准湿化学分析), 利用Axios4.0 kw 顺序式-X射线荧光光谱仪(仪器编号:SX-45, 荷兰帕纳科公司生产)进行测试。检测分析采用国家一级岩石标样GB/T14506.28-2010, DS-2613201-04作为基体效应校正, 检测环境:温度25 ℃, 湿度30%; 测试结果利用曲线法进行校正, 精度一般优于5%。微量元素采用美国热电公司生产的Series II型电感耦合等离子体质谱仪(ICP-MS)进行测定, 仪器编号:SX-50, 数据质量采用国家一级标准物质GB/T14506.14-2010, DZ/T0223-2001进行质量监控, 同时做空白样进行质量监控, 检测环境:温度25 ℃, 湿度30%。具体样品处理流程:首先, 称取粉碎至大约200目的岩石粉末50 mg于溶样器中; 然后, 采用溶样弹将样品用HF+HNO3在195 ℃条件下消解48小时; 最后, 将在120 ℃条件下蒸干去除Si后的样品用2%的HNO3稀释2 000倍, 定容于干净的聚酯瓶中。详细的样品处理流程及分析参见参考文献 [47, 48]。

5 地球化学特征
5.1 主量元素特征

样品分析结果见表1。样品具有变化的SiO2(49.43%~59.08%)、Al2O3(14.40%~17.64%)和CaO(3.58%~8.41%)含量, 富钠贫钾, Na2O含量为2.89%~5.44%, K2O含量为0.16%~1.55%, 高的TiO2含量(1.18%~2.49%), 平均略高于大洋中脊玄武岩的TiO2含量(1.5%)[49], MgO含量较低, 为3.81%~6.28%, 全铁(TFe2O3)含量为7.04%~13.01%, 与一般玄武岩铁含量相当[50], P2O5含量为0.21%~0.92%, 远高于N-MORB的P2O5含量(0.09%)[51]。在TAS图解(图3)和Nb/Y-Zr/TiO2图解(图4)中, 样品均落于玄武岩— 安山岩系列; 在SiO2-K2O图解(图5)上, 1个样品落于拉斑系列, 其余12个落于钙碱性系列。

图3 TAS图解(据参考文献[52]修改)Fig.3 TAS diagram (modified after reference [52])

图4 Nb/Y图解(据参考文献[53]修改)Fig.4 Nb/Y diagram (modified after reference [53])

图5 SiO2-K2O图解(据参考文献[54]修改)Fig.5 SiO2-K2O diagram (modified after reference [54])

5.2 微量元素

样品稀土元素(REE)总量较高(Σ REE=69.07× 10-6~136.20× 10-6), 球粒陨石标准化稀土配分图表现为LREE相对富集(图6), (La/Yb)N = 2.04~10.11, 中重稀土元素之间分馏不明显((Gd/Yb)N=1.54~2.92), 具弱的负Eu异常(δ Eu=0.87~0.95), 表明岩浆在上升演化过程中没有发生明显的斜长石分离结晶作用。

样品Cr, Co, Ni和V含量很低, 分别为9.7× 10-6~219.0× 10-6, 24.4× 10-6~49.2× 10-6, 11.8× 10-6~133.0× 10-6, 157× 10-6~342× 10-6, 可能与岩浆演化过程中尖晶石、橄榄石、辉石等矿物的分离结晶作用有关[56, 57]。在微量元素原始地幔标准化蛛网图(图7)中, 表现出Cs, Ba, U, K, Sr, Pb的相对富集, Nb, Ta和Ti等高场强元素的相对亏损。

图6 稀土元素球粒陨石标准化配分图(标准化数据来自参考文献[55])Fig.6 Chondrite-normalized REE patterms (normalization values from reference [55])

6 讨论
6.1 形成时代

郭召杰[58]认为山梁砾石组是一套厚度达1 600 m的磨拉石建造, 与卡拉麦里造山带碰撞作用相关的同构造期沉积, 其中最年轻组分碎屑锆石年龄为343 Ma, 且在其中发现早石炭世腕足类化石(Schellwienella cf. heishantouensis F.M.Zhang、黑山头帅尔文贝(C1)、Grandispirifer sp.巨石燕(C1)[59]。Zhang等[60]也测得磨拉石最年轻的组分SHRIMP U-Pb年龄为343.5~345 Ma。张峰等[14]测得不整合覆盖于山梁砾石组之上的巴塔玛依内山组火山岩Sm-Nd等时线年龄为319 Ma, 由此可以认为山梁砾石组火山岩为早石炭世产物。火山岩呈多夹层整合于地层中(图1), 指示该火山岩是多期次喷发的产物。

6.2 源区特征

样品中相容元素含量较低以及变化范围较宽的Mg#值(38.49~56.64)可能是岩浆演化过程中尖晶石、橄榄石、辉石等矿物发生了一定程度的结晶分异作用所致。山梁砾石火山岩主要为基性— 中性, 具明显的多期次、间歇性喷发的特点。本文中的样品采于不同层位, 虽然样品中部分元素含量变化较大, 但在微量蛛网图(图7)中都富集Cs, Ba, U, K, Sr, Pb, 亏损Nb, Ta, Ti, 稀土配分图中都呈左倾型, 表明该组火山岩是同源的, 只是结晶分异程度略有不同而已[61~63]

图7 微量元素原始地幔标准化蛛网图(标准化数据来自参考文献[55])Fig.7 Primitive mantle-normalized trace element patterns (normalization values from reference [55])

样品中相对高的HFSE含量(Ti, Zr, Y)和高的La/Nb(1.96~2.98)、Zr/Y(3.65~9.36)比值, 表明来自于一个略为富集的源区, 与板内玄武岩类似[64, 65]。样品的Nb/U比值较低(8.05~14.78), 与大陆地壳物质Nb/U比值接近, 加之其高的U, Th含量和Th/Nb(0.17~0.67)、La/Nb(1.96~2.98)和Th/Yb(0.26~1.51)比值显示出有大陆地壳物质的加入或源区曾受到过俯冲流体的交代或俯冲沉积物参与其岩浆作用过程。在图8中, 样品投于ECFB上方, 且接近于俯冲沉积物和岛弧的域, 显示岩浆源区明显受到俯冲流体的交代和俯冲沉积物的影响。同时, 样品在微量元素原始地幔标准化蛛网图上也显示出Nb, Ta, Ti的相对负异常和Pb的正异常, 具有火山弧岩浆作用的特征。据此可以初步认为, 山梁砾石组中玄武质岩石的源区应为先前被俯冲流体交代的富集地幔, 且有俯冲沉积物参与其部分熔融过程, 在后期上升过程中受到地壳物质的混染。

图8 Ce/Nb-Th/Nb图解(据参考文献[66]修改)
PM:原始地幔; DMM:亏损地幔端员; N-MORB:N型洋中脊玄武岩; E-MORB:E型洋中脊玄武岩; OIB:洋岛玄武岩; BC:平均大陆壳; UCC:大陆上地壳; GLOSS:全球俯冲沉积物组成; Iceland plume:冰岛地幔柱; ECFB:峨眉山大陆溢流玄武岩
Fig.8 Ce/Nb-Th/Nb diagram (modified after reference[66])
PM: Primitive mantle; DMM: Depleted mantle end member; N-MORB:N type mid ocean ridge basalt; E-MORB: E type mid ocean ridge basalt; OIB: Oceanic island basalt; BC: Average continental crust; UCC:Upper continental crust; GLOSS:Global subduction sediment composition; Iceland plume:Iceland mantle plume; ECFB: Mount E'mei continental flood basalt

6.3 构造环境

山梁砾石火山岩显示出兼有板内玄武岩和火山弧玄武岩的地球化学特征, 这种兼具2种特征的岩石很难在常规的地球化学判别图中获得一致的结论。在Ti-Zr的Zr/Y-Zr图解中(图9, 图10), 由于高的Ti, Zr含量, 样品基本都投于板内区域, 但是Nb-Zr-Y图解中(图11), Y含量变化较大, 样品大多投于火山弧区域, 少数投于板内区域。推测该具有过渡特征的火山岩形成于板内拉伸环境, 其源区受到过俯冲流体的交代, 且有少量俯冲沉积物加入。由于地幔中富集组分常具有比普通组分更低的熔点[67], 在后碰撞拉伸环境之下, 先前被俯冲流体交代过的富集组分(地幔)发生部分熔融, 经历一定的结晶分异作用和地壳混染后喷出地表而形成。

学者们对于卡拉麦里断裂带两侧发育的晚古生代火山岩形成构造环境存在着不同的认识, 王方正等[5]提出陆梁隆起中部的早石炭世火山岩形成于陆内环境, 而袁超等[6]和赵振华等[7]通过对王方正等研究数据的整理分析, 认为这些早石炭世火山岩形成于洋壳俯冲背景; 张峰等[13, 14]通过对巴塔玛依内山组玄武质火山岩研究, 认为其是在晚石炭世与俯冲相关的不成熟弧后盆地的产物; Zheng等[8]和赵霞等[9]提出陆东— 五彩湾地区在晚石炭世已处于后碰撞拉伸环境; 吴小奇等[11, 12]对晚石炭世巴塔玛依内山组火山岩进行深入研究, 同样认为陆东— 五彩湾地区的晚石炭世火山岩形成于后碰撞拉伸环境。田健[71]和王富明等[15]认为陆东— 五彩湾地区在早石炭世就已经进入后碰撞期。从东准噶尔地区晚古生代花岗岩体来看, 这些花岗岩主要沿卡拉麦里断裂带和阿尔曼太断裂带展布, 形成时代从早石炭世延续到早二叠世, 这些岩体在时间上连续, 没有分带性, 整个区域显示出一致性, 为后碰撞花岗岩, 表明该地区在早石炭世已进入后碰撞伸展阶段[20, 24, 71~73]。Zhang等[16]将不整合上覆于山梁砾石组的巴塔玛依内山组石炭纪镁铁火山岩分为3类:①类似于原始岩浆(高MgO, CaO, Ni, Cr, 低NaO2, Al2O3, La, Ba, La/Yb, Ba/Th)的钾玄质系列; ②钙碱— 高钾钙碱性系列(低K2O, P2O5, Th, Th/Nb和很高的TiO2); ③钾玄质— 碱性系列(高K2O, P2O5, La, Ba, La/Yb, Th/Nb, 很低的TiO2)。本文中的玄武岩与Zhang等[16]的第二类相似, 但是具更高的Th含量, 表明山梁砾石火山岩受到更强的地壳混染。加上张峰等[13, 14]发现不整合覆盖于山梁砾石组之上的巴塔玛依内山组火山岩与其形成环境相似, 但比其略晚(巴塔玛依内山组玄武岩Sm-Nd等时线年龄为319 Ma), 同时该区晚石炭世早期A型花岗岩和姜巴斯套组双峰式火山岩[45]的发现, 均显示该火山岩形成于拉伸环境下, 且同时标志着该区在晚石炭世早期伸展运动最为强烈, 火山活动达到顶峰。

图9 Ti-Zr图解(据参考文献[68]修改)
WPB:板内玄武岩; MORB:大洋中脊玄武岩; IAB:岛弧玄武岩
Fig.9 Ti-Zr diagram (modified after reference [68])
WPB: Within-Plate Basalt; MORB: Mid Ocean Ridge Basalt; IAB: Island Arc Basalt

图10 Zr/Y-Zr图解(据参考文献[69]修改)
WPB:板内玄武岩; MORB:大洋中脊玄武岩; IAB:岛弧玄武岩
Fig.10 Zr/Y-Zr diagram (modified after reference [69])
WPB: Within-plate basalt; MORB: Mid ocean ridge basalt; IAB: Island arc basalt

图11 Nb-Zr-Y图解(据参考文献[70]修改)
WPA:板内碱性玄武岩; WPT:板内拉斑玄武岩; P-MORB:P型洋中脊玄武岩; N-MORB:N型洋中脊玄武岩; VAB:火山弧玄武岩
Fig.11 Nb-Zr-Y diagram (modified after reference [70])
WPA: Within-plate alkali basalt; WPT: Within-plate tholeiite; P-MORB: P type mid ocean ridge basalt; N-MORB: N type mid ocean ridge basalt; VAB: Volcanic arc basalt

7 结论

研究区早石炭世山梁砾石火山岩呈多期次、间歇性喷发的特点, 兼有板内玄武岩和火山弧玄武岩的地球化学特征。结合该区构造背景研究认为, 该火山岩形成于后碰撞伸展构造环境下, 由先前被俯冲流体交代过的富集地幔发生部分熔融, 并有俯冲沉积物加入, 经历一定的结晶分异作用和地壳混染后喷出地表而形成, 且在晚石炭世早期该区伸展运动最为强烈, 火山活动达到顶峰。

致 谢:在野外工作过程中得到了李泰德总工的指导和帮助, 2位匿名评审人对本文进行细致的审阅并提出许多建设性的建议, 使得本文质量有所提升, 在此一并表示诚挚的感谢。

The authors have declared that no competing interests exist.

参考文献
[1] Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307, doi: 10.1038/364299ao. [本文引用:1]
[2] Badarch G, Dickson C W, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. [本文引用:1]
[3] Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1 069-1 090. [本文引用:1]
[4] Hong D, Zhang J, Wang T, et al. Continental crustal growth and the supercontinental cycle: Evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2004, 23(5): 799-813. [本文引用:1]
[5] Wang Fangzheng, Yang Meizhen, Zheng Jianping. Geochemical characteristics and geological environment of basement volcanic rocks in Luliang, central region in Junggar Basin[J]. Acta Petrologica Sinica, 2002, 18(l): 9-16.
[王方正, 杨梅珍, 郑建平. 准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境[J]. 岩石学报, 2002, 18(l): 9-16. ] [本文引用:3]
[6] Yuan Chao, Xiao Wenjiao, Chen Hanlin, et al. Zhaheba potassic basalt, eastern Junggar (NW China): Geochemical characteristics and tectonic implications[J]. Acta Geologica Sinica, 2006, 80(2): 254-263.
[袁超, 肖文交, 陈汉林, . 新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义[J]. 地质学报, 2006, 80(2): 254-263. ] [本文引用:1]
[7] Zhao Zhenhua, Wang Qiang, Xiong Xiaolin, et al. Two types of adakites in north Xinjiang, China[J]. Acta Geologica Sinica, 2006, 22(5): 1 249-1 265.
[赵振华, 王强, 熊小林, . 新疆北部的两类埃达克岩[J]. 岩石学报, 2006, 22(5): 1 249-1 265. ] [本文引用:1]
[8] Zheng J, Sun M, Zhao G, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar Basin, NW China: Implications for the formation and evolution of the basin basement[J]. Journal of Asian Earth Sciences, 2007, 29(5): 778-794. [本文引用:2]
[9] Zhao Xia, Jia Chengzao, Zhang Guangya, et al. Geochemistry and tectonic setting of Carboniferous intermediate-basic vocanic rocks in Ludong-Wucaiwan, Junngar Basin[J]. Earth Science Frontiers, 2008, 15(2): 272-279.
[赵霞, 贾承造, 张光亚, . 准噶尔盆地陆东一五彩湾地区石炭系中、基性火山岩地球化学及其形成环境[J]. 地学前缘, 2008, 15(2): 272-279. ] [本文引用:2]
[10] Tan Jiayi, Wu Runjiang, Zhang Yuanyuan, et al. Characteristics and geochronology of volcanic rocks of Batamayineishan Formation in Kalamaily, Eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2009, 25(3): 539-546.
[谭佳奕, 吴润江, 张元元, . 东准噶尔克拉美丽地区巴塔玛依内山组火山岩特征和年代确定[J]. 岩石学报, 2009, 25(3): 539-546. ] [本文引用:2]
[11] Wu Xiaoqi, Liu Deliang, Wei Guoqi, et al. Geochenical characteristics and tectonic setting of Carboniferous vocanic rocks from Ludong-Wucaicheng area[J]. Acta Petrologica Sinica, 2009, 25(l): 55-66.
[吴小奇, 刘德良, 魏国齐, . 准噶尔盆地陆东—五彩湾地区石炭系火山岩地球化学特征及其构造背景[J]. 岩石学报, 2009, 25(l): 55-66. ] [本文引用:2]
[12] Wu Xiaoqi. Post-collisional Tectono-Magmatism and Its Constraint in Vocanic Reservoirs around Kalamaili Suture Zone in North Xinjiang[D]. Hefei: University of Science and Technology of China, 2010.
[吴小奇. 新疆北部卡拉麦里缝合带后碰撞构造岩浆作用及其对火山岩油气成藏的制约[D]. 合肥: 中国科学技术大学, 2010. ] [本文引用:1]
[13] Zhang Feng, Chen Jianping, Xu Tao, et al. Late Paleozoic subduction in the eastern Junggar: Evidence from the petrology, geochemistry and geochronology of Carboniferous colcanic rocks[J]. Geotectonica et Metallogenia, 2014, 38(1): 140-156.
[张峰, 陈建平, 徐涛, . 东准噶尔晚古生代依旧存在俯冲消减作用——来自石炭纪火山岩岩石学、地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156. ] [本文引用:3]
[14] Zhang Feng, Xu Tao, Fan Junjie, et al. Whole-rock Sm-Nd isochron age of Carboniferous volcanic rocks in eastern Junggar and its tectonic significance[J]. Geochimica, 2014, 43(3): 301-316.
[张峰, 徐涛, 范俊杰, . 东准噶尔石炭系巴塔玛依内山组火山岩全岩Sm-Nd等时线年龄及其构造意义[J]. 地球化学, 2014, 43(3): 301-316. ] [本文引用:4]
[15] Wang Fuming, Liao Qun’an, Fan Guangming, et al. Age and geochemical characteristics of the Early Carboniferous volcanic rocks in Dishuiquan area of East Junggar Basin, Xinjiang[J]. Geological Bulletin of China, 2014, 32(10): 1 584-1 595.
[王富明, 廖群安, 樊光明, . 新疆东准噶尔滴水泉一带早石炭世火山岩年龄及地球化学特征[J]. 地质通报, 2014, 32(10): 1 584-1 595. ] [本文引用:1]
[16] Zhang Y, Guo Z, Pe-Piper G, et al. Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process[J]. Gondwana Research, 2015, 28(4): 1 466-1 481. [本文引用:2]
[17] Li D, He D, Santosh M, et al. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar: Insights into collisional event in an accretionary orogen of Central Asia[J]. Lithos, 2014, 184/187: 167-193. [本文引用:1]
[18] Liu W, Zhang K, Zhang G, et al. Geochemical characteristics of Carboniferous volcanic rocks from the Wulungu-Luliang area, Junggar Basin: Constraints on magma source and tectonic setting[J]. Chinese Journal of Geochemistry, 2015, 34(4): 515-524. [本文引用:1]
[19] Liu W, Liu X J, Liu L J. Underplating generated A-and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes[J]. Lithos, 2013, 179: 293-319. [本文引用:1]
[20] Su Y, Zheng J, Griffin W L, et al. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research, 2012, 22(3): 1 009-1 029. [本文引用:1]
[21] Zhang Z, Zhou G, Kusky T M, et al. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 2009, 16(2): 201-215. [本文引用:1]
[22] Liu Jiayuan, Qian Jianping, Cheng Zhiping, et al. Continental Volcanism and Au-Cu Metallogenesis in East Junggar, Xinjiang[M]. Beijing: Geological Publishing House, 2002.
[刘家远, 钱建平, 程志平, . 新疆东准噶尔陆相火山作用与金铜成矿[M]. 北京: 地质出版社, 2002. ] [本文引用:2]
[23] Yang Pinrong, Yang Wenqiang, Meng Youyan, et al. Lower Carboniferous stratigraphic system of Kelamaili orogenic belt, Xinjiang and its tectonic setting[J]. Geological Science and Technology Information, 2007, 26(5): 6-10.
[杨品荣, 杨文强, 蒙有言, . 新疆克拉麦里造山带下石炭统地层系统及其沉积构造背景[J]. 地质科技情报, 2007, 26(5): 6-10. ] [本文引用:1]
[24] Su Yuping, Zheng Jianping, Tang Huayun, et al. Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin[J]. Chinese Science Bulletin, 2010, 55(30): 2 931-2 943.
[苏玉平, 郑建平, 汤华云, . 东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究[J]. 科学通报, 2010, 55(30): 2 931-2 943. ] [本文引用:2]
[25] Zhao Zehui, Guo Zhaojie, Han Baofu, et al. The geochemical characteristics and tectonic-magmatic implications of the latest-Paleozoic vocanic rocks from Santanghu Basin, eastern Xinjiang, northwest China[J]. Acta Geologica Sinica, 2006, 22(l): 199-214.
[赵泽辉, 郭召杰, 韩宝福, . 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造—岩浆演化意义[J]. 岩石学报, 2006, 22(l): 199-214. ] [本文引用:1]
[26] Hao Jianrong, Zhou Dingwu, Liu Yiqun, et al. Geochemistry and tectonic settings of Permian vocanic rocks in Santanghu Basin, Xinjiang[J]. Acta Petrologica Sinica, 2006, 22(l): 189-198.
[郝建荣, 周鼎武, 柳益群, . 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析[J]. 岩石学报, 2006, 22(l): 189-198. ] [本文引用:1]
[27] Zhu Zhixin, Li Shaozhen, Li Songling. The characteristics of sedimentary system-continental facies volcano in Later Carboniferous batamayi group, Zhi-fang region, east Jungger[J]. Xinjiang Geology, 2005, 23(1): 14-18.
[朱志新, 李少贞, 李嵩龄. 东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山—沉积体系特征[J]. 新疆地质, 2005, 23(1): 14-18. ] [本文引用:1]
[28] Mao Zhiguo, Zou Caineng, Zhu Rukai, et al. Geochemical characteristics and tectonic settings of Carboniferous volcanic rocks in Junggar Basin[J]. Acta Petrologica Sinica, 2010, (1): 207-216.
[毛治国, 邹才能, 朱如凯, . 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义[J]. 岩石学报, 2010, (1): 207-216. ] [本文引用:1]
[29] Long Xiaoping, Sun Min, Yuan Chao, et al. Genesis of Carboniferous volcanic rocks in the eastern Junggar: Constraints on the closure of the Junggar Ocean[J]. Acta Petrologica Sinica, 2006, 22(1): 31-40.
[龙晓平, 孙敏, 袁超, . 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J]. 岩石学报, 2006, 22(1): 31-40. ] [本文引用:2]
[30] Bian Weihua. Volcanic Reservoir Geological Characterization of the Batamayineishan Formation in Junggar Basin[D]. Jilin: Jilin University, 2011.
[边伟华. 准噶尔盆地巴塔玛依内山组火山岩储层地质学研究[D]. 吉林: 吉林大学, 2011. ] [本文引用:3]
[31] Li Chunyu, Wang Quan, Zhang Zhimeng, et al. The outline of Chinese plate tectonics[J]. Acta Geoscientica Sinica, 1980, 2(1): 11-22.
[李春昱, 王荃, 张之孟, . 中国板块构造的轮廓[J]. 地球学报, 1980, 2(1): 11-22. ] [本文引用:1]
[32] Cai Wenjun. A preliminary study on the plate tectonic of east Junggar, North of Xinjiang[C]∥Conferennce Prceeding North China Plate Tectonics, 1. Beijing: Geological Publishing House, 1986: 1-26.
[蔡文俊. 新疆准噶尔东北缘板块构造初步研究[C]∥中国北方板块构造论文集(第1集). 北京: 地质出版社, 1986: 1-26. ] [本文引用:1]
[33] Cheng Shoude, Wang Guangrui, Yang Shude, et al. The paleoplate tectonic of Xinjiang[J]. Xinjiang Geology, 1986, 4(2): 1-26.
[成守德, 王广瑞, 杨树德, . 新疆古板块构造[J]. 新疆地质, 1986, 4(2): 1-26. ] [本文引用:1]
[34] Xiao Wenjiao, Han Chunming, Yuan Chao, et al. Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang(NW China): Constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sinica, 2006, 22(5): 1 062-1 076. [本文引用:1]
[35] Li Songling, Feng Xinchang, Dong Furong, et al. Ree features of ophiolitic suite of Kelameili-Takezhale-Daheishan[J]. Xinjiang Geology, 1999, 17(4): 356-364.
[李嵩龄, 冯新昌, 董富荣, . 克拉麦里—塔克扎勒—大黑山蛇绿岩建造稀土元素特征[J]. 新疆地质, 1999, 17(4): 356-364. ] [本文引用:1]
[36] Huang Gang, Niu Guangzhi, Wang Xinlu, et al. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang[J]. Geological Bulletin of China, 2012, 31(8): 1 267-1 278.
[黄岗, 牛广智, 王新录, . 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩 LA-ICP-MS 锆石U-Pb 年龄的证据[J]. 地质通报, 2012, 31(8): 1 267-1 278. ] [本文引用:1]
[37] Li Jinyi. Late Neoproterozoic and Paleozoic tecronic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3): 304-322.
[李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322. ] [本文引用:1]
[38] Li Jinyi, Xiao Xuchang, Tang Yaoqing, et al. Main characteristics of late paleozoic plate tectonics in the southern part of east Junggar, Xinjiang[J]. Geological Review, 1990, 36(4): 305-316.
[李锦轶, 肖序常, 汤耀庆, . 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 1990, 36(4): 305-316. ] [本文引用:2]
[39] Zhao Hengle, Xu Fan, Zhang Ji, et al. The Kalamaili ophiolites: Age, geological characteristics and tectonic significance[J]. Xinjiang Geology, 2012, 30(2): 161-164.
[赵恒乐, 许凡, 张冀, . 东准噶尔卡拉麦里蛇绿岩形成时代、地质特征及构造意义[J]. 新疆地质, 2012, 30(2): 161-164. ] [本文引用:1]
[40] Xiao Xuchang, Tang Yaoqing, Feng Yimin, et al. Tectonic Units and Geologic Evolution in Northern Xinjiang and Neighboring Areas[M]. Beijing: Geological Publishing House, 1992: 31-34. [本文引用:1]
[41] Wang Daoyong, Deng Jianghong. Characteristics and evolution of the plate tectonics in eastern Jungar, Xinjiang[J]. Journal of Chengdu University of Technology, 1995, 22(4): 38-45.
[王道永, 邓江红. 东准噶尔地区板块构造特征及演化[J]. 成都理工学院学报, 1995, 22(4): 38-45. ] [本文引用:1]
[42] Zhao Yusuo, Lu Yanming, Ma Dexi. Geochemical characteristics of radiolarian cherts in the region of eastern Junggar Kelameili[J]. Northwestern Geology, 2008, 41(3): 64-70.
[赵玉锁, 路彦明, 马德锡. 东准卡拉麦里地区放射虫硅质岩地球化学特征[J]. 西北地质, 2008, 41(3): 64-70. ] [本文引用:1]
[43] Wu Runjiang, Zhang Yuanyuan, Tan Jiayi, et al. The characteristics of different structure layers and tectonic implications since late Paleozoic in Kalamaily area, Xinjiang[J]. Earth Science Frontiers, 2009, 16(3): 102-109.
[吴润江, 张元元, 谭佳奕, . 新疆卡拉麦里地区晚古生代以来不同构造层特征及大地构造意义[J]. 地学前缘, 2009, 16(3): 102-109. ] [本文引用:1]
[44] Li Jinyi, Zhu Baoqing, Feng Yimin. Confirmation of the unconformable relationships between the Nanmingshui Formation and ophiolites and their significance[J]. Regional Geology of China, 1989, (3): 250-255.
[李锦轶, 朱宝清, 冯益民. 南明水组和蛇绿岩之间不整合关系的确认及其意义[J]. 中国区域地质, 1989, (3): 250-255. ] [本文引用:1]
[45] Wang Bangyao, Jiang Changyi, Li Yongjun, et al. Geochemical characteristics and tectonic significance of the Karamaili ophiolite complex in East Junggar of Xinjiang Province[J]. Journal of Mineralogy and Petrology, 2009, 29(3): 74-82.
[汪帮耀, 姜常义, 李永军, . 新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义[J]. 矿物岩石, 2009, 29(3): 74-82. ] [本文引用:2]
[46] Yin J Y, Yuan C, Sun M, et al. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 2010, 17(1): 145-152. [本文引用:1]
[47] Govindaraju K. Compilation of working values and samples description for 383 Geostand ards[J]. Geostand ards Newsletter, 1994, 18(2): 331-331. [本文引用:1]
[48] Li X H. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China[J]. Geochemical Journal, 1997, 31(5): 323-327. [本文引用:1]
[49] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margin[C]∥Hawkesworth C J, Norry M J, eds. Continental Basalts and Mantle Xenoliths. Nantwich: Shiva, 1983: 230-249. [本文引用:1]
[50] Le Maitre R W. The chemical variability of some common igneous rocks[J]. Journal of Petrology, 1976, 17(4): 589-598. [本文引用:1]
[51] Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314. [本文引用:1]
[52] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. [本文引用:1]
[53] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4): 325-343. [本文引用:1]
[54] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. [本文引用:1]
[55] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. [本文引用:1]
[56] Arth J G. Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications[J]. Journal of Research US Geological Survey, 1976, 4(1): 41-47. [本文引用:1]
[57] Song Yang, Tang Juxing, Qu Xiaoming, et al. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science, 2014, 29(7): 795-809.
[宋扬, 唐菊兴, 曲晓明, . 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809. ] [本文引用:1]
[58] Guo Zhaojie. A review on the Paleozoic tectonic evolution of northern Xinjiang and a discussion on the important role of geological maps in tectonic study[J]. Geological Bulletin of China, 2012, 31(7): 1 054-1 060.
[郭召杰. 新疆北部大地构造研究中几个问题的评述——兼论地质图在区域构造研究中的重要意义[J]. 地质通报, 2012, 31(7): 1 054-1 060. ] [本文引用:1]
[59] Fan Lifei, Zhao Binbin, Dai Junfeng, et al. A review of Kalamaili ophiolite belt in east Junggar, Xinjiang[J]. Gansu Geology, 2014, 23(2): 21-26.
[樊立飞, 赵斌斌, 代俊峰, . 新疆东准噶尔卡拉麦里蛇绿岩带研究现状[J]. 甘肃地质, 2014, 23(2): 21-26. ] [本文引用:1]
[60] Zhang Y, Pe-Piper G, Piper D J W, et al. Early Carboniferous collision of the Kalamaili orogenic belt, north Xinjiang, and its implications: Evidence from molasse deposits[J]. Geological Society of America Bulletin, 2013, 125(5/6): 932-944. [本文引用:1]
[61] Wright T L, Fiske R S. Origin of the differentiated and hybrid lavas of Kilauea volcano, Hawaii[J]. Journal of Petrology, 1971, 12(1): 1-65. [本文引用:1]
[62] Thompson R N. Phase-equilibria constraints on the genesis and magmatic evolution of oceanic basalts[J]. Earth-Science Reviews, 1987, 24(3): 161-210. [本文引用:1]
[63] McKenzie D, Bickle M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679. [本文引用:1]
[64] Condie K C. Geochemical changes in baslts and and esites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1): 1-18. [本文引用:1]
[65] Xia Linqi, Xia Zuchun, Xu Xueyi, et al. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Petrologica et Mineralogica, 2007, 26(1): 77-89.
[夏林圻, 夏祖春, 徐学义, . 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-89. ] [本文引用:1]
[66] Song X Y, Zhou M F, Cao Z M, et al. Late permian rifting of the south China Craton caused by the Emeishan mantle plume?[J]. Journal of the Geological Society, 2004, 161(5): 773-781. [本文引用:1]
[67] Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB[J]. Contributions to Mineralogy and Petrology, 1996, 124(2): 185-208. [本文引用:1]
[68] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]∥Thorpe R S, ed. Orogenic and esites and Related Rocks. Chichester, England : John Wiley and Sons, 1982: 525-548. [本文引用:1]
[69] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. [本文引用:1]
[70] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3): 207-218. [本文引用:1]
[71] Tian Jian. The Petrologic Characteristics and Tectonic Implications for Early Carbonoferous Intrusions from the Area of Karamaili in Eastern Junggar[D]. Wuhan: China University of Geosciences, 2014.
[田健. 东准噶尔卡拉麦里地区早石炭世侵入岩的岩石学特征及其地质意义[D]. 武汉: 中国地质大学, 2014. ] [本文引用:2]
[72] Han Baofu, Guo Zhaojie, He Guoqi. Timing of major suture zones in North Xinjiang, China: Constraints from stitching plutons[J]. Acta Petrologica Sinica, 2010, 26(8): 2 233-2 246.
[韩宝福, 郭召杰, 何国琦. “钉合岩体”与新疆北部主要缝合带的形成时限[J]. 岩石学报, 2010, 26(8): 2 233-2 246. ] [本文引用:1]
[73] Tong Ying, Wang Tao, Hong Dawei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 619-641.
[童英, 王涛, 洪大卫, . 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619-641. ] [本文引用:1]