白云石化作用及白云岩储层研究进展*
黄擎宇1, 刘伟1, 张艳秋2, 石书缘1, 王坤1
1. 中国石油勘探开发研究院,北京 100083
2. 中国石油天然气股份有限公司塔里木油田分公司勘探开发研究院, 新疆 库尔勒 841000

作者简介:黄擎宇(1984-),男,河南南阳人,博士后,主要从事碳酸盐岩储层地质学方面的研究. E-mail: qingyuh08@163.com

摘要

白云石化作用和白云岩储层一直都是碳酸盐岩研究中的重要领域。近年来,随着实验分析技术的进步以及油气勘探的深入,对白云岩的研究也取得了诸多进展:①数值模拟技术逐步应用到白云岩研究中,实现了白云石化模式研究由定性到定量的转变;②对微生物白云石化的研究不断加强,识别出了微生物相关白云石的特殊显微形貌特征并对其生物矿化机制进行了分析;③对已有白云石化模式的重新审视:包括对混合水白云石化的修正、对回流白云石化的扩展以及对构造—热液白云石化模式的丰富;④在白云石化与孔隙相关关系的研究中,突破了白云石化增孔的传统认识,逐步强调白云石化在孔隙保存方面的作用;⑤注重研究白云岩结构、成岩环境、原始相带以及白云岩形成之后的溶蚀改造等因素对白云岩储层发育的控制作用。在未来的研究中,应加强3个方面内容,一是对白云岩结构演化规律的定量研究,二是在成岩流体示踪方面要加强对新技术手段(如二元同位素、Mg同位素)的使用,同时注意借鉴成矿流体研究中的成熟技术和方法,三是要加强对深部白云岩储层形成和保存机制的探索。

关键词: 数值模拟; 微生物白云岩; 白云石化模式; 储层成因; 地球化学
中图分类号:P588.24+5 文献标志码:A 文章编号:1001-8166(2015)05-0539-13
Progress of Research on Dolomitization and Dolomite Reservoir
Huang Qingyu1, Liu Wei1, Zhang Yanqiu2, Shi Shuyuan1, Wang Kun1
1. Research Institution of Petroleum Exploration & Development, Petrochina, Beijing 100083, China
2. Institute of Petroleum Exploration and Development, Tarim Oilfield Company, Petrochina, Korla 841000, China
Abstract

Dolomitization and dolomite reservoir are vital research fields in carbonate rocks. Recently, there are many progresses in dolomite with the advancement of experimental techniques and development of petroleum exploration, including: ① Numerical simulation is applied to the study of dolomitization model gradually. It achieves a conversion of dolomitization model from qualitative analysis to quantitative description and is beneficial for understanding the migration and range of dolomitizing fluids on the regional level. ② More attention is focused on the research of microbial dolomitization. The morphological features of dolomite associated with microbe and mechanism of biomineralization have been recognized and studied deeply. ③The defects of mixing-zone dolomitization in theory and practice are pointed out, and the application range of this model is limited. ④ The scope of reflux model of dolomitization is extended widely, particularly the reflux of penesaline seawater is considered as a potential for large-scale dolomitization in shallow-burial stage. ⑤The further study of structural controlled hydrothermal dolomitization has come to realize that hydrothermal dolomite can also be associated to convergent settings. The modification of hydrothermal fluids to reservoirs shows characteristics of coexistence of constructive and destructive impacts. The research of relationship between dolomitization and origin of porosity breaks though the traditional knowledge of dolomitization increasing porosity, and emphasizes the ability of dolomitization retaining porosity. ⑥The main controlling factors of dolomite reservoirs are contributed to the dolomite texture, diagenestic environment and dissolution after emplacement of dolomite. Three aspects should be improved in the future investigations. The first is the quantitative study of evolution of dolomite texture. The second is enhancing the employment of latest geochemical techniques such as Clumped isotope and Mg isotope as well as using the mature methods for research of ore-forming fluids. The third is exploring the mechanism of origin and preservation of dolomite reservoirs in deep burial setting.

Keyword: Mathematical models; Microbial dolomite; Dolomitization models; Reservoir origin; Geochemistry.
1 前言

白云石化作用及白云岩储层在碳酸盐岩理论研究以及油气勘探中均占据重要地位。Land[1]、Hardie[2]、Budd[3]、Warren[4]、Machel[5]、张学丰等[6]以及黄思静[7]等对不同时期白云岩的研究进展进行了有益的综述, 使人们对与白云石化作用、白云岩储层成因以及孔隙分布规律有关的基础理论有了一个全面的认识。近年来, 随着对白云石化模式和白云石生长动力学研究的不断深入, 人们重新审视了已有的白云石化模式并进行了适当的修正和扩展。另外, 在白云岩储层方面, 对白云石化与孔隙发育关系的研究持续加强, 逐步认识到成岩环境、白云岩结构类型与演化以及沉积— 构造— 流体— 成岩之间的耦合关系对深部白云岩储层的重要控制作用。近年来我国中西部地区相继发现了多个与白云岩有关的海相碳酸盐岩大油气田[8~11], 油气勘探的强烈需求也促使国内的白云岩研究突飞猛进, 特别是在塔里木、四川盆地深部古老层系白云岩的研究中取得了诸多进展。本文旨在对国内外近期白云石化及白云岩储层的研究成果进行及时梳理与总结, 并对未来的研究方向进行展望, 其结果不仅可以丰富碳酸盐岩成岩作用研究的理论内涵并能够为我国白云岩的油气勘探提供更多地质依据。

2 白云石化作用研究进展
2.1 白云石化模式由定性到定量的转变

由于大范围的白云石化作都需要较高的水岩比率[5], 这就要求所有的白云岩成因模式必须是水文学模型。早期的白云石化模式多是基于岩相学结合地球化学属性反演白云石化流体后而得出的概念模型, 属于一种定性研究。近年来, 许多学者开始尝试利用数值模拟的方法对白云石化流体的流动机制进行定量研究[12~18]。常用的建模方法主要有:质量守恒技术(mass-balance techniques)、反应路径计算(reaction path calculation)和反应— 传输模型(Reaction-Transport Models, RTM)[16]

质量守恒技术主要根据流体流量、流体中Mg2+浓度和质量之间的平衡关系研究白云石化作用所需的流体体积[1, 2, 12, 19, 20], 而反应路径计算则主要展示封闭条件下一个地化体系的基本变化规律[16], 由于这2种方法忽略了流体流量在空间上的变化以及反应效率的问题, 因而其应用范围有限, 通常作为研究反应— 传输模型的一个前提。RTM则将地球化学反应过程与流体流动和溶质迁移过程相结合, 可有效预测白云石化流体的运动轨迹和白云岩体的分布范围, 是数值模拟中最常用、最有效的方法[21~23]。目前, 已有学者通过该方法模拟了不同水文地质条件下的白云石化作用, 包括回流[15, 18, 24]、混合带[25]、地热循环[21, 23]和断裂控制的热液循环[25]系统中的白云化机制, 这些模拟结果使我们对不同驱动力下白云石流体的运移轨迹、流动速度以及受控因素等问题有了一个直观的认识; 特别地, 这些模拟还可以分析白云岩储层形成过程中的物性变化(图 1), 对油气勘探及开发均具有一定意义。

图 1 三维反应— 传输模型模拟回流白云石化作用[25](a) 白云岩体分布范围; (b) 膏质胶结物分布范围; (c) 高渗透性白云岩储层分布范围Fig.1 3D Reaction-Transport Model showing the simulated result of reflux dolomitization[25](a) The distribution of dolomite; (b) The distribution of anhydrite; (c) The distribution of high-permeability dolomite reservoir

对白云化模式的研究由定性到定量、由概念模型到数值模型的转变有利于从宏观层面把握白云石化流体的运移规律和活动范围, 可以在一定程度上弥补地质及地球化学手段在解释白云岩成因上的不足。但必须指出的是, 数值模拟仍具有一定局限性, 首先是低温条件下白云石化动力学机制的不确定性以及成岩过程中边界条件的不断变化均会对模拟结果产生影响[23]; 另外, 数值模拟中的物理模型多是经过简化的, 而且与现代地下水系统不同, 大多数古代成岩流体系统的数值模拟结果都无法核对[26]。因此, 在未来的研究中加入以露头剖面为约束的模拟[27, 28], 将会使数值模拟结果的可信度更高。

2.2 微生物白云石化作用受到关注

近年来“ 微生物白云石化” 模式的提出为解决“ 白云岩问题” 提供了一个新的视角[29~33]。Vasconcelos等[34]通过研究巴西Lagoa Vermelha盐碱滩中硫酸盐还原细菌成因的白云石, 最早提出了“ 微生物白云石化” 模式。该模式中, 沉积物表面缺氧的混浊层创造了一个特殊环境, 光合作用产生的有机物可以被硫酸盐还原细菌循环利用, 并在亚微米尺度范围内沉淀高镁方解石和钙白云石; 由于这类白云石是溶液中离子直接结合形成晶核并像原生沉积物那样堆积下来, 因此可认为其属于生物成因。目前已发现硫酸盐还原细菌[35]、产甲烷古菌[34, 36, 37]以及中度嗜盐需氧细菌[38, 39]的代谢活动有助于克服低温条件下白云石沉淀的动力学障碍, 促使白云石晶核形成与沉淀。特殊的显微形貌(如哑铃状和纺锤形白云石晶体)以及稳定同位素特征可以用来判断白云石的形成是否受微生物影响[40]。近年来亦有学者利用微生物在相对高压条件下合成具有菱面体的白云石[41]。另外, Burns等[36]认为厌氧微生物(包括硫酸盐还原细菌)群落的活动可能导致海相碳酸盐岩的广泛白云石化。

但是微生物白云石化在解释古代大规模白云岩成因方面仍有不少争议[39, 42]。一方面是有研究者在无机条件下合成了具有球状及哑铃状形貌的碳酸盐矿物[43], 因此这种特殊的白云石形貌能否作为生物参与的标志仍需进一步研究; 另外, 即使有微生物诱导白云石沉淀的环境中, 原生白云石的含量依然很少, 所以微生物白云石化作用的成岩规模仍在不断探索中。无论如何, 微生物白云石化作用的提出拓展了白云岩研究的宽度和广度, 极大地丰富了碳酸盐岩基础理论研究的内涵。

2.3 对已有白云石化模式的修正和扩展

2.3.1 对混合水白云石化模式的修正

混合水白云石化模式风靡一时, 很多块状白云岩的成因都曾被解释为混合水白云石化作用的结果[44]。Land[45]作为该模式的早期倡导者之一, 后来也加入到反对者的行列[46]; 主要是由于该模式在理论上缺陷[2]以及现代实例的匮乏[4, 47]而备受质疑。另外, 作为混合水白云化经典实例的美国密歇根盆地中奥陶统米夫林段白云岩, 现也被认为是埋藏成岩过程中热液交代作用的产物[48]。值得注意的是, 虽然对混合水白云化的质疑不断, 但该模式在一些特定地质背景下仍然能够形成白云岩[49~51]。如黄思静等[49]在对四川盆地东北部飞仙关组粒屑白云岩的岩石学和地球化学特征研究后认为, 混合水白云石化依然是这类白云岩的主要形成机制。再如Li等[51]在研究西班牙东南部中新世白云岩时发现, 这些白云石中的单相流体包裹体具有较高的冰点温度(-0.2~-2.3 ℃), 说明形成白云石的成岩流体盐度很低, 结合其C-O同位素之间的共变关系、古地形特征和白云岩体空间展布规律, 建立了一套向上运移的大气淡水与中等盐度海水相混合的白云石化机制(图 2)。总之, 混合水白云石化很难形成大规模白云岩体, 但在一些特殊地质背景下仍具备一定的白云石化潜力。

图 2 西班牙东南部中新世混合水白云岩地球化学特征(a)及成因模式(b)(据参考文献[51]修改)Fig.2 Geochemistry feature (a) and origin model (b) of mixing-zone dolomitization in upper Miocene strata of southeast Spain (modified from reference [51])

2.3.2 对回流白云石化模式的扩展

自Adams等[52]提出渗透回流白云石化作用以来, 该模式被广泛应用于与台地/盆地相规模蒸发岩相关白云岩的成因解释中[13, 53], 并取得了良好的应用效果[54]。随后的数值模拟进一步确定了该模式的存在, 同时还发现了一种可在台地较深处活动的“ 隐伏回流” [14, 15], 特别是当台地内部不存在有效隔水层时, 隐伏回流与早期的活跃回流相结合很可能形成规模较大的白云岩体[7]

除了超盐度海水的回流之外, 中等盐度或是轻微蒸发海水的回流也被认为具备大规模白云石化的潜力[55, 56], 特别是中低纬度半局限潮缘带、潮下带不与蒸发岩相伴生的白云岩, 其成因越来越多的被解释为中等盐度海水或轻微蒸发海水的回流所致[57~60], 海平面变化对于这类回流具有重要驱动作用[61]。隐伏回流和中等盐度海水回流的提出是对早期回流模式的扩展和修正, 增大了该模式的适用范围。同时, 我们有理由想象, 很多古代与蒸发岩无关的半局限/局限台地相白云岩很可能是近地表— 浅埋藏阶段中等盐度海水回流或扩散下渗的产物, 只是在后期的埋藏过程中叠加了埋藏白云石化或埋藏重结晶的影响, 从而在地球化学属性上显示出埋藏白云岩的特征[62], 如塔里木盆地上寒武— 下奥陶统白云岩、四川盆地东部开江— 梁平海槽西侧飞仙关组白云岩、鄂尔多斯盆地西南缘马家沟组白云岩等。对回流白云石化模式的扩展和修正对于我们理解古代与蒸发岩无关的白云岩体的成因具有积极意义, 但回流作用的具体范围和持续时间仍需进一步研究。

2.3.3 对构造— 热液白云石化认识的深入

构造控制的热液白云石化(Structurally controlled hydrothermal dolomitization, HTD)是近年来研究的热点。虽然目前大部分研究认为HTD优选张扭性断裂或深部走滑断裂带发育[63~66], 但是挤压构造背景下的热液白云石化同样值得重视[67~72]:如Ronchi[72]对意大利威尼斯南部侏罗系碳酸盐岩中热液白云石化作用的研究时发现, 热液活动可以发生在冲断带附近, 热液流体的运动与构造挤压形成的刮板流(tectonic squeegee)有关[67, 68]图 3)。因此, HTD可能不仅仅局限于张扭性的构造环境中, 汇聚背景下同样可以有热液白云岩发育。

图 3 意大利威尼斯南部阿尔卑斯山脉侏罗系与挤压构造有关的热液白云石化作用模式图(据文献[72]修编)Fig.3 Model of hydrothermal dolomitization associated to convergent setting in Southern Alps, Italy(modified from reference[72])

在我国, 构造— 热液白云石化也备受关注。但与北美地区热液白云石多以灰岩为宿主岩层所不同的是, 我国古老地层中的热液白云岩(如塔里木盆地寒武系、四川盆地震旦系 )往往分布于白云岩地层中, 其形成方式更可能是对先存基质白云石的重结晶或是直接从热流体中沉淀, 而非直接交代灰岩而来[73], 因此应属于一种热液改造型白云岩。另外, 热液活动对储层的改造既可以是建设性的也可以是破坏性[74~76], 特别是具有超压性质的热液流体在产生角砾化及裂缝的同时, 由于压力的骤降往往会伴随有大量晚期方解石胶结物的生成, 严重影响储层质量。最后, 热流体性质、来源的不同以及断层类型、断裂活动强度的差异均会对热液改造作用产生深远影响, 但目前针对该领域的定量研究(如确切的储层改造程度、分布范围等)仍显薄弱。

3 白云岩储层研究进展
3.1 白云石化作用与孔隙的关系仍存争议

白云石化作用与孔隙成因之间的关系一直是白云岩储层研究的热点和难点, 早期认为白云岩储层中的晶间孔主要是由于白云石化过程中的摩尔置换导致岩石体积减小而产生[77, 78]。但是随后的研究发现, 并不是所有的白云石化作用都能形成有效的储集空间[4]。例如南佛罗里达州许多埋深不到1 km的新生代白云岩的孔隙度等于或小于相邻的灰岩层[79, 80]; 博内尔岛上新世— 更新世白云岩中也存在类似情况[81]; 此外, 白云石交代方解石之后如果白云化流体继续供给, 很可能发生过度白云石化作用或是白云石的胶结作用而使孔隙度降低, 因此有学者认为白云石化作用并不能产生储集空间, 白云岩中发育的孔隙主要是继承了原始灰岩中的孔隙[82], 白云岩之所以在深埋藏条件下具有比灰岩更好的孔隙是由于白云石化作用改变了孔隙结构特征加之白云岩更抗压实, 因而有利于孔隙的保存。

近年来随着我国白云岩研究的不断深入, 越来越多的学者开始认识到白云石化作用与孔隙之间的复杂关系, 逐渐改变了以往认为白云石化作用是单纯增孔的认识, 而是更加关注白云石化作用之前被交代沉积物的特征以及白云石化之后所经历的成岩改造[6, 83], 特别是强调了适度的白云石化作用在孔隙保存方面的贡献[11, 84, 85], 为我国深层白云岩有效储层的预测提供了一个全新的思路。总之, 白云石化作用可以增孔、减孔也可以保持孔隙, 因此在对白云岩储层的研究中, 既不能过分强调白云石化作用对储层的有利影响, 但也不可低估其在储层形成和保存过程中的基础性贡献。

3.2 白云岩储层主控因素研究逐步加强

由于白云岩储层不一定与白云石化作用本身有关, 特别是深层白云岩储层中孔隙的成因并不能简单的归于埋藏白云石化作用, 因此还需综合考虑白云石化的程度、云化过程中的结构演化、成岩系统的开放性、原始相带以及云化之后所经历的溶蚀改造等多种因素对白云岩储层的影响和控制。

(1)白云石化程度:Murray[77]在研究Saskatchewan地区Midale油田 Midale层白云岩时认为白云石化程度或白云石含量与孔隙度关系密切。但作者对塔里木盆地下古生界各类白云岩中白云石含量与面孔率的统计发现(图 4), 白云石含量的多少对孔隙影响不明显。因此对于这类纯白云岩地层而言, 白云石含量或白云石化程度对储层影响极其有限, 而岩石结构和后期成岩改造应该是控制白云岩储层发育的主要因素。

图 4 塔里木盆地下古生界白云石含量与孔隙度关系图Fig.4 Cross-plot of porosity and content of dolomite in Paleozoic carbonate, Tarim Basin

(2)白云岩结构:白云岩/石结构作为白云石化作用研究的基础, 不仅对白云岩的成因具有指示意义还深刻的影响着白云岩储层的质量, 前人对白云岩/石的结构类型[60, 86~88]、结构演化[89~91]、结构与物性的关系[92, 93]、结构对孔隙发育的影响[94, 95]等方面进行了详细研究, 总体上认为白云岩结构不仅对储层类型具有明显控制作用还影响了后期侵蚀性流体对储层的改造方式, 例如随着白云石晶体结构由平面— 自形/半自形向曲面— 它形的转化, 其储集空间类型也由以晶间孔为主转变为晶间溶孔或溶蚀孔洞为主; 另外, 由于岩石结构和先存孔隙系统的差异往往导致白云岩中多发育层状针孔型或溶蚀孔洞型储层, 而缺乏大型洞穴型储集体。

(3)不同成岩系统(如近地表开放成岩系统和埋藏条件下封闭成岩系统)所形成的白云岩在储集性方面也有明显区别。黄思静等[96]研究认为开放体系下由于外部CO32-的大量供给, 白云石化作用通常是减孔的; 封闭体系中的白云石化会消耗本层方解石以提供CO32-, 从而发生等摩尔交代, 导致孔隙的增加。然而自然界中白云岩的形成更多的是在一种半开放环境中, 外部CO32-的供给相对有限, 因此交代前后孔隙体积很可能保持不变。笔者对鄂尔多斯盆地和塔里木盆地白云岩的研究中亦发现在浅埋藏阶段形成的白云岩往往具有相对较高的孔隙度, 加之这部分白云岩常见残余结构, 因此推测这些孔隙很可能是颗粒滩相沉积物在浅埋藏阶段的半开放体系中通过等体积交代而被继承下来的。

表 1 塔里木、四川及鄂尔多斯盆地白云岩储层特征、成因及控制因素对比表[11, 97~99] Table1 Comparative table of characteristics, origin and controlling factors of dolomite reservoirs in Tarim Basin, Sichuan Basin and Ordos Basin [11, 97~99]

(4)原始沉积相带和后期改造作用:对塔里木、四川及鄂尔多斯盆地白云岩储层特征、成因及主控因素的统计发现(表 1), 有利沉积相带依然是优质白云岩储层发育的基础[100, 101], 例如微生物丘滩体、台缘礁、台缘(内)滩等高能相带中储层的发育程度最高, 即使在埋藏白云岩储层中, 大部分物性较好的白云岩也是继承自多孔的滩相沉积物[84]。另外, 白云岩形成过程中或形成之后的多期次溶蚀作用则是控制储层规模化发育的关键, 笔者对塔里木盆地下古生界白云岩储集空间类型的统计发现, 大部分孔隙都与溶蚀作用有关, 特别是非组构选择型孔隙所占比例很大[95]。四川盆地长兴组— 飞仙关组、龙王庙组和灯影组白云岩中同样存在这种现象, 即使是高能滩相白云岩储层中也有许多非组构选择型溶孔[99, 102, 103]。无论是与高频层序界面[74, 104~106]、构造不整合面有关的大气淡水溶蚀[107, 108]还是与断裂相关的热液溶蚀[73, 109]或是与热化学硫酸盐还原反应有关的埋藏溶蚀[110~112]都能在很大程度上改变白云岩的储集性能。

综上, 白云岩储层的发育受多种因素制约, 其中岩石结构、沉积相带和后期的溶蚀改造对孔隙发育的控制尤为明显, 因此在对白云岩储层成因的研究中, 除了对白云石化机理的探讨外, 更应该注意对白云岩形成之前的沉积相类型以及形成之后所经历的溶蚀改造特征进行详细梳理, 从而为有效预测白云岩储层分布规律提供更为坚实的地质依据。

4 研究展望

随着全球勘探逐步向深层、超深层迈进, 深埋藏条件下的白云石化机制以及白云岩储层成因和保存问题亟待解决, 应加强以下3个方面研究:

(1)白云岩岩石学方面:一是加强对白云石矿物学的研究, 例如对矿物的晶体化学习性、晶体结构参数、与矿物形成有关的化学热力学、与结晶速度有关的化学动力学的研究等, 目前已有学者利用白云石的晶体结构参数(如有序度、晶胞参数、晶格条纹、晶面间距等)来分析其成因[113], 取得了良好的应用效果; 二是对白云岩岩石结构及其演化规律的定量研究, 例如云化过程中原岩组构的保存和破坏、不同云化模式控制下的岩石结构演化对孔隙空间的调整、白云石的胶结作用、过度生长[114]以及重结晶作用[115]等。对白云岩结构及演化规律的探索不仅有助于解决白云岩成因问题, 更重要的是能够促进我们对其孔隙成因的理解。

(2)成岩流体反演是白云化作用及白云岩储层研究的关键, 对于目前常用的地球化学手段(如碳— 氧— 锶同位素、主量— 微量元素、稀土元素、包裹体测试等)而言, 主要是加强微区取样的精度; 另外, 一些新的地球化学方法应逐步应用到白云岩研究中, 例如二元同位素(Clumped isotope)[116, 117]可使成岩温度的反演更加准确、Ca同位素[118]和Mg同位素[119, 120]等非传统稳定同位素可为成岩流体的鉴别提供更多依据; 同时, 借鉴成矿地质学中的成熟理论和分析技术方法来研究储层地质学中的成岩流体问题[121], 对于解决类似深层白云岩储层的成因问题也具有积极意义。需要强调的是, 地球化学研究必须建立在详细的岩相学研究基础之上, 并能够与沉积层序、大地构造背景以及盆地域成岩演化相结合, 其解释结论才更具说服力。

(3)针对深部白云岩储层的形成和保存机制开展前瞻性研究。①对于深埋条件下白云岩储层成因而言, 埋藏溶蚀是否具有规模化效应一直是争论的焦点[122, 123], 其关键在于如何构建开放体系。“ 构造成岩作用” (structural diagenesis)[124, 125]概念的提出, 将构造运动与沉积盆地内区域性的成岩流体活动相结合, 从宏观层面把控埋藏流体作用规律, 可能是未来解决深部储层成因的重要研究方向。②储层保存方面, 除了继续关注异常压力、烃类早期充注对储层保存的作用外[126, 127], 针对白云岩储层还应加强以下研究:微生物白云岩中微生物甲烷的形成对于早期胶结的抑制[128]、颗粒白云岩中适度胶结与压实压溶之间的耦合关系, 晶粒白云岩在不同白云石化模式控制下的岩石结构演化过程对孔隙的影响等; 另外, 将成岩演化与盆地内不同构造单元的沉积相、埋藏史、热史相结合, 动态分析流体— 岩石之间的反应过程, 进而寻找出控制水岩平衡的关键地质条件, 是解决深部储层保存问题的重要一环。

5 结语

数值模拟技术逐步应用到白云岩研究中, 有利于从宏观层面把握白云石化流体的运移规律及作用范围, 实现了白云石化模式由定性到定量的转变, 可以在一定程度上弥补地质及地球化学手段在解释白云岩成因上的不足。

微生物白云石化受到关注, 识别出了微生物相关白云石的特殊显微形貌特征并对其生物矿化机制进行了分析, 拓展了白云岩研究的宽度和广度。

对已有白云石化模式的修正和扩展, 包括对混合水白云石化的修正, 指出其在理论及实践上的缺陷并对其适用范围进行了限定; 对回流白云石化的扩展, 认为中等盐度海水回流作用具有大规模交代的潜力; 对构造— 热液白云石化模式的丰富, 发现汇聚构造背景下同样可以形成热液白云岩, 认为热液对储层的改造表现为建设性与破坏性共存的特征。

在白云石化与孔隙相关关系的研究中, 突破了白云石化增孔的传统认识, 逐步强调白云石化在孔隙保存方面的作用; 强调白云岩的结构类型、成岩环境、原始相带以及白云岩形成之后的溶蚀改造等因素对白云岩储层发育的控制。

在未来的研究中, 应着重加强对白云岩/石的结构演化规律的研究、加强对新的地化分析手段(如二元同位素、Ca、Mg等非传统稳定同位素)的使用, 并注重将成矿流体研究中的成熟理论和技术方法融合到储层地质学的研究中, 另外还需加强对深层白云岩储层形成和保存机制的探索。

The authors have declared that no competing interests exist.

参考文献
[1] Land L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125. [本文引用:2]
[2] Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183. [本文引用:3] [JCR: 1.742]
[3] Budd D A. Cenozoic dolomites of carbonate island s: Their attributes and origin[J]. Earth-Science Reviews, 1997, 42(1/2): 1-47. [本文引用:1] [JCR: 7.339]
[4] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/3): 1-81. [本文引用:3] [JCR: 7.339]
[5] Machel H G. Concepts and models of dolomitization: A critical reappraisal[C]∥ Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society (London) Special Publication, 2004, 235: 7-63. [本文引用:2]
[6] Zhang Xuefeng, Liu Bo, Cai Zhongxian, et al. Dolomitization and carbonate reservoir formation[J]. Geological Science and Technology Information, 2010, 29(3): 79-85.
[张学丰, 刘波, 蔡忠贤, . 白云岩化作用与碳酸盐岩储层物性[J]. 地质科技情报, 2010, 29(3): 79-85. ] [本文引用:2] [CJCR: 0.881]
[7] Huang Sijing. Carbonate Diagenesis[M]. Beijing: Geological Publishing House, 2010.
[黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010. ] [本文引用:2]
[8] Zheng Herong, Wu Maobing, Wu Xingwei, et al. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 1-8.
[郑和荣, 吴茂炳, 邬兴威, . 塔里木盆地下古生界白云岩储层油气勘探前景[J]. 石油学报, 2007, 28(2): 1-8. ] [本文引用:1] [CJCR: 1.437]
[9] Zhao Wenzhi, Shen Anjiang, Hu Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768.
[赵文智, 沈安江, 胡素云, . 塔里木盆地寒武—奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28(3): 758-768. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[10] Wang Zecheng, Zhao Wenzhi, Hu Suyun, et al. Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China[J]. Oil & Gas Geology, 2013, 34(2): 153-160.
[汪泽成, 赵文智, 胡素云, . 我国海相碳酸盐岩大油气田油气藏类型及分布特征[J]. 石油与天然气地质, 2013, 34(2): 153-160. ] [本文引用:1]
[11] Zhao Wenzhi, Shen Anjiang, Zheng Jianfeng, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science in China (Series D), 2014, 44(9): 1 925-1 939.
[赵文智, 沈安江, 郑剑锋, . 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学: D辑, 2014, 44(9): 1 925-1 939. ] [本文引用:2]
[12] Shields M J, Brady P V. Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian, Western Canada Sedimentary Basin[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(4): 371-392. [本文引用:2] [JCR: 0.806]
[13] Jones G D, Rostron B J. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models[J]. Bulletin of Canadian Petroleum Geology, 2000, 48(3): 230-245. [本文引用:1] [JCR: 0.806]
[14] Jones G D, Whitaker F F, Smart P L, et al. Fate of reflux brines in carbonate platforms[J]. Geology, 2002, 30(4): 371-374. [本文引用:1] [JCR: 4.087]
[15] Jones G D, Smart P L, Whitaker F F, et al. Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin[J]. AAPG Bulletin, 2003, 87(8): 1 273-1 298. [本文引用:2] [JCR: 1.768]
[16] Whitaker F F, Smart P L, Jones G D. Dolomitization: From conceptual to numerical models[C]∥Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society Special Publication, 2004, 235: 99-139. [本文引用:2]
[17] Caspard E, Rudkiewicz J L, Eberli G P, et al. Massive dolomitization of a Messinian reef in the Great Bahama Bank: A numerical modelling evaluation of Kohout geothermal convection[J]. Geofluids, 2004, 4(1): 40-60. [本文引用:1] [JCR: 2.379]
[18] Jones G D, Xiao Y. Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models[J]. AAPG Bulletin, 2005, 89(5): 577. [本文引用:2] [JCR: 1.768]
[19] Kaufman J. Numerical models of fluid flow in carbonate platforms; implications for dolomitization[J]. Journal of Sedimentary Research, 1994, 64(1): 128-139. [本文引用:1] [JCR: 1.742]
[20] Wendte J, Qing H, Dravis J J, et al. High-temperature saline (thermoflux) dolomitization of Devonian Swan Hills platform and bank carbonates, Wild River area, west-central Alberta[J]. Bulletin of Canadian Petroleum Geology, 1998, 46(2): 210-265. [本文引用:1] [JCR: 0.806]
[21] Wilson A M, Sanford W, Whitaker F, et al. Spatial patterns of diagenesis during geothermal circulation in carbonate platforms[J]. American Journal of Science, 2001, 301(8): 727-752. [本文引用:2] [JCR: 3.6]
[22] Steefel C I, Depaolo D J, Lichtner P C. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences[J]. Earth and Planetary Science Letters, 2005, 240(1): 539-558. [本文引用:1] [JCR: 4.349]
[23] Whitaker F F, Xiao Y. Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection[J]. AAPG Bulletin, 2010, 94(6): 889-917. [本文引用:3] [JCR: 1.768]
[24] Al-Helal A B, Whitaker F F, Xiao Y. Reactive transport modeling of brine reflux: Dolomitization, anhydrite precipitation, and porosity evolution[J]. Journal of Sedimentary Research, 2012, 82(3): 196-215. [本文引用:1] [JCR: 1.742]
[25] Xiao Y, Whitaker F F, Al-Helal A B, et al. Fundamental Approaches to Dolomitization and Carbonate Diagenesis in Different Hydrogeological Systems and the Impact on Reservoir Quality Distribution[C]. Beijing: International Petroleum Technology Conference, 2013. [本文引用:2]
[26] Chi Guoxiang, Xue Chunji. Principles, methods and applications of hydrodynamic studies of mineralization[J]. Earth Science Frontiers, 2011, 18(5): 1-18.
[池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18. ] [本文引用:1]
[27] Garcia-Fresca B, Lucia F J, Sharp J M, et al. Outcrop-constrained hydrogeological simulations of brine reflux and early dolomitization of the Permian San Andres Formation[J]. AAPG Bulletin, 2012, 96(9): 1 757-1 781. [本文引用:1] [JCR: 1.768]
[28] Gisquet F, Lamarche J, Floquet M, et al. Three-dimensional structural model of composite dolomite bodies in folded area (Upper Jurassic of the Etoile massif, southeastern France)[J]. AAPG Bulletin, 2013, 97(9): 1 477-1 501. [本文引用:1] [JCR: 1.768]
[29] Vasconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6 546): 220-222. [本文引用:1] [JCR: 38.597]
[30] Van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50(2): 237-245. [本文引用:1] [JCR: 2.611]
[31] Wang Yong. Dolomite problem and precambrian enigma[J]. Advances in Earth Science, 2006, 21(8): 857-862.
[王勇. “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006, 21(8): 857-862. ] [本文引用:1] [CJCR: 1.388]
[32] You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64.
[由雪莲, 孙枢, 朱井泉, . 微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4): 52-64. ] [本文引用:1]
[33] Chang Yuguang, Bai Wanbei, Qi Yong’an, et al. Microfossil assemblage and its sedimentary environment in cambrian stromatolites, western He’nan[J]. Advances in Earth Science, 2014, 29(4): 456-463.
[常玉光, 白万备, 齐永安, . 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463. ] [本文引用:1] [CJCR: 1.388]
[34] Vasconcelos C,  Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. [本文引用:2] [JCR: 1.742]
[35] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1 008. [本文引用:1] [JCR: 2.611]
[36] Burns S J, Mckenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(Suppl. 1): 49-61. [本文引用:2] [JCR: 2.611]
[37] Warthmann R, Van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1 091-1 094. [本文引用:1] [JCR: 4.087]
[38] Snchez-Romn M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882. [本文引用:1] [JCR: 4.087]
[39] Kenward P A, Goldstein R H, Gonzalez L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea[J]. Geobiology, 2009, 7(5): 556-565. [本文引用:2] [JCR: 3.042]
[40] You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science in China (Series D), 2014, 44(8): 1 777-1 790.
[由雪莲, 孙枢, 朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学: D辑, 2014, 44(8): 1 777-1 790. ] [本文引用:1]
[41] Song Quanying, Xu Jun, Zhang Yu. Dolomite precipitation mediated by Lysinibacillus sphaericus and Sporosarcina psychrophila[J]. Microbiology China, 2014, 41(10): 2 155-2 165.
[宋泉颖, 徐俊, 张宇. 球形赖氨酸芽孢杆菌(Lysinibacillus sphaericus)和嗜冷芽孢八叠球菌(Sporosarcina psychrophila)介导形成白云石晶体[J]. 微生物学通报, 2014, 41(10): 2 155-2 165. ] [本文引用:1]
[42] Li Hong, Liu Yiqun, Li Wenhou, et al. The microbial precepitation of lacustrine dolomite from Permian Formation, Urumchi, Xinjiang, China[J]. Geologcal Bulletin of China, 2013, 32(4): 661-670.
[李红, 柳益群, 李文厚, . 新疆乌鲁木齐二叠系湖相微生物白云岩成因[J]. 地质通报, 2013, 32(4): 661-670. ] [本文引用:1]
[43] Tracy S L, Williams D A, Jennings H M. The growth of calcite spherulites from solution: II. Kinetics of formation[J]. Journal of Crystal Growth, 1998, 193(3): 382-388. [本文引用:1] [JCR: 1.552]
[44] Badiozamani K. The dorag dolomitization model, application to the middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984. [本文引用:1] [JCR: 1.742]
[45] Land L S. Contemporaneous dolomitization of middle pleistocene reefs by meteoric water, North Jamaica[J]. Bulletin of Marine Science, 1973, 23(1): 64-92. [本文引用:1] [JCR: 1.297]
[46] Land L S. Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: Reassessment of mixing-zone dolomite[C]∥Taylor H P, et al. eds. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, Special Publication, 1991, 3: 121-130. [本文引用:1]
[47] Melim L A, Swart P K, Eberli G P. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas[J]. Journal of Sedimentary Research, 2004, 74(6): 904-913. [本文引用:1] [JCR: 1.742]
[48] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J]. AAPG Bulletin, 2006, 90(11): 1 719-1 738. [本文引用:1] [JCR: 1.768]
[49] Huang Sijing, Tong Hongpeng, Liu Lihong, et al. Petrography, geochemistry and dolomitization mechanisms of Feixianguan dolomites in Triassic, NE Sichuan, China[J]. Acta Petrologica Sinica, 2009, 25(10): 2 363-2 372.
[黄思静, 佟宏鹏, 刘丽红, . 川东北飞仙关组白云岩的主要类型, 地球化学特征和白云化机制[J]. 岩石学报, 2009, 25(10): 2 363-2 372. ] [本文引用:2] [JCR: 1.117] [CJCR: 2.65]
[50] Conliffe J, Azmy K, Greene M. Dolomitization of the lower Ordovician Catoche formation: Implications for hydrocarbon exploration in western Newfoundland [J]. Marine and Petroleum Geology, 2012, 30(1): 161-173. [本文引用:1] [JCR: 2.111]
[51] Li Z, Goldstein R H, Franseen E K. Ascending freshwater-mesohaline mixing: A new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283. [本文引用:2] [JCR: 1.742]
[52] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1 912-1 920. [本文引用:1] [JCR: 1.768]
[53] Jiang L, Cai C F, Worden R H, et al. Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China[J]. Geofluids, 2013, 13(2): 232-245. [本文引用:1] [JCR: 2.379]
[54] Saller A H, Henderson N. Distribution of porosity and permeability in platform dolomites: Insight from the Permian of west Texas[J]. AAPG Bulletin, 1998, 82(8): 1 528-1 550. [本文引用:1] [JCR: 1.768]
[55] Sun S Q. A reappraisal of dolomite abundance and occurrence in the phanerozoic[J]. Journal of Sedimentary Research, 1994, 64(2): 396-404. [本文引用:1] [JCR: 1.742]
[56] Whitaker F F, Smart P L. Active circulation of saline ground waters in carbonate platforms: Evidence from the Great Bahama Bank[J]. Geology, 1990, 18(3): 200-203. [本文引用:1] [JCR: 4.087]
[57] Qing H, Bosence D W J, Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163. [本文引用:1] [JCR: 2.611]
[58] Pan Liyin, Liu Zhanguo, Li Chang, et al. Dolomitization and its relationship with reservoir development of the Lower Triassic Feixianguan Formation in eastern Sichuan Basin[J]. Journal of Palaeogeography, 2012, 14(2): 176-186.
[潘立银, 刘占国, 李昌, . 四川盆地东部下三叠统飞仙关组白云岩化作用及其与储集层发育的关系[J]. 古地理学报, 2012, 14(2): 176-186. ] [本文引用:1]
[59] Rott C M, Qing H. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin (Canada): Evidence from petrography and isotope geochemistry[J]. Journal of Sedimentary Research, 2013, 83(11): 928-941. [本文引用:1] [JCR: 1.742]
[60] Huang Qingyu, Zhang Shaonan, Meng Xianghao, et al. Textural types and origin of the Cambrian-Ordovician dolomite in the central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 537-549.
[黄擎宇, 张哨楠, 孟祥豪, . 塔里木盆地中央隆起区寒武—奥陶系白云岩结构特征及成因探讨[J]. 沉积学报, 2014, 32(3): 537-549. ] [本文引用:2] [CJCR: 1.227]
[61] Yuan Xinpeng, Liu Jianbo. Research history and progress on reflux seepage dolostone[J]. Journal of Palaeogeography, 2012, 14(2): 219-228.
[袁鑫鹏, 刘建波. 回流渗透模式白云岩研究历史与进展[J]. 古地理学报, 2012, 14(2): 219-228. ] [本文引用:1]
[62] Zhang Jianyong, Guo Qingxin, Shou Jianfeng, et al. Control of neogene global eustasy on dolomitization: Revelation to the origin of dolomitization in Paleostrata[J]. Marine Origin Petroleum Geology, 2013, 18(4): 46-52.
[张建勇, 郭庆新, 寿建峰, . 新近纪海平面变化对白云石化的控制及对古老层系白云岩成因的启示[J]. 海相油气地质, 2013, 18(4): 46-52. ] [本文引用:1] [CJCR: 0.8315]
[63] Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in northern Gaspe-Matapedia (Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology, 2004, 52(3): 256. [本文引用:1] [JCR: 0.806]
[64] Davies G R, Jr Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1 641-1 690. [本文引用:1] [JCR: 1.768]
[65] López-Horgue M A, Iriarte E, Schröder S, et al. Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain[J]. Marine and Petroleum Geology, 2010, 27(5): 1 069-1 092. [本文引用:1] [JCR: 2.111]
[66] Haeri-Ardakani O, Al-Aasm I, Coniglio M. Petrologic and geochemical attributes of fracture-related dolomitization in Ordovician carbonates and their spatial distribution in southwestern Ontario, Canada[J]. Marine and Petroleum Geology, 2013, 43(5): 409-422. [本文引用:1] [JCR: 2.111]
[67] Qing H, Mountjoy E. Large-scale fluid flow in the Middle Devonian Presqu’ile Barrier, Western Canada Sedimentary Basin[J]. Geology, 1992, 20(10): 903-906. [本文引用:2] [JCR: 4.087]
[68] Qing H, Mountjoy E W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu’ile barrier, Western Canada Sedimentary Basin[J]. AAPG Bulletin, 1994, 78(1): 55-77. [本文引用:1] [JCR: 1.768]
[69] Montanez I P. Late diagenetic dolomitization of Lower Ordovician, upper Knox carbonates: A record of the hydrodynamic evolution of the southern Appalachian Basin[J]. AAPG Bulletin, 1994, 78(8): 1 210-1 239. [本文引用:1] [JCR: 1.768]
[70] Green D G, Mountjoy E W. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta Deep Basin[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(2): 101-129. [本文引用:1] [JCR: 0.806]
[71] Breesch L, Swennen R, Vincent B, et al. Dolomite cementation and recrystallisation of sedimentary breccias along the Musand am Platform margin (United Arab Emirates)[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 34-43. [本文引用:1] [JCR: 1.952]
[72] Ronchi P, Masetti D, Tassan S, et al. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy)[J]. Marine and Petroleum Geology, 2012, 29(1): 68-89. [本文引用:2] [JCR: 2.111]
[73] Zhu Dongya, Jin Zhijun, Hu Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science in China (Series D), 2010, 40(2): 156-170.
[朱东亚, 金之钧, 胡文瑄. 塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J]. 中国科学: D辑, 2010, 40(2): 156-170. ] [本文引用:2]
[74] Westphal H, Eberli G P, Smith L B, et al. Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming[J]. AAPG Bulletin, 2004, 88(4): 405-432. [本文引用:2] [JCR: 1.768]
[75] Katz D A, Eberli G P, Swart P K, et al. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming[J]. AAPG Bulletin, 2006, 90(11): 1 803-1 841. [本文引用:1] [JCR: 1.768]
[76] Xing Fengcun, Zhang Wenhuai, Li Sitian. Influence of hot fluids on reservoir property of deep buried dolomite strata and its significance for petroleum exploration: A case study of Keping outcrop in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 266-276.
[邢凤存, 张文淮, 李思田. 热流体对深埋白云岩储集性影响及其油气勘探意义——塔里木盆地柯坪露头区研究[J]. 岩石学报, 2011, 27(1): 266-276. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[77] Murray R C. Origin of porosity in carbonate rocks[J]. Journal of Sedimentary Research, 1960, 30(1): 59-84. [本文引用:2] [JCR: 1.742]
[78] Weyl P K. Porosity through dolomitization—Conservation of mass requirements[J]. Journal of Sedimentary Research, 1960, 30(1): 85-90. [本文引用:1] [JCR: 1.742]
[79] Schmoker J W, Halley R B. Carbonate porosity versus depth: A predictable relation for south Florida[J]. AAPG Bulletin, 1982, 66(12): 2 561-2 570. [本文引用:1] [JCR: 1.768]
[80] Halley R B, Schmoker J W. High porosity Cenozoic carbonate rocks of south Florida: Progressive loss of porosity with depth[J]. AAPG Bulletin, 1983, 67(2): 191-200. [本文引用:1] [JCR: 1.768]
[81] Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitization[C]∥Purser B, Tucker M, Zenger D, eds. Dolomites: A Volume in Honor of Dolomieu. International Association of Sedimentologists Special Publication, 1994, 21: 325-341. [本文引用:1]
[82] Lucia F J. Origin and petrophysics of dolostone pore space[C]∥Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publication, 2004, 235: 141-155. [本文引用:1]
[83] Qiao Zhanfeng, Shen Anjiang, Zheng Jianfeng, et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(1): 21-32.
[乔占峰, 沈安江, 郑剑锋, . 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报, 2012, 14(1): 21-32. ] [本文引用:1]
[84] Zheng Jianfeng, Shen Anjiang, Qiao Zhanfeng, et al. Genesis of dolomite and main controlling factors of reservoir in Penglaiba Formation of Lower Ordovician, Tarim Basin: A case study of Dabantage outcrop in Bachu area[J]. Acta Petrologica Sinica, 2013, 29(9): 3 223-3 232.
[郑剑锋, 沈安江, 乔占峰, . 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析——以巴楚大班塔格剖面为例[J]. 岩石学报, 2013, 29(9): 3 223-3 232. ] [本文引用:2] [JCR: 1.117] [CJCR: 2.65]
[85] Zhang Xuefeng, Shi Kaibo, Liu Bo, et al. Retention processes and porosity preservation in deep carbonate reservoirs[J]. Geological Science and Technology Information, 2014, 33(2): 80-85.
[张学丰, 石开波, 刘波, . 保持性成岩作用与深部碳酸盐岩储层孔隙的保存[J]. 地质科技情报, 2014, 33(2): 80-85. ] [本文引用:1] [CJCR: 0.881]
[86] Sibley D F, Gregg J M. Classification of dolomite rock textures[J]. Journal of Sedimentary Research, 1987, 57(6): 967-975. [本文引用:1] [JCR: 1.742]
[87] Wang Dan, Chen Daizhao, Yang Changchun, et al. Classification of texture in burial dolomite[J]. Acta Sedimentologica Sinica, 2010, 28(1): 17-25.
[王丹, 陈代钊, 杨长春, . 埋藏环境白云石结构类型[J]. 沉积学报, 2010, 28(1): 17-25. ] [本文引用:1] [CJCR: 1.227]
[88] Huang Sijing, Huang Keke, Jie, et al. The relationship between dolomite textures and their formation temperature: A case study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin[J]. Petroleum Science, 2014, 11(1): 39-51. [本文引用:1] [JCR: 0.534] [CJCR: 0.4222]
[89] Zhao H, Jones B. Genesis of fabric-destructive dolostones: A case study of the Brac Formation (Oligocene), Cayman Brac, British West Indies[J]. Sedimentary Geology, 2012, (267/268): 36-54. [本文引用:1] [JCR: 1.802]
[90] Jones B. Microarchitecture of dolomite crystals as revealed by subtle variations in solubility: Implications for dolomitization[J]. Sedimentary Geology, 2013, 288: 66-80. [本文引用:1] [JCR: 1.802]
[91] Huang Sijing, Li Xiaoning, Lan Yefang, et al. Influences of marine cementation on carbonate textures: A case of Feixianguan carbonates of Triassic, NE Sichuan Basin[J]. Journal of Central South University (Science and Technology), 2013, 44(12): 5 007-5 018.
[黄思静, 李小宁, 兰叶芳, . 海水胶结作用对碳酸盐岩石组构的影响: 以四川盆地东北部三叠系飞仙关组为例[J]. 中南大学学报: 自然科学版, 2013, 44(12): 5 007-5 018. ] [本文引用:1] [CJCR: 0.789]
[92] Gregg J M, Laudon P R, Woody R E, et al. Porosity evolution of the Cambrian Bonneterre Dolomite, south-eastern Missouri, USA[J]. Sedimentology, 1993, 40(6): 1 153-1 169. [本文引用:1] [JCR: 2.611]
[93] Woody R E, Gregg J M, Koederitz L F. Effect of texture on petrophysical properties of dolomite: Evidence from the Cambrian-Ordovician of southeastern Missouri[J]. AAPG Bulletin, 1996, 80(1): 119-131. [本文引用:1] [JCR: 1.768]
[94] Choquette P W, Hiatt E E. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites[J]. Sedimentology, 2008, 55(2): 423-460. [本文引用:1] [JCR: 2.611]
[95] Huang Qingyu, Zhang Shaonan, Zhang Siyang, et al. Textural control on the development of dolomite reservoir: A study from the cambrian-ordovician dolomite, Central Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(3): 341-350, 470.
[黄擎宇, 张哨楠, 张斯杨, . 白云岩结构对储集空间发育的控制作用——以塔里木盆地中央隆起区寒武系—奥陶系白云岩为例[J]. 天然气地球科学, 2014, 25(3): 341-350, 470. ] [本文引用:2] [CJCR: 1.055]
[96] Huang Sijing, Qing Hairuo, Hu Zuowei, et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic, NE Sichuan Basin of China[J]. Acta Petrologica Sinica, 2007, 23(11): 2 955-2 962.
[黄思静, Qing Hairuo, 胡作维, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11): 2 955-2 962. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[97] Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823.
[罗平, 王石, 李朋威, . 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5): 807-823. ] [本文引用:1] [CJCR: 1.227]
[98] Song Jinmin, Luo Ping, Yang Shisheng, et al. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(4): 404-413, 437.
[宋金民, 罗平, 杨式升, . 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-413, 437. ] [本文引用:1] [CJCR: 2.573]
[99] Yao Genshun, Hao Yi, Zhou Jin’gao, et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 31-37.
[姚根顺, 郝毅, 周进高, . 四川盆地震旦系灯影组储层储集空间的形成与演化[J]. 天然气工业, 2014, 34(3): 31-37. ] [本文引用:1] [CJCR: 0.833]
[100] Zhao Wenzhi, Shen Anjiang, Hu Suyun, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.
[赵文智, 沈安江, 胡素云, . 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12. ] [本文引用:1] [CJCR: 2.573]
[101] Ma Yongsheng, Cai Xunyu, Zhao Peirong. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba gas field[J]. Acta Petrolei Sinica, 2014, 35(6): 1 001-1 011.
[马永生, 蔡勋育, 赵培荣. 元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 2014, 35(6): 1 001-1 011. ] [本文引用:1] [CJCR: 1.437]
[102] Zhang Baomin, Liu Jingjiang, Bian Lizeng, et al. Reef-banks and reservoir-constructive diagenesis[J]. Earth Science Frontiers, 2009, 16(1): 270-289.
[张宝民, 刘静江, 边立曾, . 礁滩体与建设性成岩作用[J]. 地学前缘, 2009, 16(1): 270-289. ] [本文引用:1]
[103] Zhang Jianyong, Zhou Jin’gao, Pan Liyin, et al. The main origins of high quality reservoir in Feixianguan Formation in Northeast Sichuan Basin: Atmospheric water eluviation and seepage-reflux dolomitization[J]. Natural Gas Geoscience, 2013, 24(1): 9-18.
[张建勇, 周进高, 潘立银, . 川东北地区孤立台地飞仙关组优质储层形成主控因素——大气淡水淋滤及渗透回流白云石化[J]. 天然气地球科学, 2013, 24(1): 9-18. ] [本文引用:1] [CJCR: 1.055]
[104] Moore C H. Carbonate Reservoirs: Porosity Evolution and Diagenesis in A Sequence Stratigraphic Framework[M]. Amsterdam: Elsevier Science, 2001. [本文引用:1]
[105] Kyser T K, James N P, Bone Y. Shallow burial dolomitization and dedolomitization of Cenozoic cool-water limestones, southern Australia: Geochemistry and origin[J]. Journal of Sedimentary Research, 2002, 72(1): 146-157. [本文引用:1] [JCR: 1.742]
[106] Li Guorong, Wu Hengzhi, Ye Bin, et al. Stages and mechanism of dissolution in Changxing reservoir, Yuanba area[J]. Acta Petrologica Sinica, 2014, 30(3): 709-717.
[李国蓉, 武恒志, 叶斌, . 元坝地区长兴组储层溶蚀作用期次与机制研究[J]. 岩石学报, 2014, 30(3): 709-717. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[107] Zhu Dongya, Jin Zhijun, Zhang Rongqiang, et al. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage kasrt[J]. Earth Science Frontiers, 2013, 21(6): 335-345.
[朱东亚, 金之钧, 张荣强, . 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 2013, 21(6): 335-345. ] [本文引用:1]
[108] Shen Anjiang, Wang Zhaoming, Zheng Xingping, et al. Genesis classification and characteristics of cambrian-ordovician carbonate reservoirs and petroleum exploration potential in Yaka-Yengimahalla area, Tarim Basin[J]. Marin Origin Petroleum Geology, 2007, 12(2): 23-32.
[沈安江, 王招明, 郑兴平, . 塔里木盆地牙哈—英买力地区寒武系—奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力[J]. 海相油气地质, 2007, 12(2): 23-32. ] [本文引用:1] [CJCR: 0.8315]
[109] Jiao Cunli, He Zhiliang, Xing Xiujuan, et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 277-284.
[焦存礼, 何治亮, 邢秀娟, . 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1): 277-284. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[110] Machel H G, Buschkuehle B E. Diagenesis of the devonian southesk-cairn carbonate complex, Alberta, Canada: Marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow[J]. Journal of Sedimentary Research, 2008, 78(5): 366. [本文引用:1] [JCR: 1.742]
[111] Ma Yongsheng, Cai Xunyu, Zhao Peirong, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang Oilfield in Sichuan[J]. Acta Geologica Sinica, 2010, 84(8): 1 087-1 094.
[马永生, 蔡勋育, 赵培荣, . 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1 087-1 094. ] [本文引用:1] [CJCR: 2.768]
[112] Zhu Guangyou, Yang Haijun, Su Jin, et al. New prowess of marine hydrocarbon geological theory in China[J]. Acta Petrologica Sinica, 2012, 28(3): 722-738.
[朱光有, 杨海军, 苏劲, . 中国海相油气地质理论新进展[J]. 岩石学报, 2012, 28(3): 722-738. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[113] Zhang Jie, Shou Jianfeng, Zhang Tianfu, et al. New approach on the stduy of dolomite origin: The crystal structure analysis of dolomite[J]. Acta Sedimentologica Sinica, 2014, 32(3): 550-559.
[张杰, 寿建峰, 张天付, . 白云石成因研究新方法——白云石晶体结构分析[J]. 沉积学报, 2014, 32(3): 550-559. ] [本文引用:1] [CJCR: 1.227]
[114] Jones B. Dolomite crystal architecture: Genetic implications for the origin of the Tertiary dolostones of the Cayman Island s[J]. Journal of Sedimentary Research, 2005, 75(2): 177-189. [本文引用:1] [JCR: 1.742]
[115] Kaczmarek S E, Sibley D F. Direct physical evidence of dolomite recrystallization[J]. Sedimentology, 2014, 61(6): 1 862-1 882. [本文引用:1] [JCR: 2.611]
[116] Ferry J M, Passey B H, Vasconcelos C, et al. Formation of dolomite at 40~80 ℃ in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry[J]. Geology, 2011, 39(6): 571. [本文引用:1] [JCR: 4.087]
[117] Sena C M, John C M, Jourdan A L, et al. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: Constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes[J]. Journal of Sedimentary Research, 2014, 84(7): 552-566. [本文引用:1] [JCR: 1.742]
[118] Holmden C. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: Implications for subsurface dolomitization and local Ca cycling[J]. Chemical Geology, 2009, 268(3): 180-188. [本文引用:1] [JCR: 3.154]
[119] Sun Jian, Fang Nan, Li Shizhen, et al. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J]. Acta Petrologica Sinica, 2012, 28(9): 2 890-2 902.
[孙剑, 房楠, 李世珍, . 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2 890-2 902. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[120] Lavoie D, Jackson S, Girard I. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada[J]. Sedimentary Geology, 2014, 305: 58-68. [本文引用:1] [JCR: 1.802]
[121] Zhang Xingyang, Gu Jiayu, Luo Ping, et al. Genesis of the fluorite in the Ordovician and its significance to the petroleum geology of Tarim Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2 220-2 228.
[张兴阳, 顾家裕, 罗平, . 塔里木盆地奥陶系萤石成因及其油气地质意义[J]. 岩石学报, 2006, 22(8): 2 220-2 228. ] [本文引用:1] [JCR: 1.117] [CJCR: 2.65]
[122] Ehrenberg S N, Walderhaug O, Bjrlykke K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233. [本文引用:1] [JCR: 1.768]
[123] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sand stone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2 193-2 214. [本文引用:1] [JCR: 1.768]
[124] Laubach S E, Eichhubl P, Hilgers C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32(12): 1 866-1 872. [本文引用:1]
[125] Vand eginste V, Swennen R, Allaeys M, et al. Challenges of structural diagenesis in foreland fold-and -thrust belts: A case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary[J]. Marine and Petroleum Geology, 2012, 35(1): 235-251. [本文引用:1] [JCR: 2.111]
[126] Neilson J E, Oxtoby N H, Simmons M D, et al. The relationship between petroleum emplacement and carbonate reservoir quality: Examples from Abu Dhabi and the Amu Darya Basin[J]. Marine and Petroleum Geology, 1998, 15(1): 57-72. [本文引用:1] [JCR: 2.111]
[127] Huang Wenming, Liu Shugen, Ma Wenxin, et al. Formation, preservation and damage mechanism of marine deep carbonate high quality reservoir rocks: Illustrated by Sinian system to Silurian in Sichuan Basin[J]. Chinese Journal of Geology, 2011, 46(3): 875-895.
[黄文明, 刘树根, 马文辛, . 深层海相碳酸盐岩优质储层的形成、保存和破坏机制——以四川盆地震旦系—志留系为例[J]. 地质科学, 2011, 46(3): 875-895. ] [本文引用:1] [CJCR: 3.47]
[128] Kenward P A, Goldstein R H, Brookfield A E, et al. Model for how microbial methane generation can preserve early porosity in dolomite and limestone reservoirs[J]. AAPG Bulletin, 2012, 96(3): 399-413. [本文引用:1] [JCR: 1.768]